TGFβ1基因codon10基因多态性对肝脏细胞功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:肝细胞癌(hepatocellular carcinoma, HCC)是世界上最常见的恶性肿瘤之一,在恶性肿瘤致死原因中位列第三。肝炎病毒、黄曲霉毒素、酒精、饮水污染和遗传因素都是肝细胞癌的主要病因,其中最重要的一个病因是乙肝病毒(hepatitis B virus, HBV)或丙肝病毒(hepatitis C virus, HCV)的慢性感染。慢性乙型肝炎(chronic hepatitis B, CHB)是一种最常见的高发病率和高死亡率的传染性肝病。全球乙肝病毒感染者约有20亿,其中乙肝病毒携带者约为3.5亿,每年大约有一百万人死于HBV感染继发的肝衰竭、肝硬化和肝癌。我国是乙肝的高发地,据流行病学调查资料显示,HBsAg阳性者占总人口的7.18%,约1.2亿人。其中慢性乙型肝炎患者约2000-3000万人。作为乙肝主要不良结局的肝纤维化/硬化和原发性肝癌同样具有较高的发病率,以细胞外基质(extracellular matrix, ECM)过度沉积为特征的肝纤维化是急、慢性肝病的主要病理转归,且早期具有可逆性,但如果得不到及时诊断和治疗,就可进一步发展成为肝硬化,肝功能可从代偿走向失代偿,患者最终因肝功能衰竭或并发肝癌而影响生存。
     肝星状细胞(hepatic stellate cell, HSC)是肝脏的间质细胞,在慢性肝脏疾病的发生发展过程中具有重要的作用。最新研究表明肝星状细胞可以作为抗原提呈细胞,表达多种抗原提呈相关的重要分子,在肝脏相关的免疫功能中也发挥重要的作用。
     转化生长因子β1(transforming growth factorβ1, TGFβ1)是强效致纤维化因子,介导细胞对组织的损伤,在纤维硬化性疾病中能激活纤维形成细胞,促进细胞外基质产生,改变基质金属蛋白酶(matrix metalloproteinase, MMP)及其抑制剂的活性,增强靶细胞对细胞因子的反应性,对肝炎、肝损伤后肝纤维化、肝硬化具有重要起始促进作用。TGFB1至少存在10个以上的单核苷酸多态性(single nucleotide polymorphism, SNP)位点,-509位点位于TGFβ1启动子区域,codon10 (Leu>Pro)存在于TGFβ1前体分子的信号肽中,而信号肽中氨基酸序列的改变理论上可影响相应蛋白质的分泌。我们设计相应实验检测八种肝脏细胞系的TGFβ1基因-509位点的基因型及针对codon10 (Leu>Pro)的SNP对肝脏相关细胞功能的影响进行研究。
     方法:用PCR-RFLP方法检测八种肝脏细胞系的TGFβ1基因-509位点的基因型。构建含codon10(Leu>Pro)的TGFβ1(LAP+成熟态单体)真核表达重组体CMV-Leu、CMV-Pro。在L02、HepG2、SMMC-7721、LX-2细胞中转染pcDNA3.1空载体、CMV-Leu、CMV-Pro,培养24小时后,ELISA检测细胞培养上清TGFβ1量。LO2和HepG2细胞转染三种质粒后进行培养,在培养的第12、24、36、48小时,分别进行MTT实验,以检测转染质粒对细胞增殖情况的影响;L02和HepG2细胞转染质粒后48小时,用AnnexinⅤ和PI进行双染色,流式细胞仪检测细胞凋亡情况。HepG2细胞转染三种质粒后培养24小时,用CD105-FITC抗体对细胞进行标记,用流式细胞仪检测CD105分子的表达情况。LX-2细胞转染三种质粒后培养24小时,用CD80-FITC、CD83-PC5、CD1α-PE荧光标记抗体进行避光孵育,流式细胞仪检测三种CD分子的表达情况。实验数据采用SPSS11.0 (Statistical Package for the Social Science 11.0)统计软件用两独立样本t检验进行统计分析。
     结果:确定了八种肝脏细胞系的TGFβ1基因-509位点和codon10的基因型。构建的含codon10(Leu>Pro)的TGFβ1(LAP+成熟态单体)真核表达重组体CMV-Leu、CMV-Pro通过测序确认序列正确。在四种细胞系中,分别转染CMV-Leu、CMV-Pro组的TGFβ1分泌量比pcDNA3.1组高,证明CMV-Leu、CMV-Pro能成功转染进入细胞并能对其产生作用,提高其TGFβ1分泌量。转染CMV-Pro组细胞的TGFβ1分泌量比转染CMV-Leu组高,且有统计学意义(P<0.05)。在LO2细胞凋亡实验中,转染CMV-Leu、CMV-Pro的凋亡率比转染pcDNA3.1的凋亡率低,其中转染CMV-Pro的凋亡率又低于转染CMV-Leu的凋亡率,且有统计学意义(P<0.01)。在HepG2细胞的凋亡实验中可以发现,转染CMV-Leu组和CMV-Pro组的细胞凋亡率显著高于转染pcDNA3.1组的凋亡率(P<0.01),其中转染CMV-Leu组的细胞凋亡率又显著高于转染CMV-Pro组的凋亡率(P<0.01)。在LO2和HepG2细胞的细胞增殖实验中,两种细胞转染CMV-Pro组的细胞增殖活性都高于相应的CMV-Leu转染组。在HepG2细胞转染pcDNA3.1、CMV-Leu、CMV-Pro后,转染CMV-Pro组CD105表达率比转染CMV-Leu组高,且有统计学意义(P<0.05)。在LX-2实验中,转染CMV-Leu、CMV-Pro细胞的CDla、CD80表达率并无明显差异,转染CMV-Pro组的CD83表达率明显低于转染CMV-Leu组,有统计学差异(P<0.01)。
     结论:TGFβ1基因codon10为Pro时比为Leu时更能促进细胞TGFβ1的分泌活性,并能增加HepG2细胞的CD105表达。TGFβ1 codon10为Pro时比为Leu时更能促进L02、HepG2细胞的增殖。CMV-Leu、CMV-Pro对LO2细胞有一定的保护作用,其中TGFβ1基因codon10 Pro型较Leu型对L02细胞凋亡的保护作用更强。而CMV-Leu、CMV-Pro则能促进HepG2细胞的凋亡,其中codon10为Leu型时促进作用更强。TGFβ1基因codon10 Leu型能显著增加LX-2细胞CD83的表达,但对CD80、CD1α的表达并无明显影响。
