金属在离子液体中的溶解性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由特定的阳离子和阴离子组成的离子液体,在室温或近于室温下呈液态的离子化合物,电化学窗口很宽,可用于金属的电沉积。本文合成了氯化1-丁基-3-甲基咪唑([bmim]C1中间体和[bmim]BF4、[bmim]PF6、[bmim]Cl-AlCl3离子液体。在不同温度、有氧和无氧的条件下研究金属在离子液体中的溶解。
     测定了有氧和无氧的外在条件下,金属(Al、Cu、Fe)在离子液体中的溶解性能。实验结果表明,实验温度越高,金属的溶解速率越快,失重越多,金属离子在离子液体中的饱和浓度越大。空气的介入对金属在离子液体中溶解的影响很大,能改变金属的溶解机理。
     Al在[bmim]BF4和[bmim]PF6离子液体中几乎不溶,Al2O3膜阻隔了Al与离子液体的接触。一旦破坏了Al2O3保护层,Al的溶解速率加快。在[bmim]Cl-AlCl3离子液体中Al被Cl-腐蚀,溶解的很快。
     三种离子液体都能溶解金属Fe,但在[bmim]Cl-AlCl3离子液体中的溶解量最大,溶解速率基本恒定,不同条件下反应的活化能有很大差异。
     Cu在[bmim]PF6中的溶解很少,但在[bmim]Cl-AlCl3离子液体中被剧烈腐蚀。必须有氧存在Cu才能在[bmim]BF4离子液体中溶解。在25至70℃、空气气氛下,Cu溶解的表观活化能为21760 J/mol
     金属Cu、Fe、Al在离子液体中的溶解性有差异。[bmim]BF4离子液体对金属Cu、Fe、Al的溶解顺序为Cu>Fe>Al。[bmim]PF6离子液体对金属Cu、Fe、Al的溶解顺序大致上为Fe>Al>Cu。
     在[bmim]BF4离子液体中,Cu2+的饱和浓度随氧分压增大而增大。相比[bmim]BF4和[bmim]PF6离子液体,因为有Cl-的存在,Cu2+在[bmim]Cl-AlCl3中的饱和浓度最大。
     Cu在[bmim]BF4离子液体中的溶解过程受扩散控制,反应速率主要取决于生成的Cu2+从固液界面扩散到溶液主体中的速率。在不同氧分压和温度下Cu在[bmim]BF4离子液体中的反应速率方程为
     随着温度的升高,Cu的腐蚀电位逐渐负移,腐蚀电流密度不断增大,腐蚀速率也随之加快。氧气气氛下,Cu的腐蚀电位、腐蚀电流密度和腐蚀速率最大,电位随着氧分压的减小逐渐负移,速率随氧分压的减小逐渐减小。
     相对于空气和氩气,氧气气氛下离子液体[bmim]BF4溶液电位最高。增大氧分压能加强溶液的氧化还原能力,即提高溶液电位。溶液电位的升高能加速金属的溶解。
Ionic liquids which are completely composed of anions and cations, are liquids at ambient temperature. Many metals can be eletrodeposited from ionic liquids because they have wide electrochemical windows.In this paper, 1-buty-3-methylimidazolium chloride ([bmim]Cl) intermediate、[bmim]BF4、[bmim]PF6 and [bmim]Cl-AlCl3 ionic liquid were prepared. Dissolution of metals in ionic liquids with or without the oxygen and under different temperatures was investigated.
     Dissolution of metals (Al、Cu、Fe) in ionic liquids under the conditions of hermetic and oxygen involved were measured. The experimental results showed that the dissolution rate of metals and saturation concentrations of metal ions in ionic liquids increased with increase in the temperature. Air involved appears to play a significant role in dissolution of metals in ionic liquids, which can change the dissolution mechanism.
     Al can hardly be dissolved in [bmim]BF4 and [bmim]PF6. Al and the ionic liquids were obstructed by the Al2O3 film. If Al2O3 layer was destroyed, Al can dissolve soon. Whereas Al in [bmim]Cl-AlCl3 was corroded by Cl-.
     Fe can be dissolved in three kinds of ionic liquids. Moreover, the dissolution magnitude of Fe in [bmim]Cl-AlCl3 was the largest, and the dissolution rate was basically constant. The apparent activation energy varied greatly under different conditions.
