飞秒激光微精细加工理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对飞秒激光应用于微纳加工领域进行了部分理论与实验研究工作。论文的主要内容包括:
    一、采用几种不同模型实现飞秒激光与金属、电介质以及聚合材料作用过程的描述。对金属材料,通过数值分析约化后的双温模型,对飞秒激光与金属材料相互作用过程进行研究,确定了电子与晶格的耦合时间,并与长脉冲情形进行比较,同时又考虑了脉冲串对材料作用结果的影响;对电介质材料,通过飞秒激光在电介质内传输模型的表述,考虑飞秒激光的时空传输特性,对等离子体产生过程进行分析以及模型设计,并与长脉冲情形做了比较。
    二、从脉冲形状出发,分析高斯形飞秒激光与烧蚀孔径横向尺度的关系:若用ρ表示脉冲能量降为脉冲中心峰值能量E0一半时的光束半径,Et表示材料出现烧蚀时的阈值能量。那么烧蚀孔半径r与ρ的关系为可以表示为:r2=ρ2(lnE0-lnEt),实验中采用针孔扫描法探测了所用飞秒激光的光斑形状。同时采用光束传输模型,实现了飞秒激光在透明材料内部加工光学器件的模型设计,使得飞秒激光加工具有特定参数的微光学器件成为可能。
    三、对飞秒激光加工光学平台以及光学显微系统进行测试,实现飞秒激光加工平台的搭建,并对所用飞秒激光器各项参数对光束质量的影响因素进行了测试;为获得足够多的实验信息,采用几种探测方法实现烧蚀监测及焦点横向定位,提出了适用于加工薄片形透明材料的相干探测方法,实现了焦点纵向定位。
    四、塑料光纤在降低损耗和提高带宽方面取得的突破性进展,使得其在宽带短距离通信网络中具有显著竞争力,相应的带动了塑料光纤相关微光学链接器件研究热潮。实验对飞秒激光与常用的塑料光纤芯材料(PMMA,PC)相互作用机理进行了研究,并最终实现了该有机材料内部微光学器件的刻划。同时实验观察到飞秒激光在有机材料内产生的一些非线性现象,并给出了相应的实验分析。
In this dissertation, part of theoretical and experimental studies on the application of femtosecond laser in micro-nanomachining field are presented. The main contents in this dissertation are classified as follows.
    After several different models are deduced, it is realized to describe the process of the interaction of the femtosecond laser with metal, polymer and dielectric materials.To describe femtosecond laser interaction with metal, the Double-Temperature Equation(DTE) was formatted simply. The electron-lattice couple time is determined through the numerical simulation, which is compared with long pulse. And at the same time, the effect of multi-pulse action is studied. For femtosecond laser interaction with polymer materials, the time-space character of laser must be considered. After the model of femtosecond laser transmission in dielectric is described, the process of plasma generation is studied. And the analysis work is carried out by comparing with long pulse case at the same time.
    2、From the sharp of the laser pulses, the correlation of the gaussian pulses with the ablation transversal radius is performed: r2=ρ2(lnE0-lnEt), in which the ρis the spatial radius of the pulse when the energy is down to the 1/e times of the peak energy E0, the Et is energy threshold when the ablation occurred, and the r is the ablation radius. The femtosecond laser speckle has been measured with pinhole scan method in this dissertation. The beam propagation model is also introduced. With the model, the electro-optic components can be designed. Then it is possible that the micro-optic components with special parameters are fabricated by femtosecond laser.
    3、After femtosecond laser optical machining stages and microscope system are tested, the femtosecond laser micromachining system has been set up successfully. And the factors of femtosecond laser that may have effects on the laser beam quality are measured. To obtain much more information of ablation and the locality of focal point, several detector methods are used. At the same time, coherent detector method is presented to determine the locality of focal point in the lognitudinal direction, which is suitable for the wafer materials.
    