Objective:Hepatocellular carcinoma (HCC) is one of the most common neoplasms worldwide and the third cause of death among those patients with malignant tumors. One of the important risk factors for HCC is chronic infection by hepatitis B or C virus, although other risk factors, such as Aflatoxin and alcoholism, have been implicated in its pathogenesis. Chronic hepatitis B is one of the most common infectious liver diseases which had high morbidity and mortality because of the development of liver fibrosis, cirrhosis and subsequently hepatocellular carcinoma. About 2 billion people are affected and more than 10% of these populations are persistent into chronic status all over the world. The mortality rate during HBV infection caused by liver failure, liver cirrhosis and HCC is approximately 1 million each year. About half a million Chinese die from HCC caused by HBV and from end stage cirrhosis each year. The patients with chronic HBV are at increased risk of progression to cirrhosis and development of HCC. Liver cirrhosis in its early stage is able to reverse, so it is important for diagnosis and treatment of liver diseases to early diagnose of liver fibrosis.
     Accumulating evidences indicated that Hepatic stellate cells (HSCs) play an important role in the progression of chronic liver diseases. HSCs could express the molecules necessary for antigen presentation and modulate lymphocyte proliferation, so HSCs also could play a role in the immune function of the liver.
     TGFβ1 acts as an important profibrogenic cytokine in liver diseases.It plays an important role in the fibroproliferative changes that follow liver tissue damage, for it can initially recruit and stimulate fibroblasts to produce ECM, enhance ECM synthesis and inhibit ECM degradation by downregulating the expression of matrix-degrading enzymes, promoting expression of matrix metalloproteinase (MMP) inhibitors and inducing tissue inhibitor of metalloproteinases-1 (TIMP-1).
     Until now at least 10 single nucleotide polymorphisms (SNPs) in TGFβ1 gene have been recognized. LeulOPro is located in the signal peptide of TGFβ1 precursor; leucine is encoded when the codon is CTG while proline is encoded when the codon is CCG. Base substitution causing amino acid replacement in signal peptide might influence the secretion of some related proteins. Since TGFβ1 plays such a pivotal role in liver fibrosis and liver malignancy, serial experiments were designed in this study to analyze TGFβ1 gene-509 polymorphisms of eight cell lines, to determine whether the leucine/proline substitution influences TGFβ1 secretion and thus changes the functions of liver cells.