     The dissolution magnitude of Cu in [bmim]PF6 was little. But Cu in [bmim]Cl-AlCl3 was corroded significantly. Cu can only be dissolved in BMIMBF4 in the present of oxygen. According to the experimental data, the value of apparent activation energy was found to be 21760 J/mol in the temperature range from 25 to 70℃under the air atmosphere.
     The dissolution of Cu、Fe、Al in ionic liquids were different. The dissolution order of Cu、Fe、Al in [bmim]BF4 is expressed as follows Cu>Fe>Al
     Similarly, the dissolution order of Cu、Fe、Al in [bmim]PF6 is expressed as follows Fe>Al>Cu
     The saturation concentrations of Cu2+ in [bmim]BF4 increased with increase in the oxygen partial pressure. Compared with [bmim]BF4 and [bmim]PF6, the saturation concentrations of Cu2+ in [bmim]Cl-AlCl3 was the largest due to the present of Cl-.
     Dissolution of Cu in BMIMBF4 is a diffusion-controlled process, the rate of that mainly depends on the diffusion of Cu2+ from the solid-liquid interface to the bulk solution. The rate equation of Cu dissolution in BMIMBF4 under different oxygen partial pressures and temperatures can be expressed as
     The corrosion potential of Cu in [bmim]BF4 shifts negatively with increase in the temperature, and the current density and corrosion rate increased with increase in the temperature. The corrosion potential、current density and corrosion rate were maximal under the oxygen atmosphere. The corrosion potential shifts negatively with decrease in oxygen partial pressure, and the corrosion rate decreased gradually with decrease in oxygen partial pressure.
     The [bmim]BF4 potential is maximal under the oxygen atmosphere comparing with air and argon, and which increased with increase in oxygen partial pressure. The dissolution rate of metals can be accelerated with the [bmim]BF4 potential improved.
引文
[1]丁利,刘大壮,高振.含氟离子液体的研究进展[J].化学通报,2007,5.
    [2]FullerJ, CarlinR T, el al. The Room Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Tetrafluoroborate:Electrochemical Couples and Physical Properties [J].J.Electrochem.Soc,1997,144:3881-3885.
    [3]Lee C. W. Diels-Alder Reactions in Chloroaluminate Ionic Liquids:acceleration and selectivity enhancement [J]. Tetrahedron Lett.,1999,40:2461-2464.
    [4]邓友全.离子液体-性质、制备与应用[M].北京:中国石化出版社,2006,7,3-7.
    [5]Hurley F H, Wier T P.Electrodeposition of metals from fused quaternary ammonium salts[J].J.Electrochem.Soc,1951,98(2):203-208.
    [6]Quarmby I.C, Mantz R.A, Goldenberg L.M, et al. Stoichiometry of Latent Acidity in Buffered Chloroaluminate Ionic Liquids [J].Anal. Chem.,1994,66: 3558-3561
    [7]Quarmby I.C, Osteryoung R. A. Latent Acidity in Buffered Chloroaluminate Ionic Liquids[J]. J. Am.Chem. Soc,1994,116:2649-2650.
    [8]Seddon K R. Ionic Liquids for Clear Technology [J]. J. Chem. Tech. Biotechnol, 1997,68(4):351-356.
    [9]Karodia N, Guise S, Newland C, Anderson J-A. Clean catalysis with ionic solvents-phosphoniun tosylates for by droformylation [J]. Chem. Commun.,1998, 2341-2342.
    [10]FullerJ, CarlinR.T, LongH.C.De.Structureofl-ethyl-3-methylimidazoliumHexaflu orophoshate:Model for Room Temperture Molten Salts[J].J.Chem.Soc.Chem. Commun,1994:229-301.
    [11]Pierre Bonbote, Ana-Paula Dias, Nicholas Papageorgiou,Kuppuswamy, Kalyanasundaram, et al. Highly Conductive Ambient-Temperature Molten Salts[J]. Inorg. Chem.,1996,35:1168-1178.
    [12]Fannin A.A., Floreani D.A., King L.A., et al.Properties of 1,3-dialkylimidazolium Chloride Aluminum Chloride Ionic Liquids.2. Phase-transitions, Densities, Electrical Conductivities, and Viscosityies [J].J.Phys.Chem.,1984,88: 2614-2621.
    [13]Ma M., Johnson K.E. Carbocation Formation by Selected Hydrocarbons in Trimethylsulfonium Bromide-AlCl3/AlBr3-HBr Ambient Temperature Molten Salts [J]. J. Am. Chem. Soc.,1995,117:1508-1513.