    4、The development of the plastic optical fiber(POF), which is particularly to reduce fiber loss and increase the bandwidth, make the POF have the prominent compete ability in short distance and wide bandwidth aspect. Then micro-optic connectors of the POF becomes the hot research item. The interaction mechanism of the femtosecond laser ablation on core materials of POF(PMMA,PC) has been studied in the dissertation. Finally, it is realized that same micro-optic components have been fabricated by using femtosecond laser in the polymer materials. At the same time, some non-linear phenomena have been observed when the femtosecond laser transmitted in the polymer materials, and the corresponding analysises are given.
引文
[1] G. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity lasers: Physics of the extreme on a tabletop,” Phys. Today, 1998, 51(22)
    [2] 张志刚, 《飞秒激光脉冲技术》, 待出版.
    [3] 王清月, 张志刚, 柴路等, 飞秒纳米光子学与飞秒激光技术, 量子电子学报, 2002, 19(6): 556~557
    [4] 王清月,张国雄,倪晓昌,飞秒激光微纳米加工技术,2003年机械工程学会年会,待发表。
    [5] B. N. Chichkov, C. Momma, S. Nolte, et. al., Femtosecondm, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 1996, 63: 109~115
    [6] Kawata S, Sun H-B, Tanaka T, et al. Finer feature for functional microdevices. Nature, 2001, 412:697~698
    [7] M. Aoyama, K. Yamakawa, Y. Akahane, et. al., 0.85PW, 33-fs Ti: sapphire laserm, Opt. Lett., 2003, 28(17):1594~1596
    [8] R. L. Fork, B. I. Greene, et al., Appl. Phys. Lett., 1981, 38:671~673
    [9] J. A. Valdmanis, R. L. Fork, and J. P. Gordon, Generation of optical pulses as short as 27 femtoseconds directly from a laser balancing self phase modulation, group velocity dispersion, saturable absorption, and saturable gain, Opt. Lett., 1985, 10: 131~133
    [10] R. L. Fork, G. H. Brito Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation.” Opt. Lett., 1987, 12(7): 483~485
    [11] P.F.Moulton, New development of titanium sapphire laser. Opt.News. 1982, 8(1),9~11
    [12] P.F.Moulton, Solid state research report, DIIC AD-A12,4305/4, MIT.Lincoln Lab.1982, 12~15
    [13] R. Roy, P. A. Schulz, and A. Walther, “Acousto-optic modulator as an electronically selectable unidirectional device in a ring laser”, Opt. Lett. 1987, 12(9), 672~674
    [14] N. Sarukura, Y. Ishida, H. Nakano, and Y. Yamamoto, “cw passive mode locking of a Ti:sapphire laser”, Appl. Phys. Lett., Opt. Lett. 1987, 56(9), 814~816
    [15] P. M. W. French, S. M. J. Kelly, and J. R. Taylor, “Mode locking of a continous-wave titanium-dopped sapphire laser using a linear external cavity.” Opt. Lett. 1990, 15(7), 378~380
    [16] Kazunori Naganuma and Kazuo Mogi, “50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror.” Opt. Lett., 1991, 16(10), 738~740
    
    [17] P. A. Schulz, M. J. LaGasse, T. W. Schoenlein, and J. G. Fujimoto, in Digest of Annual Meeting of the Optical society of America (Optical Society of America, Washington, D. C., 1988), paper MEE5
    [18] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fs pulse generation from a self-mode-locked Ti:sapphire laser.” Opt. Lett., 1991, 16(1), 42~44
    [19] H. A. Haus, J. G. Fujimoto and E. P. Ippen, “Structure for additive pulse mode locking”, J. Opt. Soc. Am. B, 1991, Vol.8, 2068~
    [20] Keisaku Yamane, Zhigang Zhang, Kazuhiko Oka, et. al., Optical pulse compression to 3.4 fs in the monocycle region by feedback phase compensation, Opt. Lett., 2003, 28(22):2258~2260
    [21] U. Keller, G. W. ‘t Hooft, W. H. Knox, et al., “Femtosecond pulses from a continuously self-starting passively mode-locked Ti:sapphire laser”, Opt. Lett. 1991, 16:1022~1024
    [22] 柴路,王清月,张志刚等,采用半导体可饱和吸收镜的自启动、自锁模掺钛蓝宝石激光器,光学学报, 2000,20(3):431~433
    [23] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses”, Opt. Comm. 1985, 56:219~221
    [24] P. Maine, D. Strickland, P.Bado, et al., “Generation of ultrahigh peak power pulses by chirped pulse amplification”, IEEE J. Quantum Electron. 1988,Vol.24 p.398
    [25] A. Sullivan, H. Hamster, H. C. Kapteyn, et al., “Multierawatt, 100-fs laser”, Opt. Lett. 1991, 16:1406~1408
    [26] C. P. J. Barty, et al, “Generation of 18-fs multiterawatt pulses by regenerative pulse shaping and chirped pulse amplification.” Opt. Lett. 1996, 21(9):668~670
    [27] K. Yamakawa, “100TW sub-20-fs Ti:sapphire laser system operating at a 10Hz repetition rate.” Opt. Lett. 1998, 23(18):1468~1470
    [28] 张伟力, 邢岐荣, 王清月等,TW级Ti:Al2O3飞秒激光放大器,光学学报, 1996, 16(4): 399~341
    [29] 孙敬华,章若冰,王清月等, 半导体可饱和吸收镜启动的高功率飞秒掺钛蓝宝石激光器,光学学报, 2001, 21(8):1019~1021
    [30] Johnson K. I., Current and future developments of plasmaare, laser and electron beam processing, Proc. Int. Power Beam Cenf., San Diego, Califronia, USA, 1998, 5(2-4):1~10
    
