载脂蛋白E基因多态性与阿托伐他汀调脂疗效的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究载脂蛋白E(ApoE)基因多态性对阿托伐他汀调脂疗效、以及对肝功能影响的相关性。为根据高脂血症患者基因型制定个体化给药方案提供依据。
     方法:
     1.研究对象及基因型分析选取某医院内科49例血脂异常患者[空腹血清检查总胆固醇(TC)>6.0mmol/L或低密度脂蛋白胆固醇(LDL-C)>3.36mmol/L或甘油三酯(TG)>1.78mmol/L或高密度脂蛋白(HDL-C)<0.82mmol/L]。抽取外周静脉血约1mL以提取基因组DNA;采用聚合酶链式反应-限制性内切酶片段长度多态性方法(PCR-RFLP)测定ApoE基因型,各基因型频率分布采用基因平衡估计,各等位基因例数取自然数。
     2.阿托伐他汀疗效评价每人服用阿托伐他汀20mg,每晚一次;于治疗前及治疗后4周采集患者空腹静脉血,采用酶法测定血清总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、载脂蛋白A(Apoa)以及血清碱性磷酸酶(ALP)、天门冬氨酸氨基转移酶(AST)、总胆红素(STB)、总胆汁酸(BA)、丙氨酸氨基转移酶(ALT)浓度,以给药后4周后TC、TG、LDL-C、HDL-C和Apoa的改变比例作为评价阿托伐他汀降脂疗效的标准,ALP、AST、STB、BA和ALT的改变比例作为评价阿托伐他汀肝功损害的标准;根据基因型分型结果将患者分组,分析不同等位基因与各生化指标水平变化的关系。
     3.统计分析统计数据采用mean±SD表示,根据患者基因型分为E2、E3、E4三组。使用SPSS13.0统计软件分析:检测等位基因分布是否符合哈迪-温伯格(Hardy-Weinberg)平衡采用χ2检验;个体治疗前后各生化指标的比较采用配对t检验;不同基因型间生化指标的差异比较采用方差(ANOVA)分析。检测水准a=0.05。
     结果:ApoE等位基因和基因型分布符合哈迪-温伯格(Hardy-Weinberg)平衡。
     治疗前分析不同基因型的患者血脂水平无显著性差异(P>0.05);患者每晚服用20mg阿托伐他汀4周后TC、TG、LDL-C水平有所下降,TC水平降低比例最大,TG降低比例最小。
     治疗4周后分析不同基因型的患者血脂变化水平发现,在E2等位基因组的总胆固醇(TC)降低有统计学意义(P<0.05),而E3、E4组对血脂水平的降低作用不如E2组明显;各等位基因组间的指标变化程度经过统计分析没有发现显著性差异。
     治疗前不同基因型的患者肝功水平无明显差异;患者每晚服用20mg阿托伐他汀4周后STB、BA和ALT水平有不同程度升高,ALT水平升高比例最大。
     治疗4周后分析不同基因型的患者肝功变化水平发现,E3组等位基因组的STB(18±0.51%)与ALT(31±0.93%)改变较大;但各等位基因组间的肝功指标变化程度经过统计分析没有发现显著性差异。
     结论:
     1.阿托伐他汀降低E2携带者TC、LDL-C的作用优于E2非携带者;ApoE基因多态性对阿托伐他汀降脂疗效无显著影响。
     2.阿托伐他汀对肝细胞有损害;ApoE基因多态性对阿托伐他汀发生肝功损伤无显著影响。
     3.血脂异常患者每晚顿服20mg阿托伐他汀,4周后能获得良好的降脂疗效。
Objective:To study the relationship of ApoE restricted fragment length polymorphism and the therapeutic effect by atorvastatin, and the influence to hepatic function.The study provided an important foundation for the gene-directed rationalization and individualization of medication in the hyperlipidemic patients.
