Ce_(1-x)Pr_xO_2纳米晶粉体的制备及其结构与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,陶瓷颜料的种类与制备工艺有了新的突破,Ce1-xPrxO2是红色陶瓷颜料的新品种,与传统的红色颜料相比,其具有耐高温、低毒性、呈色范围广的特点,是有毒红色陶瓷颜料的良好替代产品。低温燃烧合成(Low-Temperature Combustion Synthesis,简称LCS)、水热合成(Hydrothermal Synthesis)、微乳液合成(Microemulsion Synthesis)及化学共沉淀合成(Chemical Co-precipitation Synthesis)等技术是陶瓷颜料合成的新工艺。利用这些新工艺所合成的Ce1-xPrxO2红色陶瓷颜料具有纳米晶微粒。此项技术为陶瓷制品计算机非接触式装饰(喷墨打印装饰)的核心材料即纳米陶瓷颜料的制备提供了理论依据。
     本研究以Ce(NO3)3·6H2O和Pr6O11为主要原料,加入燃烧剂,采用LCS技术,在250°C左右点火反应,制备出了Ce1-xPrxO2纳米晶红色颜料粉体。研究了燃烧反应中燃烧剂的种类、燃烧剂与反应物的配比、Pr的掺杂量、Pr的引入形式、矿化剂等对产物的晶体结构、形貌及呈色性能的影响;并对燃烧合成的样品进行了后续热处理及水热处理,研究了后处理工艺及其对粉体结构与性能的影响。
     同时,采用反相微乳液法和共沉淀-水热合成法制备了Ce1-xPrxO2纳米晶粉体,并研究了后续热处理温度对其结构与性能的影响。
     采用DSC,XRD,SEM,TEM,XPS,EDS,激光Raman光谱,CIE色度仪等现代测试方法对样品中Ce和Pr的价态及Ce1-xPrxO2的呈色机理进行了研究,并进一步探讨了水热条件下Ce1-xPrxO2粉体的晶粒生长机理。
     研究结果表明:对于CO(NH2)2、(COOH)2·2H2O、CH3COONH4、C6H8O7、C6H12O6、CH3COOC2H5以及NH4NO3等多种燃烧剂来说,适用于LCS合成Ce1-xPrxO2纳米晶红色颜料粉体的燃烧剂为CH3COONH4和C6H8O7;对柠檬酸(C6H8O7)和乙酸铵(CH3COONH4)而言,CH3COONH4作为燃烧剂所制备的燃烧产物的结晶程度更完善、Pr离子更容易进入CeO2晶格、呈色更好。在CH3COONH4作为燃烧剂的燃烧反应中,燃烧剂与氧化剂的配比以2:1为宜;在C6H8O7作为燃烧剂的燃烧反应中,燃烧剂与氧化剂的配比以3:1为宜。采用两种燃烧剂制备的燃烧产物颗粒尺寸都在200nm~300nm之间。
     通过改变Pr的掺杂量,用LCS技术合成出了一系列从粉红到红色直至棕红的Ce1-xPrxO2(x=0~0.5)纳米晶粉体。在一定范围内(x<0.3),随着Pr掺杂量的增加,该粉体的晶粒尺寸逐渐减小;当0.3     以Pr6O11和Pr(NO3)4两种形式引入Pr,结果显示:用Pr(NO3)4引入Pr所制得的粉体的晶粒发育更完善、呈色性能更好,Pr离子进入固溶体的量更接近于实际掺杂量。用Na2CO3、CaF2、NaF、H3BO3、LiF、NaClO3作为矿化剂,研究不同矿化剂对Ce1-xPrxO2纳米晶粉体呈色性能的影响。结果发现:加入矿化剂后粉体的a*值有较大的增加,即颜色有较大的改善。在加入的6种矿化剂中使a*值提高的顺序为: NaClO3>LiF> H3BO3>NaF>CaF2>Na2CO3,所以NaClO3是较为合适的矿化剂。
     对LCS合成出的Ce1-xPrxO2纳米晶粉体进行后续热处理,结果发现:在1200°C保温时间为2h,样品的a*值可提高到26.95。对LCS合成的Ce1-xPrxO2样品进行水热处理,结果发现水热处理后样品的结晶程度以及呈色性能都有明显的改善。在碱性条件下,填充比为60%时,延长水热处理时间,粉体晶粒的均匀性增加,团聚现象减少。由于水热处理后样品的晶粒发育更好、粒度分布更加均匀,因而大大提高了粉体的呈色性能。
     对采用OP-乳化剂/水/环己烷/正戊醇反相微乳液体系制备的Ce1-xPrxO2纳米晶粉体进行后续热处理,结果表明:后续热处理温度对晶体结构和颗粒的形貌几乎没有影响,但对粉体的颜色和颗粒尺寸影响较大。随着温度的升高,a*值明显提高、颗粒的团聚加强且颗粒尺寸增大,而且随着温度的增加,Pr离子在固溶体中的含量也同时增加,更接近于实际添加量。
     以Ce(NO3)3·6H2O和Pr(NO3)4为原料,对Ce1-xPrxO2纳米晶粉体的共沉淀-水热合成进行了系统的研究,结果表明:样品的平均晶粒尺寸为12nm,平均颗粒尺寸为18nm,颜色呈现淡红色,具有片状方形形貌,且分散性能良好。随着水热反应温度的升高,Pr在CeO2晶格中的溶解度增大,但均只有部分Pr固溶。随水热时间的延长,样品的a*值呈现先增加后减小的趋势。水热体系中的Ce离子和Pr离子是动态的溶解-沉淀过程,其离子浓度随温度、时间及pH值的变化而变化。在本实验条件下,pH在9~10之间,水热反应时间为20h时粉体的颜色较好。对水热制备的样品在800°C煅烧2h,样品的呈色性能明显提高,呈现红褐色,同时晶体的发育更加完善,呈现多面体形貌。