    [31] 江海河,激光加工技术的发展与展望,光电子技术与信息,2001,14(4):1~12
    [32] 田兴志译,激光加工现状及21世纪的展望,光机电信息,2003,No.2:1~4
    [33] 贾正根,激光加工呈强势发展,世界产品与技术,2002,No.9:75~77
    [34] 江涛,陈艳译,高功率YAG激光器在加工厚板方面的应用,2002,11: 46~51
    [35] 小平译,利用YAG准分子激光器进行微孔加工的现状, 光机电信息, 2001,5: 17~19
    [36] Costela A. ,Garcia-Moreno I., Gomez, C., Cleaning graffitis on urban buildings by use of second and third harmonic wavelength of a Nd:YAG laser: A comparative study, Applied Surface Science, 2003, 207(1-4), 86~99
    [37] 宋威魔,用于激光加工的激光器及其特点,激光与红外, 1997, 27(6):323~325
    [38] S. I. Anisimov, B. L. Kapeliovich, and T. L. Perelman, Zheksp, Teor. Fiz, Sov. Phys-JETP 1974, 39:375
    [39] ] J.G.Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen, Femtosecond Laser Interaction with Metallic Tungsten and Nonequilibrium Electron and lattice Temperatures. Phys. Rev. Lett., 1984, 53: 1837~1840
    [40] H. E. Elsayed-Ali, T. B. Norris, M. A. Pessot, and G. A. Mourou. Time-Resolved Observation of Electron-Phonon Relaxation in Copper. Phys. Rev. Lett., 1987, 58: 1212~1215
    [41] P. B. Corkum, F, Brunel, and N. K. Sherman, Thermal Response of Metals to Ultrashort-Pulse Laser Excitation. Phys. Rev. Lett., 1988, 61: 2886~2889
    [42] Bolton, Paul R., Eder, David C., Guethlein, Gary,et. al., Production of dense vapor targets for laser-plasma interaction studies with intense ultrashort pulses, Proceedings of SPIE - The International Society for Optical Engineering, 1993, 1860: 167~177
    [43] von der Linde, D., Interaction of intense femtosecond laser pulses with solids, Technical Digest - European Quantum Electronics Conference, 1994, 267~268
    [44] Boppart, Stephen A., Toth, C.A., Roach, W.P., et. al., Shielding effectiveness of femtosecond laser-induced plasmas in ultrapure water, Proceedings of SPIE - The International Society for Optical Engineering, 1993, 1882, 347~354
    [45] Yodh, A.G., Culver, J.P., Li, M., et. al., Adsorbate infrared spectral response following femtosecond metal-substrate heating, Springer Series in Chemical Physics, 1994, No.60:291~292
    [46] Kautek, W., Krueger, J., Femtosecond-pulse laser microstructuring of semiconducting
    
    
    materials, Materials Science Forum, Applications in Photovoltaics, 1995, 173-174:17~22
    [47] N. Shinki, O. Takuya, K. Hiroshi, et. al., Ablation of polyfluorocarbon films with femtosecond Ti:sapphire laser pulses, Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting, 1994, 8, p 385~386
    [48] S. Nolte, C. Momma, H. Jacobs, et. al., Ablation of metals by ultra-short laser pulses. J. Opt. Soc. Am. B 1997, 14(10): 2716~2722
    [49] J.Güdde, J. Hohlfeld, J. G. Müller, et Al., Damage threshold dependence on electron-phonon coupling in Au and Ni films. Appl. Surf. Sci., 1998, 127-129: 40~45
    [50] X. Zhu, A new method for determining critical pulse width with laser material processing, Applied Surface Science, 2000, 167:230~242
    [51] Falkovsky, L.A. and Mishchenko, E.G., Electron-lattice kinetics of metals heated by ultrashort laser pulses, J. Exp. Theor. Phys.1999,88:84~88
    [52] J.K. Chen, J.E. Beraun, L.E.Grimes,et. al. , Modeling of femtosecond laser-induced non-equibrium deformation in metal films,. International Journal of Solids and Structures, 2002, 39:3199~3216
    [53] R. Sauerbrey and G. H. Pettit, Theory for the etching of organic materials by ultraviolet laser pulses. Appl. Phys. Lett., 55(1989): 421~423
    [54] G. H. Pettit and R. Sauerbrey, Pulsed Ultraviolet Laser Ablation. Appl. Phys. A 1993, 56: 51~63
    [55] Hiroshi Kumagai, Katsumi Midorikawa and Koichi Toyoda, Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 790nm. Appl. Phys. Lett., 1994, 65(14): 1850~1852
    [56] Shinki Nakamura, Katsumi Midorikawa, Hiroshi Kumagai, et. al., Effect of Pulse Duration on Ablation Characteristics of Tetrafluoroethylene-hexafluoropropylene Copolymer Film Using Ti:sapphire Laser. Jpn. J. Appl. Phys. 1996, 35 Pt.1(1A): 101~106
    [57] S. Baudach, J, Bonse, J. Krüger, et. al., Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate. Appl. Surf. Sci., 2000, 154-155: 555~560
    [58] J. Bonse, J. M. Wrobel, J. Krüger,et. al., Ultrashort-pulse laser ablation of indium phosphide in air. Appl. Phys. 2001, A 72: 89~94
    [59] Kazue Ozono, Minoru Obara, Akira Usui,et. al., High-speed ablation etching of GaN
    
    
    semiconductor using femtosecond laser. Opt. commun., 2001, 189: 103~106
    [60] Longtin, J. P., Tien, C. -L., Saturable Absorption during high-intensity laser heating of liquids, Journal of heat transfer, 1996, 118(11):924~930
    