    [14]C.Scordilis-Kelley, J.Fuller, R.T.Carlin. Alkali Metal Reduction Potentials Measured in Chloroaluminate Ambient-Temperature Molten Salts [J]. J.Electrochem. Soc.,1992,139:694-699.
    [15]李汝雄.绿色溶剂-离子液体的合成与应用[M].北京:化学工业出版社,2004,3,10-16.
    [16]Hagiwara R, Ito Y. Room temperature ionic liquids of alkylimidazolium cations and fluoroanions [J]. Fluorine Chem,2000,105(2):221-227.
    [17]Thomas W. Room-temperature ionic Solvents for synthesis and catalysis[J]., Chem. Rev.,1999,99(8):2071-2083.
    [18]Hurley F H, Wier T P. Electrodeposition of metals from fused quaternary ammonium salts[J]. J.Electrochem. Soc,,1961,98(2):283-288.
    [19]Howlett P C, Zhang S, MacFarlane D R. An investigation of a phosphinate-based ionic liquid for corrosion protection of magnesium alloy AZ31[J].Aust. J. Chem.,2007,60:43-46.
    [20]赵秋凝.在BMIC-AlC13-R离子液体中电解精炼铝的研究[D].昆明理工大学,2007,4,20.
    [21]Earle M. J., McCormac P.B., Seddon K.R. Regioselective alkylation in ionic liquids [J]. Chem.Commun,1998,2245-2246.
    [22]Zim D., de Souza R.F., Dupont J., Monteiro, Adriano L. Regioselective synthesis of 2-arylpropionic esters by Palladium-Catalyzed hydroesteri-fication of styrene derivatives in molten salt media [J]. Tetrahedron Lett,1998,39:7071-7074
    [23]Koch V R, Milleer L L and Osteryoung R A, Electroinitiated Friedel-crafts transalkylations in room-temperature molten-salt medium [J]. J.Am. Chem. Soc., 1976,98(17):5277-5284.
    [24]Robonson J and Osteryoung R A. An electrochemical and spectroscopic study of some aromatic hydrocarbons in the room temperature molten salts system aluminum chloride-n-butylpyridinium chloride [J]. J.Am.Chem.Soc.,1979,102 (2):323-327.
    [25]Gale R J and Osteryoung R A. Potentiometric investigation of dialuminum heptachloride formation in aluminum chloride-n-butylpyridinium chloride mixture [J]. Inorg.Chem.,1979,18(6):603-609.
    [26]Ronald A.C., Lowell A K, Richard E L, et al. Density, electric conductivity and viscosity of several n-alkylpyridinium halides and their mixtures with aluminum chloride[J]. J.Am.Chem.Soc.,1979,126(10):1644-1647.
    [27]Hussey C L, King L A and Carpio R A. The electrochemistry of copper in a room temperature acidic chloroaluminate melt[J].J.Electrochem.Soc.,1979,126(6): 1029-1034.
    [28]Hussey C L and Laher T M. Electrochemical and spectroscopic studies of cobalt(Ⅱ) in molten aluminum chloride-n-pyridinium chloride[J]. Inorg. Chem.,1981,112(20):4201-4206.
    [29]Akihiro N V. Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts [J]. Electrochem Acta,2000,45:1265-1270.
    [30]Leone A M, Weatherly S C, Williams M E. An ionic liquid form of DNA: redox-active molten salts of nucleic acids[J]. J.Am.Chem.Soc.,2001,123(2): 218-222,
    [31]Abbott A P, Lapper G, David D L, Helen L M, Daymond K R and Vasuk.T.Preparation of novel, moister-stable, Lewis-active ionic liquids Containing quaternary ammonium salts with functional sidechains[J].Chem. Comm.,2001,15; 2020-2011.
    [32]Tames H D, Andkerri J, Forrester J. Thazolium-ion based oranic ionic liquids(QILs), novel QILs which promote the benzoin condensation[J]. Tetrahedron Lett,1999,40:1621-1622.
    [33]Ohno H, Nishimura N. Ion conductive characteristics of DNA film containing ionic liquids [J]. J.Electrochem.Soc.2001,148(4):168-170.
    [34]Zulfiqar F, Kitazume T. Lewis acid-catalyzed sequential reaction in ionic liquid [J], Green Chem,2000,2(6):296-297.
