基于TEG的热能发电关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TEG(Thermoelectric Generator)是一种半导体温差发电器,利用温差产生电能,具有无运动部件、稳定性高、绿色无污染等优点。它可以根据不同的应用条件,制成各种形状,随着无线传感网络在各种应用领域的飞速发展,TEG作为自供电传感器的电源,显示出了极高的应用价值。
     本文从基本的热电理论出发,推导了TEG热电转换性能的重要参数,即热力学效率和功率密度。并从热量传递的角度,建立了TEG的热传导模型,这个模型包括了汤姆逊热、焦耳热、帕尔贴热以及热阻和电阻对TEG热电转换性能的影响。得到了输出功率与热阻的关系,并根据热阻和负载电阻对TEG的几何结构进行了优化。
     近年来,TEG的研究致力于开发高优值系数的薄膜热电材料。然而对于如此薄的热电材料,为了获得更大的温差,得到更高的输出电压和功率密度,必须解决冷端的散热问题,才能发挥这种材料的优势。因此,TEG冷端的散热技术成为了开发高性能TEG系统的关键技术之一,本文分析了散热器对薄膜TEG热电转换性能的限制,得到了热力学效率和功率密度与散热器换热系数的关系,并进行了优化。可为如何根据散热条件选择适合的TEG器件提供参考。
TEG is a semiconductor thermoelectric generator that can convert heat into electric power under the temperature differences. It has many attractive features, such as no moving parts and reduced maintenance, and can be designed into a number of shapes for many specific applications. With the autonomous sensor systems play an increasing role in many areas, distributed sensor networks enable much of applications for TEG.
     In the paper, an analysis of a TEG is presented and expressions derived for the thermodynamic efficiency, optimum efficiency, maximum power output, and maximum power output per unit area. A new analytical heat conduction model for TEG was built. The model includes the Thomson heat, the Peltier heat, Joule heat, as well as all thermal and electrical resistances. Geometry optimization is presented.
     Many recent advances in TEG have focused on the nanoscale engineering of materials for higher figure of merit (2). A thermoelectric generator using these thin-film materials can present new challenges due to its inherently large temperature gradient, but also correspondingly larger generated power if the heat can be managed. In such cases performance is expected to be limited as much by the heat sink as by intrinsic material properties. New criteria for optimizing the generated power density of devices in this regime are discussed.
引文
[1]朱铁军,赵新兵。β-FeSi_2热电材料的性能优化及测试方法[J]。材料科学与工程,1999.17(4):55-59
    [2]王为,张建中等。由一维纳米线阵列结构温差电材料构制的微温差电池[P]。知识产权出版社,2002.公开号:CN 1352468A
    [3]Li J-F,Watanable R,Tanaka S,et al.[J].Mechanics and Material Engineering for Science and Experiments.Science Press,2001:205-209
    [4]贾磊,胡梵等。温差发电的热力过程研究及材料的赛贝克系数测定[J]。中国工程科学,2005年12月,第7卷第12期:31-34
    [5]任保国,彭磊,张建中。PbTe/BiTe分段温差电单偶仿真设计研究[J]。电源技术,2008.9 Vol.32 No.9:624-627
    [6]张华俊,陈浩,王俊等。冷、热端温度对半导体热电堆发电性能的影响的初步研究[J]。太阳能学报,2001年4月,第22卷第2期:148-152
    [7]周颖慧。新型半导体温差发电器的优化设计[J]。厦门大学学报(自然科学版),2001年7月,第40卷第4期:882-886
    [8]贾磊,胡梵等。半导体温差发电器件的热力学分析[J]。中国科学技术大学学报,2004年12月,第34期第6卷:684-738
    [9]屈健,李茂德,乐伟等。半导体温差发电器件的工作性能优化[J]。低温工程,2005年,第2期:20-23
    [10]李伟江,李玉东,腊冬等。低温差下半导体温差发电器(火用)分析[J]。能源技术,2006年10月,第27卷第5期:198-201
    [11]郑文波,王禹,吴知非等。温差发电器件热电性能测试平台的搭建[J]。实验技术与管理,2006年11月,第23卷第11期:61-65