    [61] X. Liu, D. Du, and G. Mourou, Laser Ablation and Micro-machining with Ultra-short Laser Pluses. IEEE J. Quantum Electron., 1997, 33(10): 1706~1716
    [62] Longtin, Jon P. , Using multiphoton absorption with high-intensity lasers to heat transparent liquids, Chemical Engineering & Technology, 1999, 22(1):77~80
    [63] Fan, C. H., Sun, J.and Longtin, J. P., Plasma Absorption of Femtosecond Laser Pulses in Dielectrics, Journal of Heat Tranfer, 2002, 124(4):275~283
    [64] Kautek, W., Mitterer, S., Krueger, J., et. al. Femtosecond-pulse laser ablation of human corneas, Applied Physics A: Solids and Surfaces, 1994, 58(5):513~518
    [65] Loesel, F.H., Brockhaus, P., Fischer, J.P., et. al., Femtosecond pulse lasers for nonthermal tissue ablation, Conference on Lasers and Electro-Optics Europe - Technical Digest, 1994, p277~278
    [66] Muggli P., Brogle R., Joshi C., Two-color photoemission produced by femtosecond laser pulses on copper, Journal of the Optical Society of America B: Optical Physics, 1995, 12(4):553~558
    [67] Liu Ding, Alexander D.R., High intensity femtosecond laser pump-probing measurements of a Cu surface, Applied Physics Letters, 1995, 67(25): 3726~3728
    [68] Sokolowski-Tinten K., Bialkowski J., Cavalleri A.et. al., Observation of a transient insulating phase of metals and semiconductors during short-pulse laser ablation , Applied Surface Science, 1998, 127-129: 755-760
    [69] Gerstner V., Pfeiffer W., Thon A., et. al., Scanning tunneling spectroscopy of GaAs(110) surfaces under femtosecond laser illumination, Technical Digest - European Quantum Electronics Conference, 1996, p 53
    [70] Ashkenasi D., Varel H., Rosenfeld A., et.al., Pulse-width influence on the laser-induced structuring of CaF2 (111), Applied Physics A: Materials Science & Processing, 1996, 63(2): 103~107
    [71] Cavalleri A., Sokolowski-Tinten K., Bialkowski J., et. al., Time of flight measurement during
    
    
    femtosecond laser ablation of gallium arsenide, Conference on Lasers and Electro-Optics Europe - Technical Digest, 1998, CThD4, p 258
    [72] Luther-Davies B., Samoc M., Swiatkiewicza J., et. al., Diagnostics of femtosecond laser pulses using films of poly(p-phenylenevinylene), Optics Communications, 1996, 131(4-6): 301~306
    [73] Nakamura Shinki, Midorikawa Katsumi, Kumagai Hiroshi, Effect of pulse duration on ablation characteristics of tetrafluoroethylene-hexafluoropropylene copolymer film using Ti:sapphire laser , Japanese Journal of Applied Physics, Part 1: Regular Papers & Short Notes & Review Papers, 1996, 35(1A):101~106
    [74] Kruger J., Kautek W., Femtosecond-pulse visible laser processing of transparent materials, Applied Surface Science, Symposium F: 3rd International Conference on Laser Ablation, 1996, 96-98, p 430~438
    [75] Oraevsky Alexander A., Da Silva Luiz B., Rubenchik Alexander M., et.al., Plasma mediated ablation of biological tissues with nanosecond-to-femtosecond laser pulses: relative role of linear and nonlinear absorption, IEEE Journal on Selected Topics in Quantum Electronics, 1996, 2(4): 801~809
    [76] Fibich, Gadi, Femtosecond laser-tissue interaction, Proceedings of SPIE - The International Society for Optical Engineering, 1996, 2673: 93~101
    [77] Cain, Clarence P. (The Analytic Sciences Corp., San Antonio, TX, USA); DiCarlo, Cheryl D.; Noojin, Gary D.; Amnotte, Rodney E.; Rockwell, Benjamin A.; Roach, William P., In-vivo laser-induced bubbles in the primate eye with femtosecond pulses, Proceedings of SPIE - The International Society for Optical Engineering, 1996, 2681:382~388
    [78] Henyk M., Costache F., Reif J., Femtosecond laser ablation from sodium chloride and barium fluoride, Applied Surface Science, 2002, 186(1-4):381~3384
    [79] Serafetinides Alexander A., Makropoulou Mersini I., Kar Ajoy K., et. al., Picosecond and femtosecond laser ablation of hard tissues, Proceedings of SPIE - The International Society for Optical Engineering, 1996,2922: 200~208
    [80] Ihlemann, J., Scholl, A., Schmidt, H., et. al. Nanosecond and femtosecond excimer-laser ablation of oxide ceramics , Applied Physics A: Materials Science & Processing, 1995, 60(4):411~417
    
