潜水泵水润滑推力轴承润滑性能数值计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
推力轴承是潜水泵的重要组成部分。水润滑推力轴承以水为润滑介质,这对于节约油料,节能环保,提高潜水泵的机械效率,减少轴承摩擦、磨损具有重要的理论意义和实际工程应用价值。
     本论文结合国家自然科学基金资助项目,以潜水泵水润滑推力轴承为研究对象,采用数值计算、有限元仿真和试验相结合的方法,开展推力轴承流体动压润滑和弹流润滑、热—结构耦合特性以及试验验证等方面的研究。
     论文主要研究工作和结论如下:
     1)根据雷诺方程及其边界条件,将方程离散化,求得在不考虑弹性变形的条件下的潜水泵水润滑推力轴承润滑性能参数的变化趋势;同时根据J.Boussinesq经典理论,推理了弹性变形方程,将雷诺方程和弹性变形方程耦合求解,得到潜水泵水润滑推力轴承各润滑性能参数的变化趋势,这些趋势为推力轴承的设计提供了理论依据。
     2)计算潜水泵推力轴承推力瓦与推力环摩擦副端面间的总摩擦热,并给出了推力瓦与推力环摩擦热的分配方法,以及推力瓦对流换热系数,应用有限元软件ANSYS,采用直接耦合法探讨不同运行工况、几何结构参数和材料导热系数对推力瓦温度场的影响规律。研究结果表明,推力瓦出水边靠近外径处摩擦热较大,温度较高;推力瓦四周由于与流体间的对流换热吸收了摩擦产生的部分热量,温度较低。
     3)为了验证水润滑推力轴承的动压润滑数值分析与温度场有限元求解的正确性,进行了试验研究。试验测试结果表明:摩擦系数变化趋势,水膜厚度、压力分布,以及推力瓦温度分布状况等,与理论计算结果基本一致,较好地验证了理论分析所得到的结论。
A thrust bearing is an important component of a submersible pump which is water-lubricated. It will have better theoretic significance and engineering application to save energy, protect environment, improve the mechanical efficiency of marine propulsion system and reduce the friction and abrasion of the bearings.
     In this article, combined with the project of the National Natural Science Foundation of China, the water-lubricated thrust bearing of the submersible pump is taken as research subject, and its theoretical research is carried out, including the elastohydrodynamic lubrication, characteristic of thermal-structural coupled system, and simulation test of bearings and so on.
     Main research work and its conclusions are as follows:
     1) According to Reynolds equation and boundary conditions, the discrete equations are obtained without considering the elastic deformation. The changing trends of the lubrication performance parameters of the water-lubricated thrust bearing can be obtained. And based on classical theory of J.Boussinesq, elastic deformation equation can be deduced. Reynolds equation is solved coupled with elastic deformation equation. And the elastohydrodynamic lubrication characteristics of the water-lubricated thrust bearing can be obtained for the thrust bearing design.
     2) The total frictional heat, which is from the friction pair of both thrust pad and thrust ring of thrust bearing, is calculated, and the friction heat distribution method and convective heat transfer coefficient are provided. The rule has been studied in use of finite element software ANSYS and direct coupling method, that the thrust pad temperature field is influenced with the different operating conditions, geometry structures and material thermal conductivity coefficients. The results show that the fiction heat is greater and the temperature there is higher near by the water leakage approaches and the outer diameter place of the thrust pad. But the temperature all around the thrust pad is lower, because of the portion friction heat absorbed by convective heat transfer between both thrust pad and fluid.
     3) In order to verify the correctness of numerical analysis of lubrication performance and finite element solving results in temperature field of the thrust bearing, the tests have been done. The measuring results make clear that the changing trends of friction coefficient of the thrust bearing, water film thickness, pressure distribution, and temperature distribution of the thrust pad are consistent with the theoretical results, which also have better attested the conclusion of the theoretical analysis.
引文
[1]王家序,陈战等.以水为润滑介质的摩擦副关键问题研究[J],润滑与密封,2001(2):34-36.
    [2]史维样.流体传动几个重要的发展[J].液压气动与密封,2000(1):2-6.
    [3]Chambers W S, Mikula A M. Operational data for a large vertical thrust bearing a pumped storage application [J]. Transactions of the Society of Tribologists and eers,1988,31(1): 61-65.
    [4]宋文武,郑伯博.贯流混流式水轮机轴承系统的设计与计算[J].四川工业学院学报,2003(1):52-54.