     Method:TGFβ1 gene polymorphisms at positions-509 of Huh-7, HepG2, BEL-7402, SMMC-7721, PLC/PRF/5, Hep3B, QGY, L02 cells were analyzed. Two TGFβ1 plasmid CMV-Leu and CMV-Pro were constructed by cloning TGFβ1 DNA fragment (including LAP and active portion), which encoding either the Leu or Pro forms of TGFβ1, into pcDNA3.1 vectors. L02, HepG2, SMMC-7721 and LX-2 cell lines were chosen to be transfected with CMV-Leu、CMV-Pro or pcDNA3.1 empty vectors. The cell medium was collected and assayed by ELISA kit specific for TGFβ1 separately at 24 hours after the transfection. The transfected L02 and HepG2 cells were collected at 48 hours after the transfection, stained by Annexin V and PI, then analyzed by flow cytometry. All data was calculated by Student's t test. Cell proliferation assays (MTT test) of L02 and HepG2 cells were carried out at the time point of 12,24,36,48 hours after initial transfection. HepG2 cells were collected at 24 hours after the transfection, stained by CD105-FITC and analyzed by flow cytometry. LX-2 cells were collected at 24 hours after the transfection, stained by CD80-FITC, CD83-PC5, CD1α-PE and analyzed by flow cytometry. The data were analyzed with SPSS 11.0 by Student's t test.
     Results:The genotype of eight cell lines'TGFβ1 gene-509 and codon10 were confirmed successfully. CMV-Leu and CMV-Pro vectors were proved to be exactly correct by DNA sequencing. The amounts of TGFβ1 secreted from both CMV-Leu and CMV-Pro transfected cells were higher than pcDNA3.1-transfected cells in four cell lines. CMV-Pro-transfected cells secreted much more TGFβ1 than CMV-Leu-transfected cells, and the difference was statistically significant (P<0.05). The apoptotic rates of CMV-Leu or CMV-Pro transfected cells were greater than pcDNA3.1-transfected cells in HepG2 cells. While in L02 cells the apoptotic rates of CMV-Leu or CMV-Pro transfected cells were much lower than pcDNA3.1-transfected cells. The apoptotic rate of CMV-Pro-transfected cells was also lower than that of CMV-Leu-transfected cells in two cells. And the differences between all transfected cells were statistically significant (P<0.05). Both TGFβ1 codon 10 genotypes could cause an advancing proliferation of liver cells and the genotype of Pro 10 is more effective than Leu 10. CMV-Pro-transfected HepG2 cells expressed a higher level of CD105 than CMV-Leu-transfected cells did (P<0.05). CMV-Pro-transfected LX-2 cells expressed lower level of CD83 than CMV-Leu-transfected cells did (P<0.01), while CD 80 and CD1αexpression pattern were not affected by the genotypes.
     Conclusion:TGFβ1 gene Pro10 could enhance the secretion of TGFβ1 than LeulO in liver cells. Both TGFβ1 Pro10 and Leu10 could accelerate the proliferation activity of L02 cells and HepG2 cells, and Pro10 had a better acceleration effect than Leu10. LeulOPro encoding either Pro10 or Leu10 could promote the apoptosis of hepatoma cells, but prevent the apoptosis of normal liver cells. And TGFβ1 Pro10 had stronger protective ability than Leu10. TGFβ1 Pro10 also could increase the CD105 expression than Leu10 in HepG2 cells, but Leu10 increase the CD83 expression than Pro in LX-2 cells.
引文
[1]Massague J. TGF-beta signal transduction. Annu Rev Biochem,1998; 67:753-791.
    [2]Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta,2008;1782(4):197-228.
    [3]Wang H, Zhao YP, Gao CF, Ji Q, Gressner AM, Yang ZX, Weiskirchen R. Transforming growth factor beta1 gene variants increase transcription and are associated with liver cirrhosis in Chinese. Cytokine,2008; 43(1):20-25.
    [4]Carturan S, Roccatello D, Menegatti E, Di Simone D, Davit A, Piazza A, Sena LM, Matullo G. Association between transforming growth factor betal gene polymorphisms and IgA nephropathy. J Nephrol,2004,17(6):786-793.
    [5]Watanabe Y, Kinoshita A, Yamada T, Ohta T, Kishino T, Matsumoto N, Ishikawa M, Niikawa N, Yoshiura K. A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-beta1 (TGF-beta1) and its signaling pathway. J Hum Genet,2002;47(9):478-483.
    16] Park BL, Han IK, Lee HS, Kim LH, Kim SJ, Shin HD. Identification of novel variants in transforming growth factor-beta 1 (TGFB1) gene and association analysis with bone mineral density. Hum Mutat,2003;22(3):257-258.
    [7]Gewaltig J, Mangasser-Stephan K, Gartung C, Biesterfeld S, Gressner AM. Association of polymorphisms of the transforming growth factor-beta1 gene with the rate of progression of HCV-induced liver fibrosis. Clin Chim Acta,2002; 316(1-2):83-94.