    [35]Y.S. Hu, Z.X. Wang and X.J. Huang. Physical and electrochemical propertiesw of new binary room-temperature molten salt electrolyte based on LiBETI and acetamide [J]. Solid State Ionics,2004,175,277-280.
    [36]J. Sun, D.R. MacFarlane and M.Forsyth, A new family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation[J]. Electrochi Acta,2003,48,1707-1711.
    [37]Hiroyuki Ohno□, Masahiro Yoshizawa, Wataru Ogihara, Development of new class of ion conductive polymers based on ionic liquids [J]. Electrochi Acta, 2004 (50):255-261.
    [38]Takaya Sato, Gen Masuda, Kentaro Takagi, Electrochemical properties of novel ionic liquids for electric double layer capacitor applications[J]. Electrochi Acta,2004 (49),3603-3611.
    [39]N.V.Ignate'eV, U.Welz-Biermann, and S.Kucheryna. New ionic liquids with tris (perfluoroalkyl) trifluorophosphate(FAP) anions[J]. J.Fluorine Chem., 2005,126,1150-1159.
    [40]Ketack Kim, Christopher M.Lang,and Paul A.Kohl. Properties of asymmetric benzyl-substituted ammonium ionic liquids and their elechemical properties[J]. J.Electrochem.Soc,2005,152 (2),E56-E60.
    [41]Anna M.Fenelon and Carmel B.Breslin, The formation of poly pyrrole at iron from 1-Butyl-3-methylimidazolium hexafluorophosphate [J]. J.Electrochem. Soc., 2005,152(1), D6-D11.
    [42]Martyn J.Earle, Manuela A.Gilea, Joseph W.Magee, et al.The distillation and volatility of ionic liquids[J]. Nature,2006,439(16),831-834.
    [43]Alexandra GroBe Being and Andreas Jess. Kinetics and reactor design aspects of the synthesis of ionic liquids-experimental and theoretical studies for ethylmethylimidazole ethylsulfate [J].Chem. Eng. Sci.,2006,3,38.
    [44]Jing Tong a,b, Mei Hong c, Wei Guan et al. Studies on the thermodynamic properties of new ionic liquids:1-Methyl-3-pentylimidazolium salts containing metal of group Ⅲ [J]. J. Chem. Thermodyn.,2006,1-6.
    [45]Yun-Sheng Ding, Min Zha and ZJun Zhang etc. Synthesis, characterization and properties of geminal inidazolium ionic liquids[J]. Colloids Surf., A: Physicochem. Eng. Aspects,2007,298,201-205.
    [46]Earle M. J., McCormac P.B., Seddon K.R. Regioselective alkylation in ionic liquids [J]. Chem.Commun.,1998,2245-2246.
    [47]Huddlestou JG, Willauer H D. Swatloski R P[J]. Chem Comnm.,1998.16: 1765-1766.
    [48]Song C.E., Roh E.J. Practical method to recycle a chiral (aalen)Mn epoxidation catalyst by using an ionic liquid[J]. Chem. Commun.,2000,(7):837-838.
    [49]VisserA E, Swadoski R P, Rogers R D. Task-specific ionic liquids for the extraction of metal ions from aqueous solutions[J].Chem Commun.,2001 (1): 135-136.
    [50]张景涛,朴香兰,束慎林.离子液体及其在萃取中的应用研究进展[J].化工进展,2001,12:16-1.
    [51]Yang H, Gu Y, Deng Y.Q. Electrochemical activation of carbon dioxide in ionic liquid:synthesis of cyclic carbonates at mild reaction conditions [J].Chem.Commun.,2002,274-275.
    [52]Barhdadi R., Courtinard C.,Nedelec J. Y. Room-temperature ionic liquids as new solvents for organic electrosynthesis. The first examples of direct or nickel-catalysed electroreductive coupling involving organic halides [J].Chem.Commun.,2003,1434-1435.
    [53]Carmichael A.J., Earle M.J., Seddon K.R., et al. The heck reaction in ionic liquids:a multiphasic catalyst system [J]. Org. Lett.,1999,1:997-1000.
    [54]Fischer T, Sethi A, Welton T., Woolf, J. Diels-alder reactions in room temperature ionic liquids[J]. Tetrahedron Lett,1999,40:793-796.
    [55]Howarth J., Hanlon K., Fayne D., and Me Cormac P. Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous lewis acids in the diels-alder reaction [J]. Tetrahedron Lett.,1997,38(17):3097-3100.