    [81] Molian P.A., Ultrafast pulsed lasers for manufacturing applications with special reference to diamond machining, Conference on Lasers and Electro-Optics Europe - Technical Digest, 1997, 11:161~162
    [82] Mourou G.; Umstadter D., Development and applications of compact high-intensity lasers, Physics of Fluids B, 1992, 4(7) :p 2315
    [83] Mourou G., Generation of ultra-intense pulses and applications, Springer Series in Chemical Physics, Ultrafast Phenomena VIII, 1993, n 55:241~247
    [84] Yang, L.-M.; Sosnowski, T.; Stock, M.L.; Norris, T.B.; Squier, J.; Mourou, G.; Dennis, Michael L.; Durling, Irl N. III, Chirped-pulse amplification of ultrashort pulses with a multimode Tm:ZBLAN fiber upconversion amplifier, Optics Letters, 1995, 20(9):1044~1046
    [85] Biswal, S.; Nees, J.; Mourou, G., Simple technique to remove thermal distortions in pulsed solid-state lasers, OSA Trends in Optics and Photonics Series, 1997, 10: 310
    [86] Albert O., Mourou G., Single optical cycle laser pulse in the visible and near-infrared spectral range, Applied Physics B: Lasers and Optics, 1999, 69(3):207~209
    [87] Yanovsky V., Felix C., Mourou G., Why ring regenerative amplification (regen)? Applied Physics B: Lasers and Optics, 2002, 74(n SUPPL.) :S181~S183
    [88] Du D., Liu X., Korn G., Squier J., Mourou G., Optical breakdown with femtosecond laser pulses, Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting, 1994, 8:407~408
    [89] Jiang Z., Kieffer J.C., Matte J.P., Chaker M., et.al., Laser-solid interaction at 1018-1019 W/cm2, Springer Series in Chemical Physics, 1994, No.60: 239~242
    [90] Du D., Squier J., Kurtz R., et. al., Damage threshold as a function of pulse duration in biological tissue, Springer Series in Chemical Physics, 1994, No. 60: 254~255
    [91] Pronko P.P., Dutta S.K., Squier J., Rudd J.V., Machining of sub-micron holes using a femtosecond laser at 800 nm, Optics Communications, 1995, 114(1-2), 106~110
    [92] Liu X., Du D., Tien A.-C., Mourou G., Laser micromachining with ultrafast pulses, Pacific Rim Conference on Lasers and Electro-Optics, CLEO - Technical Digest, 1996, p 376
    [93] Michel Meunier, Bruno Fisette, Alexis Houle, et. al., Processing of metals and semiconductors by a femtosecond laser-based microfabrication system, Proceedings of SPIE -- Commercial and Biomedical Applications of Ultrafast Lasers III, 2003, 4978: 169~179
    
    [94] M. Will, J. Burghoff, S. Nolte, A. Tuennermann, Femtosecond laser induced refractive index modifications for fabrication of three-dimensional integrated optical devices, Proceedings of SPIE --Laser Micromachining for Optoelectronic Device Fabrication,2003, 4941: 58~64
    [95] Manfred Hugenschmidt, Ruediger Schmitt, Jean-Pierre Moeglin, et. al., Physics of high-average-power repetitively pulsed laser ablation of dielectric materials, Proceedings of SPIE -- High-Power Laser Ablation IV, 2003, 4760:103~114
    [96] Guizard S., Semerok A., Gaudin, J., et. al., Femtosecond laser ablation of transparent dielectrics: Measurement and modelisation of crater profiles, Applied Surface Science, 2002, 186(1-4):364~368
    [97] Elizabeth K. Illy, Heather J. Booth, Graham Rutterford, Laser processing of photonics components with copper vapor lasers, Proceedings of SPIE -- Laser Micromachining for Optoelectronic Device Fabrication, 2003, 4941:26~34
    [98] Roberto Osellame, Stefano Taccheo, and Giulio Cerullo, 1.5-micron enhancement in active waveguides fabricated with femtosecond laser pulses, Proceedings of SPIE -- Laser Micromachining for Optoelectronic Device Fabrication, 2003, 4941:65~72
    [99] Vitali E. Gruzdev and Anastasia S. Gruzdeva, Formation of electromagnetic shocks on optical cycle near leading front of femtosecond laser pulse, Proceedings of SPIE -- Nonlinear Optical Transmission Processes and Organic Photorefractive Materials, 2002, 4462:87~98
    [100] Andrei V. Kabashin and Michel Meunier, Femtosecond laser ablation of gold in aqueous biocompatible solutions to produce colloidal gold nanoparticles, Proceedings of SPIE -- Photon Processing in Microelectronics and Photonics II, 2003, 4977:609~614
    [101] Wataru Watanabe, Taishi Asano, and Kazuhiro Yamada, Characteristics of couplers and gratings induced by self-trapped filament of femtosecond laser pulses, Proceedings of SPIE -- Commercial and Biomedical Applications of Ultrafast Lasers III, 2003, 4978:155~161
    [102] Saulius Juodkazis, Toshiaki Kondo, Hiroyuki Murata, Three-dimensional recording by femtosecond pulses in dielectrics, Proceedings of SPIE -- Photon Processing in Microelectronics and Photonics II, 2003, 4977: 94~107
    [103] B. Tan, K. Venkatkrishnan, N. R. Sivakumar, et. al., Laser drilling of thick material using femtosecond pulse with a focus of dual-freqency beam, Optics&Laser Technology, 2003, 35: 199~202
    