    [8]Wang H, Mengsteab S, Tag CG, Gao CF, Hellerbrand C, Lammert F, Gressner AM, Weiskirchen R. Transforming growth factor-beta1 gene polymorphisms are associated with progression of liver fibrosis in Caucasians with chronic hepatitis C infection. World J Gastroenterol,2005; 11(13): 1929-1936.
    [9]Qi P, Chen YM, Wang H, Fang M, Ji Q, Zhao YP, Sun XJ, Liu Y, Gao CF.-509C>T polymorphism in the TGF-betal gene promoter, impact on the hepatocellular carcinoma risk in Chinese patients with chronic hepatitis B virus infection. Cancer Immunol Immunother,2009; 58(9):1433-1440.
    [10]Clark DA, Coker R. Transforming growth factor-beta (TGF-beta).Int J Biochem Cell Biol 1998,30(3):293-298.
    [11]高春芳,陆伦根。纤维化性疾病的基础和临床第1版,上海:上海科学技术出版社,2004:90-99.
    [12]Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF beta activation. J Cell Sci, 2003; 116(Pt 2):217-224.
    [13]Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC. A transforming growth factor betal signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res,2003; 63(10):2610-2615.
    [14]Colakogullari M, Ulukaya E, Yilmaztepe Oral A, Aymak F, Basturk B, Ursavas A, Oral HB. The involvement of IL-10, IL-6, IFN-gamma, TNF-alpha and TGF-beta gene polymorphisms among Turkish lung cancer patients. Cell Biochem Funct,2008; 26(3):283-290.
    [15]Li T, Cao BW, Dai Y, Cui H, Yang HL, Xu CQ. Correlation of transforming growth factor beta-1 gene polymorphisms C-509T and T869C and the risk of gastric cancer in China. J Gastroenterol Hepatol,2008; 23(4):638-642.
    [16]Brand TC, Bermejo C, Canby-Hagino E, Troyer DA, Baillargeon J, Thompson IM, Leach RJ, Nay lor SL. Association of polymorphisms in TGFB1 and prostate cancer prognosis. J Urol, 2008; 179(2):754-758.
    [17]Saltzman BS, Yamamoto JF, Decker R, Yokochi L, Theriault AG, Vogt TM, Le Marchand L. Association of genetic variation in the transforming growth factor beta-1 gene with serum levels and risk of colorectal neoplasia. Cancer Res,2008; 68(4):1236-1244.
    [18]Lazo-Langner A, Knoll GA, Wells PS, Carson N, Rodger MA. The risk of dialysis access thrombosis is related to the transforming growth factor-beta1 production haplotype and is modified by polymorphisms in the plasminogen activator inhibitor-type 1 gene. Blood,2006; 108(13):4052-4058.
    [19]Crobu F, Palumbo L, Franco E, Bergerone S, Carturan S, Guarrera S, Frea S, Trevi G, Piazza A, Matullo G. Role of TGF-beta1 haplotypes in the occurrence of myocardial infarction in young Italian patients. BMC Med Genet,2008; 9:13.
    [20]Van Horssen J, Bo L, Dijkstra CD, de Vries HE. Extensive extracellular matrix depositions in active multiple sclerosis lesions. Neurobiol Dis,2006; 24(3):484-491.
    [21]Buscher R, Grasemann H. Disease modifying genes in cystic fibrosis:therapeutic option or one-way road? Naunyn Schmiedebergs Arch Pharmacol,2006; 374(2):65-77.
    [22]Caserta TM, Knisley AA, Tan FK, Arnett FC, Brown TL. Genotypic analysis of the TGF beta-509 allele in patients with systemic lupus erythematosus and Sjogren's syndrome. Ann Genet,2004; 47(4):359-363.
    [23]Li H, Romieu I, Wu H, Sienra-Monge JJ, Ramirez-Aguilar M, del Rio-Navarro BE, del Lara-Sanchez IC, Kistner EO, Gjessing HK, London SJ. Genetic polymorphisms in transforming growth factor beta-1 (TGFB1) and childhood asthma and atopy. Hum Genet,2007; 121(5):529-538.
    [24]Mattey DL, Nixon N, Dawes PT, Kerr J. Association of polymorphism in the transforming growth factor beta 1 gene with disease outcome and mortality in rheumatoid arthritis. Ann Rheum Dis,2005; 64(8):1190-1194.
    [25]Yamada H, Watanabe M, Nanba T, Akamizu T, Iwatani Y. The+869T/C polymorphism in the transforming growth factor-betal gene is associated with the severity and intractability of autoimmune thyroid disease. Clin Exp Immunol,2008; 151(3):379-382.