     Methods:
     Subjects and Genotyping A group of 49 Han Chinese hyperlipidemic patients[total cholesterol (TC)>6mmol·L-1 or triglycerides (TG)>1.78 mmol·L-1 or low-denstity lipoprotein cholesterol (LDL-C)>3.36 mmol·L-1 or high-denstity lipoprotein cholesterol (HDL-C)<0.82mmol·L-1] were recruited from hospitalized patients in a hospital. Venous blood(~1mL) was obtained from the patients and DNA was isolated from peripheral leucocytes. Genotyping of ApoE alleles were conducted by the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) method. Genotype and allelic frequencies were calculated by gene counting.
     Evaluation of efficacy of atorvastatin The hyperlipidemic patients were treated with 20mg atorvastatin daily for 4 weeks. The blood samples were obtained for lipids and hepatic function testing or DNA extraction before and after 4 weeks of treatment. The levels of serum TC, TG, LDL-C, HDL-C, Apoa and ALP, AST, STB, BA, ALT were measured by using Enzymatic in fasting condition. The effects measured at week 4 were the mean percentage change in TC, TG, LDL-C, HDL-C and Apoa from baseline; The hepatic dysfunction measured at week 4 were the mean percentage change in ALP, AST, STB, BA and ALT from baseline. We observed the effect of ApoE2, ApoE3 and ApoE4 genetic polymorphism on the lipid-lowering and hepatic function-changing efficacy by atorvastatin.
     Statistical analysis The hyperlipidemic patients were divided into three groups according to the alleles, and allele frequencies were estimated from the observed numbers of each specific allele. SPSS 13.0 software was used for statistical analyses. Chi-square test was used to verify Hardy-Weinberg equilibrium. t test was used to compare the levels among before and after treatment. ANOVA was used to compare the differences in the lipid-lowering and change of hepatic function effects of atorvastatin. P-value<0.05 was considered statistically significant.
     Results:The ApoE genetype and allelic frequency was consistent with Hardy-Weinberg equilibrium.
     Baseline of lipid did not show significant difference in three groups; after oral intake of atorvastatin 20mg daily for 4 weeks, all the levels of TC, TG, LDL-C decreased than before treatment. The changed percentage of TC was the largest in the four levels; and the percentage of TG changed was the smallest.
     After 4 weeks treatment, the group carrying E2 allele had more responsive(P<0.05) to atorvastatin than E3 and E4 alleles in total cholesterol(TC). Compared the changed value of lipids according to different alleles, we found that there were no significant differences about the change of TC, TG, LDL-C, HDL-C and Apoa. The ApoE locus did not account for any significant fraction of the variability in response.
     At the same time, the levels of STB, BA and ALT increased after 4 weeks treatment in every groups. STB (18±0.51%) and ALT (31±0.93%) changed worse in the group carrying E3 allele, but we found that there were no significant differences between all groups.
     Conclusion:
     1.Patients carrying E2 allele was more prominent efficacy than non-carrying E2 allele; ApoE genetic polymorphism did not influence lipid-lowering efficacy of atorvastatin.
     2. ApoE genetic polymorphism had no significant effect on adverse reactions of hepatic function.
     3. Satisfactory lipid-lowering efficacy was obtained by hyperlipidemic patients with taking atorvastatin 20mg daily after 4 weeks.
引文
1. Watters JM, Mcleod HL. Cancer Pharmacogenomics:current and future appli-cation, Biochim Biophys Acta 2003; 1603(2):99-111
    2. Persidis A. Pharmacogenonics and diagnostics, Nat Biotechnol 1998; 16:791-792
    3.孙妍萍,谭兰,宋敬卉.CYP2A6基因多态性对丙戊酸钠血药浓度的影响,中华神经科杂志2006 Nov;Vol39,No11.