    [104] WANG Dan-Ling, LI Cheng-De, LUO Le, et. al., Sub-diffraction-Limit Voids in Bulk Quartz Induced by Femtosecond Laser Pulses, Chin. Phys. Lett., 2001, 18(1):65~67
    [105] GUO Hong-Cang, GUO Heng-Chang, JIANG Hong-Bing, et. al., Micrograting polymerization Fabrication with a Single Femtosecond Laser Pulse at 400 nm Wavelength, Chin. Phys. Lett., 2003, 20(5):682~684
    [106] Shiliang Qua,b, Yachen Gao, Xiongwei Jiang, et. al., Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser, Optics Communications, 2003, 224:321~327
    
    [107] GAO Ren-Xi, ZHANG Jia-Hua, ZHANG Li-Gong, et. al., Femtosecond Laser Induced Optica Waveguides and Micro-mirrors Inside Glasses, Chin. Phys. Lett., 2002, 19(10):1424~1426
    [108] S. Preuss, A. Demchuk, M.Stuke, Appl. Phys. A , 1995, 61,33~37
    [109] Yu. Afanasiev, O. Krokhin, G. Sklizkov, Evaporation and heating of a substance due to laser radiation, IEEE J. QE, 1966, 2: 483~486
    [110] A. M. Prokhorov, V. I. Konov, I. Ursu, et. al., Laser Heating of metals (books), 1990
    [111] R. Srinivasan, Science, Ablation of polymers and biological tissue by ultaviolet lasers, 1986 234,559
    [112] J. H. Brannon, J. R. Lankard, A. I. Baise, et. al., Excimer laser etching of polyimide, J. Appl. Phys., 1985, 58,2036~2043
    [113] E. Sutcliffe, R. Srinivasan, Dynamics of UV laser ablation of organic polymer surfaces, J. Appl. Phys., 1986, 60, 3315~3322
    [114] S. Küper, M. Stuke, Femtosecond uv excimer laser ablation, Appl. Phys.B, 1987, 44,199
    [115] G. Gorodetsky, T. G. Kazyaka, R. L. Melcher, et. al., Calorimetric and acoustic study of ultraviolet laser ablation of polymers, Appl. Phys. Lett., 1985, 46,828~830
    [116] R. Srinivasan, B. Braren, R. W. Dreyfus, Ultraviolet laser ablation of polyimide films,J. Appl. Phys., 1987, 61, 372~376
    [117] H. S. Cole, Y. S. Liu, H. R. Philipp, Dependence of photoetching rates of polymers at 193 nm on optical absorption depth, Appl. Phys. Lett., 1986, 48,76~77
    [118] S. Küper, M. Stuke, Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV
    
    
    excimer laser pulses, Appl. Phys. Lett., 1989, 54,4~6
    [119] Wang Z.B., Hong M.H., Lu Y.F., Femtosecond laser ablation of polytetrafluoroethylene (Teflon) in ambient air, Journal of Applied Physics, 2003, 93(101):6375~6380
    [120] Spark, D. L. Mills, R. Warren, T. Holstein, et. al., Theory of electron-avalanche breakdown in solids, Phys. Rev. B, 1981, 24:3519~3536
    [121] D. Arnold, E. Cartier, and D. J. DiMaria, Acoustic-phonon runaway and impact ionization by hot electrons in silicon dioxide, Phys. Rev. B, 1991, 45:1477~1480
    [122] Bityurin N., Kuznetsov A., Use of harmonics for femtosecond micromachining in pure dielectrics, Journal of Applied Physics, 2003, 93(3):1567~1576
    [123] B. C. Stuart, M. D. Feit, S. Herman, et. al., Nanosecond-to femtosecond laser-induced breakdown in dielectrics. Phys. Rev. B 1996, 53: 1749~1761
    [124] L. V. Keldysh, Zh. Eksp, Teor. Fiz, Sov. Phys. JETP , 1965, 20:1307
    [125] D.Y. Tzou, K.S. Chiu, Temperature-dependent thermal lagging in ultrafast laser heating, Int. J. Heat mass transfer, 2001, 44: 1725~1734
    [126] Andreas OSTENDORF, Precise Structuring Using Femtosecond Lasers, The Review of Laser Engineering, 2002, 30(5): 221~225
    [127] Docchio, F., Regondi, P., Capon, M. R. C., and Mellerio, J., Study of the Temporal and Spatial Dynamics of Plasma Dynamics of Plasmas Induced in Liquids by Nanosecond Nd:YAG Laser Pulses. 1. Analysis of the Plasma Staring Times, Appl. Opt., 1988, 27: 3661~3668
    [128] Docchio, F., Regondi, P., Capon, M. R. C., and Mellerio, J., Study of the Temporal and Spatial Dynamics of Plasma Dynamics of Plasmas Induced in Liquids by Nanosecond Nd:YAG Laser Pulses. 2. Plasma Luminescence and Shielding, Appl. Opt., 1988, 27: 3669~3674
    [129] B.K.A. Ngoi, K. Venkatakrishnan, E.N.L. Lim, B. Tan, L.H.K. Koh, E.ect of energy above laser-induced damage thresholds in the micromachining of silicon by femtosecond pulse laser, Optics and Lasers in Engineering ,2001, 35: 361~369
    [130] Fan, C. H., and Longtin, J. P., Modeling Optical Breakdown in Dielectrics during Ultrafast Laser Processing, Appl. Opt., 2001, 40: 3124~3131
    [131] S. Guizard, A. Semerok, J. Gaudin, M. Hashida, P. Martin, and F. Quéré, Femtosecond
    