    [56]Hiroyuki Ohno, Naomi Nishimura.lon conductive characteristics of DNA film containing ionic liquids [J]. J. Electrochem.Soc., 2001,148:E168-170.
    [57]Marc Dolye, Susan K.Choi and Grant Pro ulx. High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites[J].J.Electrochem.Soc., 2000,147(1):34-37.
    [58]Welton T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis [J]. Chem. Rev.,1999,99:2071-2084.
    [59]Huddleston J.G., Willauer H.D., Rogers R.D., et al.Room temperature ionic liquids as novel media for'clean'liquid-liquid extraction[J]. Chem. Commun., 1998,1765-1766.
    [60]Zhou Y,Antonietti M.Synthesis of very small TiO2 nanocrystals in a room temperature ionic liquid and their self assembly toward mesoporous spherical aggregates[J].J AmChem Soc.,2003,125:14960-14961.
    [61]Wang W W,Zhu Y J. Synthesis of PbCrO4 and Pb2Cr05 rods via a microwave-assisted ionic liquid method[J].Crystal Growth & Design,2005,5(2):505-507.
    [62]Jiang Y, Zhu Y J. Microwave-assisted synthesis of sulfide M2S3(M=Bi, Sb) nanorods using an ionic liquid[J]. J Phys Chem B,2005,109:4361-4364.
    [63]陈晓伟,包宗宏.室温离子液体的应用进展[J].精细石油化工,2006,3.
    [64]Abbott A P,Eardley C A,Farley N S et al.Electrodeposition of aluminium and aluminium/platinum alloys from AICl3/berizyhrimethylammonium chloride room temperature ionic liquids[J].J.Appl. Electrochem.,2001,31:1345-1350.
    [65]Wasserscheid P, Keim W. Ionic Liquids-New"Solutions" for Transition Metal Catalysis [J]. Angew. Chem. Int. Ed.,2000,39: 3772-3789.
    [66]Stegemann H., Rhode A., Reiche A., et al. Room Temperature Molten Polyiodides[J].Electrochim.Acta.,1992,37(3):379-383.
    [67]Pierre Bonbote, Ana-Paula Dias, Nicholas Papageorgiou, Kuppuswamy Kalyanasundaram, et al. Highly Conductive Ambient-Temperature Molten Salts[J]. Inorg. Chem.,1998,35:108-118.
    [68]杨坤.铜在Cu(BF4)2-[bmim]BF4及CuSO4-H2O-[bmim]BF4体系中的电沉积研究[D].昆明理工大学,2007,4,20.
    [69]Uerdingen M, Treber C, Balser M. Corrosion behaviour of ionic liquids[J].Green Chem.,2005,7:321-325.
    [70]Bardi U, Chenakin S P, Caporali S. Surface modification of industrial alloys induced by long-term interaction with an ionic liquid[J].Surf. Interface Anal., 2006,38:1768-1772.
    [71]Caporali S, Ghezzi F, Giorgetti A-Interaction between an imidazolium based ionic liquid and the AZ91D magnesium alloy [J].Adv. Eng. Mater., 2007, 9 (3): 185-190.
    [72]Ilaria Perissi, Ugo Bardi, Stefano Caporali et al.High temperature corrosion properties of ionic liquids., Corros. Sci., 2006,6.
    [73]Shkurankov A, Zein El Abedin S, Endres F. AFM-assisted investigation of the corrosion behavior of magnesium and AZ91 alloys in an ionic liquid with varying water content[J]. Aust.J. Chem,2007,60:35-42.
    [74]Bermudez M D, Jimenez A E, Martinez-Nicolas G Study of surface interactions of ionic liquids with aluminum alloys in corrosion and erosion-corrosion processes[J]. Appl. Surf.Sci., 2007,253:7295-7302.
    [75]Reddy RG, Zhang Z J, Arenas M F. Thermal stability and corrosivity evaluations of ionic liquids as thermal energy storage media[J]. High Temp. Mater Processes,2003,22(2):87-94.
    [76]Sheldon R. Catalytic reactions in ionic liquids[J].Chem. Commun,2001,23: 2399-2407.
    [77]Zhao H, Xia S.Q, Ma P.S. Use of ionic liquids as 'green' solvents for extractions [J]. Journal of Chemical Technology and Biotechnology,2005,80:1089-1096.