    [5]孙建永.水润滑轴承在小型湿式潜水电泵中的应用[J].排灌机械,1997(4):45-46
    [6]刘宪伟.面向绿色开采的低粘度介质润滑理论及应用研究[D].中国矿业大学,2008.
    [7]邓波,陈坚,周少华.大型立式推力轴承研究现状及发展趋势[C].2009年全国大型泵站更新改造研讨暨新技术、新产品交流大会论文集:《泵站技术》,2009,12.
    [8]段芳莉.橡胶轴承水润滑机理的研究[D].重庆:重庆大学,2002.
    [9]Li Z Y,Yang S D. Development of hydraulic pump to operate with raw water[C]. Proceedings of 1998 ASME International Fluids Engineering Division Summer Meeting, June 21-25,1998,Washington D. C. USA.
    [10]周华,杨华勇,环境友好的纯水液压传动技术[C],1999年全国流体动力与机电一体化技术学术年会论文专辑.
    [11]Oshimoto S, Kohno K. Static and dynamic characteristics of aerostatic circular porous thrust bearings[J]. Journal of Tribology,2001,123:501-508.
    [12]胡荣华.船用滑动推力轴承结构设计研究[J].船舶工程,2007(5):60-64.
    [13]高磊,刘俊,安琦.柱面弧形油楔推力轴承数值分析[J].润滑与密封,2007(8):99-102.
    [14]陈志澜,袁小阳,王海林等.推力轴承瓦面形面对润滑性能影响的研究[J].摩擦学学报,2003(1):56-59.
    [15]Mikula A M. New design cuts power loss in tilting pad thrust bearing [J]. Transactions of the American Society of Lubrication Engineers,1987 (2):181-190.
    [16]Chambers W S, Mikula A M. Operational data for a large vertical thrust bearing I a pumped storage application[J]. Transactions of the Society of Tribologists and Lubrication Engineers,1988 (1):61-65.
    [17]Markin D, McCarthy D M C, Glavatskih S B. A FEM approach to simulation of tilting-pad thrust bearing assemblies[J]. Tribology International,36 (2003):807-814.
    [18]赵红梅.水轮机组推力轴承的润滑理论及研究[D].大连:大连理工大学,1994.
    [19]Wang X J,Zhang Z M,Zhang G X. Improving the performance of spring-supported thrust bearing by controlling its deformations. Tribology international,1999,32:713-720.
    [20]王小静,张国贤,张直明.型面波纹与推力瓦承载性能关系研究[J].液压气动与密封,1999(3):34-43.
    [21]李忠,袁小阳,马鸿飞等.推力轴承瓦面形面对润滑性能影响的研究[J].摩擦学学报,2003(1):56-59.
    [22]张霞,王新荣,王晓霞.提高水润滑推力轴承承载力方法研究[J].中国科技信息,2010(12):175-176.
    [23]Wang Y S, Wang Q J, Lin C H. A mixed-EHL analysis of effects of misalignments and elastic deformations on the performance of a coupled journal-thrust bearing system[J]. Tribology International,39 (2006):281-289.
    [24]何春勇,刘正林,吴铸新.潜水泵水润滑推力轴承润滑性能数值分析[J].润滑与密封,2010(8):58-62.
    [25]吴铸新,刘正林,何春勇等.船舶水润滑推力轴承数值分析与计算[J].大连海事大学学报,2009(3):97-100.
    [26]肖科.纳米级氧化锌晶须对水润滑轴承材料的改性研究[J].润滑与密封,2004(2):56-57.
    [27]陈焱.水润滑轴承材料研究现状[J].机电技术,2009(2):27-29.
    [28]王优强,李鸿琦.水润滑赛龙轴承及其润滑性能综述[J].润滑与密封,2003(1):101-104.
    [29]张文光,王家序.玻纤增强改性酚醛树脂复合材料在水润滑轴承上的应用研究[J].润滑与密封,2007(9):116-118.
    [30]Sukumaran N V P, Prabhakaran N K. Finit element analysis of elastohydynamic circular journal bearing with micropolar lubricants[J]. Finite element in Analysis and Design.2004,41(1):75-59.
    [31]Chambers W S, Mikula A M. Operational data for a large vertical thrust bearing of a pumped storage application [J]. Transactions of the Society of Tribologists and eers,1988, 31(1):61-65.