    
    Laser Ablation of Transparent Dielectrics Measurement and Modelisation of Crater Profiles, Appl. Surf. Sci., 2002, 186: 364~368
    [132] 高昕,宋宙模,强脉冲激光金属表面烧蚀热场的数值仿真,红外与激光工程,2000,29(4):62~66
    [133] Jean-Claude Diels and Wolfgang Rudolph, Ultrashort Laser Pulse Phenomena: Funda- mentals, Techniques, and Applications on a Femtosecond Time Scale, Optics and Photonics(Formerly Quantum Electronics)(books), 1979
    [134] Feng Shuqiang, Xiao Anding, Liu Donghua,Research on Laser Drilling of Stainless Steel, Journal of Guangxi Institute of Technology(in Chinese), 1999, 10(3):38~41
    [135] Ming Li, Makoto Ishizuka and Xinbing Liu, Nanostruturing in Submicron-level Waveguides with Femtosecond Laser Pulse, CLEO Technical Digest, 2002, 127: 659~660
    [136] Dragan Coric, Midori Wei, Writing Buried Waveguide Structures: Comparing Ultrafast and Deep-Ultravlolet Lasers, CLEO Technical Digest, 2002, 127: 128~129
    [137] John D. Mills, Peter G. Kazansky, Erica Bricchi, Chris W J. Hillman, and Jeremy J. Baumberg, Direct Microstructuring of Fiber Cores with Femtosecond Laser Pulses. CLEO Technical Digest, 2002:48
    [138] Alexander M. Streltsov and Nicholas F. Borrelli, Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses, Opt. Lett., 2001, 26(1):42~43
    [139] Jianrong Qiu, and Kazuyuki HIRAO, Creation and applications of Micropattern Inside Transparent Materials Using a Femtosecond Laser, Laser Review, 2002, 30(5):233~238
    [140] D.Hpmpelle, S.Wielandy, Alexander L.Gaeta, N.F.Borrelli, and Charlene Smith, Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses, Opt. Lett., 1999, 24 (18):1311~1313
    [141] Kaoru Minoshima, Andrew M.Kowalevicz, Ingmar Hartl, Erich P.Ippen, and James G..Fujimoto, Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator, Opt. Lett., 1999, 26 (19):1516~1518
    [142] Matthias Will, Stefan Nolte, and Andreas Tuennermann, Three-dimensional integrated optical device fabrication in glass by femtosecond laser processing, CLEO Technical Digest, 2002, 127: 127~128
    
    [143] Winick, Kim A. , Florea, C. , Fabrication and characterization of photonic devices directly written in glass using femtosecond laser pulses, Journal of Lightwave Technology, v 21, n 1, January, 2003, p 246-253
    [144] Pierre R.Villeneuve, Daniel S.Abrams, Shanhui Fan, and J.D.Joannopoulos, Single-mode waveguide microcavity for fast optical switching, Opt. Lett., 1996, 21(24):2017~2019
    [145] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, Numerical Techniques for Modeling Guided-Wave Photonic Devices, IEEE J. Selected Topics in Quantum Electronics, 2000,6 (1):150~162
    [146] R.Scarmozzino and R.M.Osgood, Jr., Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications, J. Opt. Soc. Amer. A, 1991, 8(5): 724~731
    [147] G.R. Hadley, “Transparent boundary condition for the beam propagation method”, J. Quantum Electron., 1992, 28(1): 363~370
    [148] A. I. Korytin, N. M. Bityurin, S. V. Muraviov, Voxel-like modification of PMMA by combined effect of femtosecond Ti:Sapphire laser fundamental frequency and second harmonic rediation, CLEO Technical Digest, 1999 : 360~361
    [149] Hong-Bo Sun, Shigeki Matsuo and Hiroaki Misawa,Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett., 1999, 74(6):786~788
    [150] Daniel Day and Min Gu, Formation of voids in a doped polymethylmethacrylate polymer, Appl. Phys. Lett., 2002, 80(13):3404-3406
    [151] Martijn A. van Eijkelenborg, Maryanne C. J. Large, Alexander Argyros, et. al., Microstructured polymer optical fibre, Opt. Express, 2001, 9:319~327
    [152] Katayama S., Horrike M, Hirao K, et. al., Diffraction measurement of grating structure induced by irradiation of femtosecond laser pulse in acrylate block copolymers, 2002, Japan. J. Appl. Phys. 41:2155~2162
    [153] Si J F, Shen Z Q, Si J H, et. al., Photoinduced permanent gratings inside bulk azodye-doped polymers by the coherent field of a femtosecond laser, Appl. Phys. Lett., 2002, 80:359~361
    [154] P J Scully, D Jones and D A Jaroszynski, Femtosecond laser irradiation of
    