    [26]Ochsner S, Guo Z, Binswanger U, Knoflach A. TGF-beta 1 gene expression in stable renal transplant recipients:influence of TGF-beta 1 gene polymorphism and immunosuppression. Transplant Proc,2002;34(7):2901-2903.
    [27]Vawter WP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ. TGFbetal and TGFbeta2 concentrations are elevated in Parkinson's disease in ventricular cerebrospinal fluid. Exp Neurol,1996; 142(2):313-322.
    [28]Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L, Masliah E, Wyss-Coray T. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J Clin Invest,2006; 116(11):3060-3069.
    [29]Okada K, Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suda S, Suzuki K, Sugihara G, Matsuzaki H, Sugiyama T, Kawai M, Minabe Y, Takei N, Mori N. Decreased serum levels of transforming growth factor-betal in patients with autism. Prog Neuropsychopharmacol Biol Psychiatry,2007; 31(1):187-190.
    [30]Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, Gupta R, Thelma BK. Association of TGFbeta1, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med Genet,2007; 8:20.
    [31]Khalil MS, El Nahas AM, Blakemore AI. Transforming growth factor-betal SNPs: genetic and phenotypic correlations in progressive kidney insufficiency. Nephron Exp Nephrol,2005; 101(2):e31-41.
    [32]McGlynn KA, London WT. Epidemiology and natural history of hepatocellular carcinoma. Best Pract Res Clin Gastroenterol,2005; 19(1):3-23.
    [33]Chinese Society of Infectious Diseases and Parasitology and Chinese Society of Hepatology of Chinese Medical Association. The programme of prevention and cure for viral hepatitis. Zhonghua Ganzangbing Zazhi,2000; 8:324-329.
    [34]Ueberham E, Low R, Ueberham U, Schonig K, Bujard H, Gebhardt R. Conditional tetracycline-regulated expression of TGF-betal in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology,2003; 37(5):1067-1078.
    [35]Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, Takeshita A, Shimizu K, Ohashi H. A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther,2000; 11(1):33-42.
    [36]Arias M, Sauer-Lehnen S, Treptau J, Janoschek N, Theuerkauf I, Buettner R, Gressner AM, Weiskirchen R. Adenoviral expression of a transforming growth factor-betal antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats.BMC Gastroenterol,2003;3:29.
    [37]Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology,2003; 125(1):178-191.
    [38]Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD. Genetic control of the circulating concentration of transforming growth factor type betal. Hum Mol Genet,1999; 8(1):93-97
    [39]Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. Association of a T29-->C polymorphism of the transforming growth factor-betal gene with genetic susceptibility to myocardial infarction in Japanese. Circulation,2000; 101(24):2783-2787.
    [40]Steller H. Mechanisms and genes of cellular suicide. Science,1995; 267(5203): 1445-1449.
    [41]Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science,1995; 267(5203):1456-1462.
    [42]Oberhammer FA, Pavelka M, Sharma S, Tiefenbacher R, Purchio AF, Bursch W, Schulte-Hermann R. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta1. Proc Natl Acad Sci USA,1992; 89(12):5408-5412.
    [43]Lin JK, Chou CK. In vitro apoptosis in the human hepatoma cell line induced by transforming growth factor beta 1. Cancer Res,1992; 52(2):385-388.
    [44]Gressner AM, Lahme B, Mannherz HG, Polzar B. TGF-beta-mediated hepatocellular apoptosis by rat and human hepatoma cells and primary rat hepatocytes. J Hepatol,1997; 26(5): 1079-1092.
    [45]Valdes F, Murillo MM, Valverde AM, Herrera B, Sanchez A, Benito M, Fernandez M, Fabregat I. Transforming growth factor-beta activates both pro-apoptotic and survival signals in fetal rat hepatocytes. Exp Cell Res,2004; 292(1):209-218.
    [46]Sanchez A, Alvarez AM, Lopez Pedrosa JM, Roncero C, Benito M, Fabregat I. Apoptotic response to TGF-beta in fetal hepatocytes depends upon their state of differentiation. Exp Cell Res, 1999; 252(2):281-291.
    [47]Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions, Nat Rev Mol Cell Biol,2006; 7(2):131-142.
    [48]Duff SE, Li C, Garland JM, Kumar S. CD105 is important for angiogenesis:evidence and potential applications. FASEB J,2003; 17(9):984-992.
    [49]Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signalling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem,1999; 274(2):584-594.
    [50]Yao Y, Pan Y, Chen J, Sun X, Qiu Y, Ding Y. Endoglin (CD105) expression in angiogenesis of primary hepatocellular carcinoma:analysis using tissue microarrays and comparisons with CD34 and VEGF. Ann Clin Lab Sci,2007; 37(1):39-48.