    4. LaRosa JC. Statins and risk of coronary heart disease, JAMA 2000; 283: 2935-2936
    5. American Heart Association. Heart Disease and Stroke Statistics-2006 Update, American Heart Association:Dallas,2006
    6. Jisun Oh, Matthew R Ban, Brooke A Miskie.genetic determinants of statin intolerance, Lipids in Health and Disease 2007 March;6:7
    7. Vermes A,Vermes I. Genetic polymorphisms in cytochrome P450 enzymes:effect on efficacy and tolerability of HMG-CoA reductase inhibitors, Am J Cardiovasc Drugs 2004; 4:247-255
    8. Prueksaritanont T, Subramanian R, Fang X. Glucuronidation of statins in animals and humans:a novel mechanism of statin lactonization, Drug Metab Dispos 2002; 30:505-512
    9. Kajinami K, Brousseau ME, Ordovas JM. CYP3A4 genotypes and plasma lipoprotein levels before and after treatment with atorvastatin in primary hypercholesterolemia, Am J Cardiol 2004; 93:104-107
    10. Wilke RA, Moore JH, Burmester JK. Relative impact of CYP3A genotype and concomitant medication on the severity of atorvastatin-induced muscle damage, Pharmacogenet Genomics 2005; 15:415-421
    11. Thompson JF, Man M, Johnson KJ. An association study of 43 SNPs in 16 candidate genes with atorvastatin response, Pharmacogenom J 2005; 5:352-358
    12. Fiegenbaum M, da Silveira FR, Van der Sand CR. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment, Clin Pharmacol Ther 2005; 78:551-558
    13. Kirchheiner J, Kudlicz D, Meisel C. Influence of CYP2C9 polymorphisms on the pharmacokinetics and cholesterol-lowering activity of (-)-3S,5R-fluvastatin and (+)-3R,5S-fluvastatin in healthy volunteers,Clin Pharmacol Ther 2003; 74: 186-194
    14. Mulder AB, van Lijf HJ, Bon MA. Association of polymorphism in the cytoch-rome CYP2D6 and the efficacy and tolerability of simvastatin, Clin Pharmacol Ther 2001; 70:546-551
    15. Geisel J, Kivisto KT, Griese EU. The efficacy of simvastatin is not influenced by CYP2D6 polymorphism, Clin Pharmacol Ther 2002; 72:595-596
    16.Nordin C, Dahl ML, Eriksson M. Is the cholesterol-lowering effect of simvastatin influenced by CYP2D6 polymorphism? Lancet 1997; 350:29-30
    17.Chasman DI, Posada D, Subrahmanyan L. Pharmacogenetic study of statin therapy and cholesterol reduction, JAMA 2004; 291:2821-2827
    18.Niemi M, Schaeffeler E, Lang T, Fromm MF. High plasma pravastatin concentrations are associated with single nucleotide polymorphisms and haplotypes of organic anion transporting polypeptide-C (OATPC, SLCO1B1), Pharmacogenetics 2004; 14:429-440
    19.Nishizato Y, Ieiri I, Suzuki H. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes:consequences for pravastatin pharmacokinetics,Clin Pharmacol Ther 2003; 73:554-565
    20. Lee E, Ryan S, Birmingham B. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment, Clin Pharmacol Ther 2005; 78:330-341
    21.Mwinyi J, Johne A, Bauer S, Roots I. Evidence for inverse effects of OATP-C (SLC21A6) 5 and lb haplotypes on pravastatin kinetics, Clin Pharmacol Ther 2004; 75:415-421
    22. Takeda M, Noshiro R, Onozato ML. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors, Eur J Pharmacol 2004; 483:133-138
    23. Rodrigues AC, Rebecchi IM, Bertolami MC. High baseline serum total and LDL cholesterol levels are associated with MDR1 haplotypes in Brazilian hypercholesterolemic individuals of European descent, Braz J Med Biol Res 2005; 38:1389-1397
    24. Kajinami K, Brousseau ME, Ordovas JM. Polymorphisms in the multidrug resistance-1 (MDR1) gene influence the response to atorvastatin treatment in a gender-specific manner, Am J Cardiol 2004; 93:1046-1050
    25. Bercovich D, Friedlander Y, Korem S. The association of common SNPs and haplotypes in the CETP and MDR1 genes with lipids response to fluvastatin in familial hypercholesterolemia, Atherosclerosis 2005; 185(1):97-107