     对Ce1-xPrxO2样品中Ce和Pr的价态及Ce1-xPrxO2红色颜料的呈色机理的研究表明:在本实验条件下,所有样品均形成单一的萤石型固溶体结构,且晶粒尺寸在41nm范围以内。随着Pr含量的增加,固溶体的氧空位浓度也随之增大。固溶体中Ce的价态为+4价,Pr的价态为+3价;样品的红度(a*)、色饱和度(C*)随Pr含量的增加呈现先增加后减小趋势;当x=0.05时,样品有较好的呈色性能。这是因为当Pr离子掺杂时,Pr3+置换了CeO2晶体中的Ce4+,形成固溶体;同时产生了氧离子空位,使晶格发生畸变,自由电子陷落在氧离子空位上而形成缺陷,即形成氧离子空位的F-色心缺陷。缺陷的存在导致粉体吸收波长小于600nm左右的可见光,从而呈现出红色色调。
     对Ce1-xPrxO2纳米晶粉体的水热合成机理的研究结果表明:Ce1-xPrxO2晶粒生长机理为:随温度升高,分散在液相中的颗粒在毛细管力作用下堆积更紧密,较小的颗粒在颗粒接触点处溶解,通过液相传质,在较大的颗粒或颗粒的自由表面上沉积而使晶体长大,即是一个“溶解-沉淀”的过程。结晶质点从溶液扩散到晶体表面做横向移动,形成一个吸附层,吸附层上产生二维晶核,从液相中扩散来的质点沉积在二维晶核提供的台阶的边缘形成层状结构。晶体进一步长大时产生新的二维晶核,同时产生刃型位错,位错处存在永久的台阶,台阶将缠绕位错线长大,所以晶体长大可以连续不断的进行。
With the development of the modern science and technology, many progresses have been made on the preparation technology and new kind of ceramic pigments. Compared with the traditional red pigments, Ce1-xPrxO2 nano-crystallite red ceramic pigment has higher temperature resistance, lower toxicity and wider coloration range. It is a good candidate for the replacement of traditional toxic pigments. Low-temperature combustion synthesis (LCS), hydrothermal method and microemulsion process are all new technologies for powder preparation. The new technology provides new processing for the preparation of nano-crystallites pigments for the key materials of ink-jet printers controlled by computer.
     Ce1-xPrxO2 nano-crystallites red pigments were prepared by low-temperature combustion synthesis at the ignited temperature of about 250°C with a later hydrothermal treatment, using Ce(NO3)3·6H2O and Pr6O11 as raw materials. The influence of fuel categories, the mole ratio of fuel/cerium nitric, the content and the state of doped Pr ions and the mineralizer categories on the the crystallites structure and properties of prepared pigments were investigated. The later hydrothermal treatment and the heat process of the prepared powders were also studied.
     The Ce1-xPrxO2 nano-size ceramic pigments powders were also prepared by a W/O microemulsion system and a co-precipitation-hydrothermal method using Ce(NO3)3·6H2O, Pr6O11 as raw materials and ammonia as the precipitation agent. The influence of the annealing conditions on the preparation of Ce1-xPrxO2 powders was also investigated.
     DSC, XRD, SEM, TEM, XPS, Laser Raman spectra and CIE color measurements were used to analyze the valence of praseodymium and cerium in Ce1-xPrxO2 crystal structure. The mechanism of the color and the grain growth of Ce1-xPrxO2 red pigments were also discussed.