    [51]Ho JW, Poon RT, Sun CK, Xue WC, Fan ST. Clinicopathological and prognostic implications of endoglin(CD105) expression in hepatocellular carcinoma and its adjacent non-tumorous liver. World J Gastroenerol,2005; 11 (2):176-181.
    [52]Tsai JF, Jeng JE, Chuang LY, Yang ML, Ho MS, Chang WY, Hsieh MY, Lin ZY, Tsai JH. Clinical evaluation of urinary transforming growth factor-beta1 and serum alpha-fetoprotein as tumor markers of hepatocellular carcinoma. Br J Cancer,1997; 75(10):1460-1466.
    [53]Yagmur E, Rizk M, Stanzel S, Hellerbrand C, Lammert F, Trautwein C, Wasmuth HE, Gressner AM. Elevation of endoglin (CD105) concentrations in serum of patients with liver cirrhosis and carcinoma. Eur J Gastroenterol Hepatol,2007; 19(9):755-761.
    [54]Ali MA, Koura BA, el-Mashad N, Zaghloul MH. The Bcl-2 and TGF-beta1 levels in patients with chronic hepatitis C, liver cirrhosis and hepatocellular carcinoma. Egypt J Immunol,2004; 11(1):83-90.
    [55]Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue ingury. J Biol Chem,2000; 275(4):2247-2250.
    [56]Vinas O, Bataller R, Sancho-Bru P, Gines P, Berenguer C, Enrich C, Nicolas JM, Ercilla G, Gallart T, Vives J, Arroyo V, Rodes J. Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology,2003; 38(4):919-929.
    [57]June CH, Bluestone JA, Nadler LM, Thompson CB. The B7 and CD28 receptor families. Immunol Today,1994; 15(7):321-331.
    [58]Suvas S, Singh V, Sahdev S, Vohra H, Agrewala JN. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphoma. J Biol Chem,2002; 277(10):7766-7775.
    [59]Lanier LL, O'Fallon S, Somoza C, Phillips JH, Linsley PS, Okumura K, Ito D, Azuma M. CD80 (B7) and CD86 (B70) provide similar costimulatory signals for T cell proliferation, cytokine production, and generation of CTL. J Immunol,1995; 154(1):97-105.
    [60]Zhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol,1995; 154(8):3821-3835.
    [61]Prazma CM, Yazawa N, Fujimoto Y, Fujimoto M, Tedder TF. CD83 expression is a sensitive marker of activation required for B cell and CD4+ T cell longevity in vivo. J Immunol,2007; 179(7):4550-4562.
    [62]Kruse M, Rosorius O, Kratzer F, Stelz G, Kuhnt C, Schuler G, Hauber J, Steinkasserer A. Mature dendritic cells infected with herpes simplex virus type 1 exhibit inhibited T-cell stimulatory capacity. J Virol,2000; 74(15):7127-7136.
    [63]Prechtel AT, Turza NM, Theodoridis AA, Kummer M, Steinkasserer A. Small interfering RNA (siRNA) delivery into monocyte-derived dendritic cells by electroporation. J Immunol Methods, 2006; 311(1-2):139-152.
    [64]Fujimoto Y, Tu L, Miller AS, Bock C, Fujimoto M, Doyle C, Steeber DA, Tedder TF. CD83 expression influences CD4+ T cell development in the thymus. Cell,2002; 108(6):755-767.
    [65]Barral DC, Cavallari M, McCormick PJ, Garg S, Magee AI, Bonifacino JS, De Libero G, Brenner MB. CDla and MHC class I follow a similar endocytic recycling pathway. Traffic,2008; 9(9):1446-1457.
    [1]Massague J. TGF-beta signal transduction. Annu Rev Biochem,1998; 67:753-791.
    [2]Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta,2008;1782(4):197-228.
    [3]Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF beta activation. J Cell Sci,2003; 116(Pt 2):217-224.
    [4]高春芳,陆伦根。纤维化性疾病的基础和临床.第1版.上海:上海科学技术出版社,2004:90-99.
    [5]Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGFβ1 as major players and therapeutic targets. J Cell Mol Med,2006; 10:76-99.
    [6]Wahl SM, Wen J, Moutsopoulos N. TGF-beta:a mobile purveyor of immune privilege. Immunol Rev,2006; 213:213-227.
    [7]Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol,2006; 24:99-146.
    [8]Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet,2001; 29(2):117-129.
    [9]Shah M, Revis D, Herrick S, Baillie R, Thorgeirson S, Ferguson M, Robert A. Role of Elevated Plasma Transforming Growth Factor-betal Levels in Wound Healing. Am J Pathol,1999; 154:1115-1124.