    [32]Raimondi A A. The influence of longitudinal and transverse profile on the load capacity of pivoted pad bearings[J]. ASLE Trans,1960,3(2):173-180.
    [33]Tieu A K. A numerical simulation of finite-width thrust bearings taking into account viscosity variation with temperature and pressure[J]. J Mech Eng Sic,1974,17(10):1-10.
    [34]Ali Osman Kurban. Analysis of a hydrodynamic thrust bearing with elastic deformation using a recurrent neural network[J]. Tribology International,36 (2003):943-948.
    [35]Wang X J, Zhang Z M, Zhang G X. Improving the performance of spring-supported thrust bearing by controlling its deformations[J]. Tribology International,1999,32(12):713-20.
    [36]Reddy DSK, Swarnamani S, Prabhu B S. Thermo elastohydrodynamic analysis of tilting pad journal bearing-Theory and experiments [J]. ASME Tribology Transactions,2000, 43(1):82-90.
    [37]Sebastien Berger, Olivier Bonneau, Jean Frene. Influence of axial thrust bearing defects on the dynamic behavior of an elastic shaft[J]. Tribology international,2000,33:153-160.
    [38]Glavatskih S B, Fillon M,Larsson R. The significance of oil thermal properties on the performance of a tilting-pad thrust bearing[J]. Journal of Tribology,2002(124):377-385.
    [39]Zhao Hongme, Dong Yuxin, Ma Zhenyue. Calculation of the tridimensional distribution of the oil film temperature of the thrust bearing lubrication[J]. Journal of Dalian University of technology,1994(5):589-594.
    [40]Glavatskih SB. A method of temperature monitoring in fluid film bearings. Tribology International,37 (2004):143-148.
    [41]Bathe K J,Zhang H,Ji S H. Finite element analysis fluid flows fully coupled with structural interactions[J]. Computer sand Structures,1999.72(1-3):1-16.
    [42]武中德,于秋敏,许传辉等.大型交直流电机固定瓦推力轴承热流体动压润滑性能分析[J].黑龙江电力,2000(4):24-26.
    [43]王锐昌.热流状态下新型动压推力轴承压力场的计算[J].鞍山钢铁学院学报,2000(2):99-102.
    [44]陈志澜,吕新广,朱均.三维传热对推力轴承温度分布影响的研究[J].西安交通大学学报,1998(12):64-69.
    [45]向敬忠.微型推力轴承试验台的研制[J].哈尔滨理工大学学报,1998(6):21-23.
    [46]郅刚锁,朱均.巨型推力轴承油膜的综合可视化系统[J].机械科学与技术,2002(2):176-178.
    [47]胡朝阳,常山.大型径向和推力滑动轴承试验台结构设计与应用[J].齐齐哈尔大学学报,2005(2):79-82.
    [48]毕纯辉,梁广太,李金香.水轮发电机推力轴承油膜厚度的在线检测.电站系统工程,1995(5):24-29.
    [49]丁述勇.水轮发电机推力轴承油膜厚度在线监测对位系统的设计[J].应用科技,2005.(7):29-31.
    [50]高嵘,王小静,潘菁菁等.推力轴承实验台数据采集系统的研究[J].太原科技大学学报,2006(7):30-34.
    [51]孙晓刚,戴景民,丛大成等.推力轴承油膜厚度测量系统的研制[J].计量学报,2003(2):92-94.
    [52]丁述勇,朱根兴.基于光强反射式光纤传感器法的推力轴承瓦油膜厚度测量研究[J].现代制造工程,2005.(8):79-80.
    [53]陈战,王家序,秦大同.以水作润滑介质的摩擦副的研究[J].农业机械学报,2001,32(3): 124-125.
    [54]彭晋民,王家序.水润滑塑料合金轴承摩擦性能实验[J].重庆大学学报(自然科学版),2001,24(6):9-11.
    [55]张直明.滑动轴承的流体动力润滑理论[M].北京:高等教育出版社,1986.
    [56]Hughes W F. Phase change in liquid face seal[J]. Trans ASME.1978,100,(1).
    [57]Slant R F. Development of an analytical model for use in mechanical seal design. Proc. of 10th ICFS,1984.
    [58]BUCK G S. A Methodology for Design and Application of Mechanical Seals. ASLE Trans.1980,23(3).
    [59]Golubiev AI. Thermocracking of seal faces in mechanical seals. Proc of 5th ICFS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700