    26. Kajinami K, Brousseau ME, Ordovas JM. A promoter polymorphism in cholesterol 7alpha-hydroxylase interacts with apolipoprotein E genotype in the LDL-lowering response to atorvastatin, Atherosclerosis 2005; 180:407-415
    27. Salazar LA, Hirata MH, Quintao EC. Lipid-lowering response of the HMGCoA reductase inhibitor fluvastatin is influenced by polymorphisms in the low-density lipoprotein receptor gene in Brazilian patients with primary hypercholesterolemia, J Clin Lab Anal 2000; 14:125-131
    28. Lahoz C, Pena R, Mostaza JM. Baseline levels of low-density lipoprotein cholesterol and lipoprotein (a) and the AvaII polymorphism of the low-density lipoprotein receptor gene influence the response of low-density lipoprotein cholesterol to pravastatin treatment,Metabolism 2005; 54:741-747
    29. Chaves FJ, Real JT, Garcia-Garcia AB. Genetic diagnosis of familial hypercho-lesterolemia in a South European outbreed population:influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol, J Clin Endocrinol Metab 2001; 86:4926-4932
    30. Ballantyne CM. Current and future aims of lipid-lowering therapy:changing paradigms and lessons from the Heart Protection Study on standards of efficacy and safety, Am J Cardiol 2003; 92:3K-9K
    31. Pena R, Lahoz C, Mostaza JM. Effect of apoE genotype on the hypolipidaemic response to pravastatin in an outpatient setting,J Intern Med 2002; 251:518-525
    32. Lahoz C, Pena R, Mostaza JM. Apo A-I promoter polymorphism influences basal HDL-cholesterol and its response to pravastatin therapy, Atherosclerosis 2003; 168:289-295
    33.Klerkx AH, de Grooth GJ, Zwinderman AH. Cholesteryl ester transfer protein concentration is associated with progression of atherosclerosis and response to pravastatin in men with coronary artery disease (REGRESS), Eur J Clin Invest 2004; 34:21-28
    34. Freeman DJ, Samani NJ, Wilson V. A polymorphism of the cholesteryl ester transfer protein gene predicts cardiovascular events in non-smokers in the West of Scotland Coronary Prevention Study, Eur Heart J 2003; 24:1833-1842
    35. de Grooth GJ, Zerba KE,Huang SP. The cholesteryl ester transfer protein (CETP) TaqIB polymorphism in the cholesterol and recurrent events study:no interaction with the response to pravastatin therapy and no effects on cardiovascular outcome: a prospective analysis of the CETP TaqIB polymorphism on cardiovascular outcome and interaction with cholesterol-lowering therapy, J Am Coll Cardiol 2004; 43:854-857
    36. Carlquist JF, Muhlestein JB, Horne BD. The cholesteryl ester transfer protein Taq1B gene polymorphism predicts clinical benefit of statin therapy in patients with significant coronary artery disease, Am Heart J 2003; 146:1007-1014
    37. van Venrooij FV, Stolk RP, Banga JD, Sijmonsma TP.Common cholesteryl ester transfer protein gene polymorphisms and the effect of atorvastatin therapy in type 2 diabetes, Diabet Care 2003; 26:1216-1223
    38. Chaves FJ, Real JT, Garcia-Garcia AB. Genetic diagnosis of familial hypercholesterolemia in a South European outbreed population:influence of low-density lipoprotein (LDL) receptor gene mutations on treatment response to simvastatin in total, LDL, and high-density lipoprotein cholesterol, J Clin Endocrinol Metab 2001; 86:4926-4932
    39. Pedro-Botet J, Schaefer EJ, Bakker-Arkema RG. Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a gender specific manner, Atherosclerosis 2001;158(1):183-93
    40.邹琛,陆国平.他汀的药物基因组学研究进展,中国药理学通报2006 Feb;22(2):133-6
    1. Knopp RH. Drug treatment of lipid disorders, N Engl J Med.1999; 341(7): 498-511
    2. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease:the Scandinavian Simvastatin Survival Study (4S), Lancet 1994; 344(8934); 1383-9
    3. Sacks FM, Pfeffer MA, Moye LA. The effect of Pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels, Cholesterol and Recurrent Events Trial investigators. N Engl J Med 1996; 335(14):1001-9