    [10]Sanderson N, Factor V, Nagy P, Kopp J, Kondaiah P, Wakefield L, Roberts AB, Sporn MB, Thorgeirsson SS. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA,1995; 92(7):2572-2576.
    [11]Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, zum Buschenfelde KH, Blessing M. TGF-beta1 in liver fibrosis:an inducible transgenic mouse model to study liver fibrogenesis. Am J Physiol,1999; 276:G1059-68.
    [12]Ueberham E, Low R, Ueberham U, Schonig K, Bujard H, Gebhardt R. Conditional tetracycline-regulated expression of TGF-beta1 in liver of transgenic mice leads to reversible intermediary fibrosis. Hepatology,2003; 37(5):1067-78.
    [13]Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockade of type beta transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA,1999; 96:2345-9.
    [14]Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, Takeshita A, Shimizu K, Ohashi H. A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis and dysfunction in rats. Hum Gene Ther,2000; 11(1):33-42.
    [15]George J, Roulot D, Koteliansky VE, Bissell DM. In vivo inhibition of rat stellate cell activation by soluble transforming growth factor beta type Ⅱ receptor:A potential new therapy for hepatic fibrosis. Proc Natl Acad Sci USA,1999; 96:12719-12724.
    [16]Arias M, Sauer-Lehnen S, Weiskirchen R, et al. Expression of a transforming growth factor-β1 antisense mRNA is effective in preventing liver fibrosis in bile-duct ligated rats. BMC Gastroenterology,2003; 3:29.
    [17]Dooley S, Hamzavi J, Breitkopf K, Wiercinska E, Said HM, Lorenzen J, Ten Dijke P, Gressner AM. Smad7 prevents activation of hepatic stellate cells and liver fibrosis in rats. Gastroenterology,2003; 125(1):178-191.
    [18]Gewaltig J, Mangasser-Stephan K, Gartung C, Biesterfeld S, Gressner AM. Association of polymorphisms of the TGFβ1 gene with the rate of progression of HCV-induced liver fibrosis. Clin Chim Acta,2002;316:83-94.
    [19]Watanabe Y, Kinoshita A, Yamada T, Ohta T, Kishino T, Matsumoto N,Ishikawa M, Niikawa N, Yoshiura K. A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-bl (TGF-bl) and its signaling pathway. J Hum Genet,2002;47:478-483.
    [20]Park BL, Han IK, Lee HS, Kim LH, Kim SJ, Shin HD. Identification of novel variants in transforming growth factor-beta 1 (TGFB1) gene and association analysis with bone mineral density. Hum Mutat,2003;22:257-258.
    [21]Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC. A transforming growth factor beta1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res,2003; 63(10):2610-2615.
    [22]Colakogullari M, Ulukaya E, Yilmaztepe Oral A, Aymak F, Basturk B, Ursavas A, Oral HB. The involvement of IL-10, IL-6, IFN-gamma, TNF-alpha and TGF-beta gene polymorphisms among Turkish lung cancer patients. Cell Biochem Funct,2008; 26(3):283-290.
    [23]Li T, Cao BW, Dai Y, Cui H, Yang HL, Xu CQ. Correlation of transforming growth factor beta-1 gene polymorphisms C-509T and T869C and the risk of gastric cancer in China. J Gastroenterol Hepatol,2008; 23(4):638-642.
    [24]Brand TC, Bermejo C, Canby-Hagino E, Troyer DA, Baillargeon J, Thompson IM, Leach RJ, Naylor SL. Association of polymorphisms in TGFB1 and prostate cancer prognosis. J Urol,2008;179(2):754-758.
    [25]Saltzman BS, Yamamoto JF, Decker R, Yokochi L, Theriault AG, Vogt TM, Le Marchand L. Association of genetic variation in the transforming growth factor beta-1 gene with serum levels and risk of colorectal neoplasia. Cancer Res,2008; 68(4):1236-1244.
    [26]Lazo-Langner A, Knoll GA, Wells PS, Carson N, Rodger MA. The risk of dialysis access thrombosis is related to the transforming growth factor-betal production haplotype and is modified by polymorphisms in the plasminogen activator inhibitor-type 1 gene. Blood,2006; 108(13):4052-4058.
    [27]Crobu F, Palumbo L, Franco E, Bergerone S, Carturan S, Guarrera S, Frea S, Trevi G, Piazza A, Matullo G. Role of TGF-beta1 haplotypes in the occurrence of myocardial infarction in young Italian patients. BMC Med Genet,2008; 9:13.