    [78]A.P.Abbott, G.Capper, D.L.Davies et al.Processing metal oxides using ionic liquids[J].Trans.Inst.Min.Metall.C.,2006,115(1)
    [79]Peter Nockemann, Ben Thijs, Stijn Pittois et al.Task-Specific Ionic Liquid for Solubilizing Metal Oxides[J].J.Phys.Chem.B,2006,110,20978-20992.
    [80]. Kumelan J, Perez-Salado Kamps A, Tuma D, et al. Solubility of H2 in the ionic liquid [bmim][PF6] [J].J Chem.Eng.Data.,2006,51(4):11-14.
    [81]Jie Ding, Dezhi Zhou, Geoffrey Spinks et al. Use of Ionic Liquid as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers[J].Chem.Mater.,2003,15,2392-2398.
    [82]Kumelan J, Perez-Salado Kamps A, Urukova I, et al. Solubility of oxygen in the ionic liquid [bmim][PF6]:Experimental and molecular simulation results[J].J Chem.Thermodyn.,2005,37(6):595-602.
    [83]Blanchard L A, Gu Z Y, Brennecke J F.High-pressure phase behavior of ionic liquid/CO2 systems[J].J Phys.Chem.B,2001,105(12):2437-2444.
    [84]Hert D G, Anderson J L, Aki S N V K,et al.Enhancement of oxygen and methane solubility in 1-hexyl-3-methylimidazolium bis (trifhoromethylsulfonyl) imide using carbon-dioxide[J].Chem Commun.,2005, (20):2603-2605.
    [85]Shiflett M B, Yokozeki A. Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6],and[bmim][BF4][J]. Ind.Eng.Chem.Res.,2005,44(12): 4453-4464.
    [86]Husson-Borg P, Majer V, Costa Gomes M F. Solubilities of oxygen and carbon dioxide in butyl methyllmidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure[J]. J Chem.Eng.Data, 2003,48(3):480-485.
    [87]Jacquemin J, Costa Gomes M F, Husson P, et al. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric[J].J Chem.Thermodyn,2006, 38(4):490-502.
    [88]Anthony J L, Maginn E J, Brennecke J F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazoliunl hexafluorophosphate[J].J Phys.Chem.B,2002,106(29):7315-7320.
    [89]Finotello A, Bara J E, Narayan S, et al. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids[J]. J Phys. Chem.B,2008,112(8):2335-2339.
    [90]. Yuan X L, Zhang S J, Lu X M. Hydroxyl ammonium ionic liquids: synthesis, properties, and solubility of SO2 [J].Chem.Eng. Data.,2007,52(2):596-599.
    [91]Camper D, Scovazzo P, Koval C, et al. Gas solubilities in room-temperature ionic liquids[J]. Ind.Eng.Chem.Res.,2004,43(12):3049-3054.
    [92]Anderson J L, Dixon J K, Maginn E J, et al.Measurement of SO2 solubility in ionic liquids[J]. J Phys.Chem.B,2006,110(31):15059-15062.
    [93]Anthony J L, Anderson J L, Maginn E J, et al. Anion effects on gas solubility in ionic liquids[J]. J Phys.Chem.B,2005,109(13):6366-6374.
    [94]华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004.
    [95]张锁江,吕兴梅等.离子液体-从基础研究到工业应用[M].北京:科学出版社,2006,1,2.
    [96]杨振海,徐宁,邱竹贤铝的电位-pH图及铝腐蚀曲线的测定[J].东北大学学报(自然科学版),2000,21(4):1-3.
    [97]Andrew P.Abbott, Katy J. McKenzie.Application of ionic liquids to the electrodeposition of metals [J]. Phys.Chem.Chem.Phys.,2006,8,4265-4279.
    [98]宋诗哲.腐蚀电化学研究方法[M].北京:化学工业出版社,1988.
    [99]石顺存,易平贵.新型离子液体的合成及其阳离子基团缓释性能[J]化工学报,2005,7-9.
    [100]Desmond Tromans. Temperature and pressure dependent solubility of oxygen in water:a thermodynamic analysis [J]. Hydrometallurgy., 1998:327-342.
    [101]杜清枝,杨继舜.物理化学[M].重庆:重庆大学出版社,1997,11.
    [102]Robert P. Tengerdy. Redox Potential Changes in the 2-Keto-L-gulonic Acid Fermentation-Ⅰ. Correlation between Redox Potential and Dissolved-Oxygen Concentration[J].J.Biochem.Microbiolog. Tech. Eng.,1961,3(3):241-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700