    4. Roses AD. Pharmacogenetics and drug development:the path to safer and more effective drugs, Nat Rev Genct 2004; 5(9):645-56
    5. Anderson JL, Carlquist JF, Horne BD. Cardiovascular pharmacogenomics: current status, future prospects, J Cardiovasc Pharmacol Ther 2003; 8(1):71-83
    6. Evnas WE, Relling MV. Pharmacogenomics:translating funtional genomics into rational therapeutics, Seience 1999; 286(5439):487-491
    7. Pedro-Botet J, Schaefer EJ, Bakker-Arkema RG. Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a gender specific manner, Atherosclerosis 2001; 158(1):183-93
    8. Hixon JE, Vernier DT. Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with Hhal. J Lipid Rea 1990; 31(3):545
    9. Uterman G, Steinmetz A, Weber W. Genetic control of human apolipoprotein E Polymor-phism:comparison of one and two dimensional techniques of isoprotein analysis. Hum Genet 1982; 60:344
    10. Eggertesen G, Tegelman K, Ericsson S, et al. Apolipoprotein polymorphism in a healthy Swedish population:variation of allele frequency with age and relation to serum lipid concentration. Clin Chem 1993; 39:2525
    11.朱铁兵,王钟林,赵水平,等.载脂蛋白E基因对血脂代谢的调节及其与冠心病的关系,湖南医科大学学报 1998;23:149-151
    12. Pablos-mendez A, Riehard M, Colleen N, et al. Association of Apo E Polymorphism with plasma lipid levels in a multiethinic elderly population. Arterioscler Thromb Vasc Biol 1997; 17:3534-3541
    13. Kaprio J, Ferrell RE, Kottke BA, et al. Effects of polymorphisms in apolipoprotein E, A-IV, and H on quantitative traits related to risk for cardiovascular disease, Arterioscler Thromb 1991; 11:1330-1348
    14. Pedro-Botet J, Schaefer EJ, Bakker-Arkena RG, et al. Apolipoprotein E genotype affects plasma lipid response to atorvastatin in a gender specific manner, Atherosclerosis 2001; 158(1):183-93
    15. Ballantyne CM. Current and future aims of lipid-lowering therapy:changing paradigms and lessons from the Heart Protection Study on standards of efficacy and safety, Am Cardiol 2003; 92:3K-9K
    16. Pena R, Lahoz C, Mostaza JM, et al. Effect of apoE genotype on the hypolipidaemic response to pravastatin in an outpatient setting, Intern Med 2002; 251:518-525
    17. Persidis A. Pharmacogenonics and diagnostics, Nat Biotechnol 1998; 16:791-792
    18. Fiegenbaum M, da Silveira FR, Van der Sand CR, Van der Sand LC, Ferreira ME, Pires RC et al. The role of common variants of ABCB1, CYP3A4, and CYP3A5 genes in lipid-lowering efficacy and safety of simvastatin treatment, Clin Pharmacol Ther 2005; 78:551-558
    19. Thompson JF, Man M, Johnson KJ, Wood LS, Lira ME, Lloyd DB et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response, Pharmacogenom 2005; 5:352-358
    20. Takeda M, Noshiro R, Onozato ML, Tojo A,Hasannejad H, Huang XL et al. Evidence for a role of human organic anion transporters in the muscular side effects of HMG-CoA reductase inhibitors, Eur J Pharmacol 2004;483:133-138
    21. Nagasawa K, Nagai K, Ishimoto A, Fujimoto S. Transport mechanism for lovastatin acid in bovine kidney NBL-1 cells:kinetic evidences imply involvement of monocarboxylate transporter 4, Int J Pharm 2003;262:63-73
    22. Sirvent P, Bordenave S, Vermaelen M, Roels B, Vassort G, Mercier J et al. Simvastatin induces impairment in skeletal muscle while heart is protected, Biochem Biophys Res Commun 2005; 338:1426-1434
    23. Rundek T, Naini A, Sacco R, Coates K, DiMauro S. Atorvastatin decreases the coenzyme Q10 level in the blood of patients at risk for cardiovascular disease and stroke, Arch Neurol 2004; 61:889-892
    24. Ghirlanda G, Oradei A, Manto A, Lippa S,Uccioli L, Caputo S et al. Evidence of plasma CoQ10-lowering effect by HMGCoA reductase inhibitors:a double-blind, placebo-controlled study, J Clin Pharmacol 1993; 33:226-229

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700