    [28]Cimaz R, Borghi MO, Gerosa M, Biggioggero M, Raschi E, Meroni PL. Transforming Growth Factor betal in the Pathogenesis of Autoimmune Congenital Complete Heart Block.Arthritis Rheum,2006;54(1):356-359.
    [29]Van Horssen J, Bo L, Dijkstra CD, de Vries HE. Extensive extracellular matrix depositions in active multiple sclerosis lesions. Neurobiol Dis,2006; 24(3):484-491.
    [30]Buscher R, Grasemann H. Disease modifying genes in cystic fibrosis:therapeutic option or one-way road? Naunyn Schmiedebergs Arch Pharmacol,2006; 374(2):65-77.
    [31]杨再兴,王皓,高春芳,等。TGFβ1基因多态性对乙型肝炎肝硬化的影响.中华医学杂志,2005;85:1021-6.
    [32]Caserta TM, Knisley AA, Tan FK, Arnett FC, Brown TL. Genotypic analysis of the TGF beta-509 allele in patients with systemic lupus erythematosus and Sjogren's syndrome. Ann Genet,2004; 47(4):359-363.
    [33]Li H, Romieu I, Wu H, Sienra-Monge JJ, Ramirez-Aguilar M, del Rio-Navarro BE, del Lara-Sanchez IC, Kistner EO, Gjessing HK, London SJ. Genetic polymorphisms in transforming growth factor beta-1 (TGFB1) and childhood asthma and atopy. Hum Genet,2007; 121(5):529-538.
    [34]Mattey DL, Nixon N, Dawes PT, Kerr J. Association of polymorphism in the transforming growth factor beta 1 gene with disease outcome and mortality in rheumatoid arthritis. Ann Rheum Dis,2005; 64(8):1190-1194.
    [35]Yamada H, Watanabe M, Nanba T, Akamizu T, Iwatani Y. The+869T/C polymorphism in the transforming growth factor-beta1 gene is associated with the severity and intractability of autoimmune thyroid disease. Clin Exp Immunol,2008; 151(3):379-382.
    [36]Ochsner S, Guo Z, Binswanger U, Knoflach A. TGF-beta1 Gene Expression in Stable Renal Transplant Recipients:Influence of TGF-beta1 Gene Polymorphism and Immunosuppression. Transplant Proc,2002:34(7):2901-2903.
    [37]Vawter WP, Dillon-Carter O, Tourtellotte WW, Carvey P, Freed WJ. TGFbetal and TGFbeta2 concentrations are elevated in Parkinson's disease in ventricular cerebrospinal fluid, Exp Neurol,1996; 142(2):313-322.
    [381 Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L, Masliah E, Wyss-Coray T. Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer's pathology. J Clin Invest,2006; 116(11):3060-3069.
    [39]Okada K, Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suda S, Suzuki K, Sugihara G, Matsuzaki H, Sugiyama T, Kawai M, Minabe Y, Takei N, Mori N. Decreased serum levels of transforming growth factor-beta1 in patients with autism. Prog Neuropsychopharmacol Biol Psychiatry,2007; 31(1):187-190.
    [40]Prasad P, Tiwari AK, Kumar KM, Ammini AC, Gupta A, Gupta R, Thelma BK. Association of TGFbeta1, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med Genet,2007; 8:20.
    [41]Khalil MS, El Nahas AM, Blakemore AI. Transforming growth factor-beta1 SNPs: genetic and phenotypic correlations in progressive kidney insufficiency. Nephron Exp Nephrol, 2005; 101(2):e31-41.
    [42]Shah R, Hurley CK, Posch PE. A molecular mechanism for the differential regulation of TGF-beta1 expression due to the common SNP 509C-T (c.1347C>T). Hum Genet,2006;120:461-469.
    [43]Dery MA, Michaud MD, Richard DE. Hypoxia-inducible factor 1:regulation by hypoxic and non-hypoxic activators. Int J Biochem Cell Biol,2005; 37:535-540.
    [44]Nishi H, Nakada T, Hokamura M, Osakabe Y, Itokazu O, Huang LE, Isaka K. Hypoxia-inducible factor-1 transactivates transforming growth factor-beta3 in trophoblast. Endocrinology,2004; 145:4113-4118.
    [45]Sheares KK, JeVery TK, Long L, Yang X, Morrell NW. Differential effects of TGF-beta1 and BMP-4 on the hypoxic induction of cyclooxygenase-2 in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol,2004;287:L919-L927.
    [46]Wang H, Zhao YP, Gao CF, Ji Q, Gressner AM, Yang ZX, Weiskirchen R. Transforming growth factor beta 1 gene variants increase transcription and are associated with liver cirrhosis in Chinese. Cytokine,2008; 43:20-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700