    
    polymethylmethacrylate for refractive index gratings, Journal of Optics A: Pure Appl. Opt., 2003, 5:S92~S96
    [155] 杨春, 孙小菡, 塑料光纤无源器件近况, 网络电信, 2002, No.7:38~40
    [156] P J Scully, D Jones and D A Jaroszynski, Femtosecond laser irradiation of polymethylmethacry for refractive index gratings, J. Opt. A: Pure Appl. Opt. 2003, 5:S92~S96
    [157] 吴静, 光通信用塑料光纤综述, 光纤光缆传输技术, 2003, No.1:4~6
    [158] K.M.Davis, K.Miura, N.Sugimoto, and K.Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett., 1996, 21(21):1729~1731
    [159] Xiaochang Ni, Ching-yue Wang, The Femtosecond Laser Ablation Research Progress, laser & optronics progress (in Chinese)2002, 39(9):4~9
    [160] Jinghua Sun, Ruobing Zhang,Qingyue Wang, et. al., High-average-power self-starting mode-locked Ti:sapphire laser with a broadband semiconductor saturable absorber mirror, 2001, Appl. Opt. 40: 3539~3541
    [161] S. M. Saltiel, K.A.Stankov, P.D. Yankov et. al., Realization of a diffraction-grating autocorrelator for single-short measurement of ultrashort light pulse duration. Appl. Phys. B. 1986, 40:25~27
    [162] D. J. Kane, R. Trebino. Single-shot measurement of the intensity and phase of an arbitrary ultrashort pulse by using frequency-resolved optical gating. Opt. Lett. 1993, 18: 823~825
    [163] H. R. Lange, M. A. France, J. F. Ripoche, et. al., Reconstruction of the time profile of femtosecond laser pulses through cross-phase modulation. IEEE J. of Sel. Topic in Quantum Electronics 1998, 4: 295~300
    [164] C. Iaconis, I. A. Walmsley. Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. Opt..Lett., 1998, 23 (10):792~794
    [165] I. Zergioti, S. Mailis, N. A. Vainos et. al., Microprinting and microetching of diffractive structures using ultrashort laser pulses, Applied surface science, 1999, 138-139: 82~86
    [166] Yuki Kondo, Kentaro Nouchi, Tsuneo Mitsuyu, et. al., Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses, Opt. Lett., 1999, 24(10):646~648
    
    [167] J. M. Liu, Simple technique for measurement of pulsed Gaussian-beam spot sizes, Opt..Lett., 1982, 23 (10):792~794
    [168] J. Bonse, P. Rudolph, J. Kruger, et. al., Femtosecond pulse laser processing of TiN on silicon, Applied surface science, 2000, 154-155: 659~663
    [169] K.H.Leong, A.A.Said, R.L.Maymard. Femtosecond Micromachining Application for Electro-Optic Components. IEEE,Electronic Components and Technology Conference, 2001:210~214
    [170] 胡明列,王清月,栗岩峰等, 飞秒激光在非均匀微结构光纤中超连续白光的产生和传输, 中国科学(待发表)
    [171] Zhaoxin Wu, Hongbing Jiang, Le Luo, et. al., Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica, Opt. Lett., 2002, 27(6):448~450
    [172] Yong Jee, Michael F. Becker, and Rodger M. Walser, Laser-induced damage on single-crystal metal surfaces, J. Opt. Soc. Am. B 5(3): 648~659
    [173] Chris B. Schaffer, Andre Brodeur, Jose F. Garcia et. al., Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy, Opt. Lett., 2001, 26(2):93~95
    [174] Xing Qirong, Mao Fanglin, Chai Lu, Wang Qingyue, Theoretical Study on Femtosecond Tweezers, ACTA PHOTONOCA SINICA,2002, 31(Z2), 28~32
    [175] E. N. Glezer, M. Milosavljevic, L. Huang, et. al., Three-dimensional optical storage inside transparent materials, Opt. Lett.1996, 21 2023
    [176] D. Homoelle, S. Wielandy, Alexander et. al., Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses, Opt. Lett., 1999, 24(18):1311~1313
    [177] Braun A., Korn G., Liu X., et. al., Self-channeling of high-peak-power femtosecond laser pulses in air , Optics Letters, 1995, 20(1):73~75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700