    [12]林玉兰,吕迎阳等。基于半导体温差发电模块的锂电池充电装置[J]。电源技术,2006,30(1):38-43
    [13]王佐民。温差发电器应用于火力发电厂的分析[J]。节能技术,2004,22(3):38-39
    [14]贾法龙,王为,赵秉英等。新型微温差电池的设计[J]。电源技术,2006,28(9):569-582
    [15]Gvazzoni G.Millitaty Thermoelectric Generator.The 1~(st) European Conferences on Thermoelectric[C].Cardiff,UK,1987(9)320-311
    [16]D.M.Rowe,Gao Min.Design theory of thermoelectric modules for electrical power generation[C].IEE Proc.-Sci.Meas.Technol.1996,143(6):351-356
    [17]Chih Wu.Analysis of Waste- Heat Thermoelectric Power Generators[J].Applied Thermal Engineering.1996,16(1):63-69
    [18]A.Rodriguez,J.G.Vian,D.Astrain,A.Martinez.Computational model and test bench for thermoelectric power generation,for thermoelectric parameters dependent on the temperature[C].Proceedings of 2006 International Conference on Thermoelectrics:300-304
    [19]J.Esarte,G Min.Modelling heat exchangers for thermoelectric generators[J].Jurnal of power Sources.2001(93):72-76
    [20]Lingen Chen,Jianzheeng Gong,Fengrui Sun,Chih Wu.Effect of heat transfer on the performance of thermoelectric generatorsint.J.Therm.Sci.2002(41):95-99
    [21]Jincan Chen,Bihong Lin,Hongjie Wang and Guoxing lin.Optimal design of a multi-couple thermoelectric generator[J].Semicond.Sci.Technol.2000(15):184-188
    [22]D.M.Rowe.General Principles and Basic Considerations.in CRC handbook of Thermoelectrics,1995,CRC Press:479-488
    [23]L.H.Dubois.An Introduction to the DARPA Program in Advanced Thermoelectric Materials and Devices.in International Conferfnce on Thermoelectrics.vol.18.2000:1-4
    [24]李茂德,屈健,李玉东,李伟江。接触效应对小型半导体温差发电器性能的影响[J]。半导体学报,2005年12月,第26卷第12期:2440-2443
    [25]M.Strasser,R.Aigner,C.Lauterbach.Sens.Actuators A:Phys.2002:97-98
    [26]M.Chen,S.Lu,B.Liao.J.Energy Resour.Technol.2005:127-138
    [27]R.Y.Nuwayhid,F.Maoukalled,N.noueihed.On entropy generation in thermoelectric devices[J].Energy Conversion &Manageraent.2000(41):891-914
    [28]James W.Stevens.Optimal design of small △T thermoelectric generation systems[J].Energy Conversion and Management 2001(42):709-720
    [29]G.Min,and D.M.Rowe.Recent Concepts in Thermoelectric Power Generation,in 21~(st) International Conference on Thermoelectrics,2002:365-366
    [30]G.J.Snyder,J.R.Lim,C.K.Huang,Thermoelectric Microdevice Fabricated by MEMS-like Electrochemical Process,Nature Matericals,2003,vol.2(7):528-531
    [31]J.P.Fleurial,G.J,Snyder,J.Patel,C.K.Huang.Solid-State Power Generation and Cooling Micro/Nanodevices for Distributed System Architectures,in 20~(th) International Conference on Thermoelectries.2001:24-25
    [32]A.E.Laliazin,V.L.Kuznetsov,D.M.Rowe.Rigorous Caculations Related to Functionally Graded and Segmented Thermoelectrics.in 20~(th) International Conference on Thermoelectrics.2001:268-269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700