     The results show, for many fuels, such as CO(NH2)2, (COOH)2·2H2O, CH3COONH4, C6H8O7, C6H12O6, CH3COOC2H5 and NH4NO3 et al, CH3COONH4 and C6H8O7 are suitable for the preparation of Ce1-xPrxO2 nano-size red pigments by LCS process. Compared with citric acid, the as-prepared powders have better crystallites and color performance by using acetic ammonium as fuel; and the more Pr ions entered into CeO2 crystal lattice. The optimal mole ratio of fuel/cerium nitric is 2/1 with acetic ammonium as fuel and 3/1 with citric acid as fuel by LCS process. The particle size of the resulted powders is about 200nm ~ 300nm.
     The LCS resulted Ce1-xPrxO2 (x=0~0.5) nano-crystallite powders have the color range from pink to red-brown, with diffrent doping amount of Pr ions. In a certain area (x<0.3), the crystallite size of the powders decreasees with the increases of the content of Pr, when x is in the range of 0.3~0.5, the content of Pr has not notable effect on the crystallite size. The parameter a* increase firstly with the increase of x and reaches maximum when x=0.05; and then decrease when x is in the range of 0.3~0.5. This infers that the content of Pr has not notable effect on parameter a* in this range. In the research condition, the crystallites size of powders are in the range of 9~41nm. The content of Pr has little effect on ignited temperature; but decomposition temperature of oxidant in the combustion reaction has important influence on ignited temperature.
     Pr ions were doped in CeO2 crystal latice for the preparation of Ce1-xPrxO2 crystallites by using Pr6O11 and Pr(NO3)4 respectively. Results show that the crystallites of sample prepared from Pr(NO3)4 grow up more perfectly; and the chromatic performance is greatly improved. Content of Pr ions doped in solid solution is close to doping amount of the experiment. Na2CO3, CaF2, NaF, H3BO3, LiF and NaClO3 were used as mineralizer respectively. The influence of these mineralizers on the structure and performance of the Ce1-xPrxO2 nano-crystallites was investigated. It is found that the value a*of the powders is notablely improved by using mineralizers. The red value improvment of these six mineralizers conform to the order of NaClO3>LiF> H3BO3>NaF>CaF2>Na2CO3. Therefore, NaClO3 is the best one for preparation of Ce1-xPrxO2.
     A later heat treatment and a later hydrothermal process of Ce1-xPrxO2 nano-crystallite powders prepared by LCS were done. Result show that, the parameter a* is up to 26.95 by the treatment of the powders at 1200oC for 2 hours. The crystallization and the color performance of the samples after hydrothermal treatment are improved obviously. The particle distributions of the powders are more uniform at alkaline condition with filling ratio is 60%. Keeping a long hydrothermal treatment time is useful for the uniformity of the crystallites, which avoids the particle aggregation and improves the color performance of samples.
     A W/O microemulsion system composed of OP-emolsifier / water / cyclohexane / 1-Pentanol was adopted to prepare ultrafine Ce1-xPrxO2 powders. The influence of the annealing conditions on the preparation of Ce1-xPrxO2 powders was investigated. The results show that preparation temperature has not notable effect on the crystal structure and morphology of the as-prepared powders; but has an effect on the size of the particles. With the increase of temperature, the particles aggregation becomes stronger and the particle size increases. A fluorite structure of Ce1-xPrxO2 was found when the temperature is above 600°C. With the increase of temperature, content of Pr ions doped in solid solution is close to the doping amount.
     Ce1-xPrxO2 nano-size powders were prepared by a co-precipitation-hydrothermal method using Ce(NO3)3·6H2O, Pr6O11 as raw materials and ammonia as the precipitation agent. Results show that the average crystallite size of Ce1-xPrxO2 powders is 12 nm; the average particle size is 18 nm. The powders exhibit light-red color and quadrate morphologies and no particle aggregation is exhibited. With the increase of hydrothermal treatment temperature, the solubility of praseodymium in the crystal lattice of CeO2 increases; but not all of praseodymium is dissolved into the crystal lattice of CeO2. With the increase of hydrothermal treatment time, the red value of Ce1-xPrxO2 powders firstly increase and then decrease. The growth process of Ce1-xPrxO2 powder is a dynamic dissolution-deposition process of cerium and praseodymium ions. In research condition, with the increase of hydrothermal treatment temperature, the solubility of praseodymium in the crystal lattice of CeO2 is more close to the doping content. The optimal condition of the hydrothermal time is 20 hours which the solution pH of 9~10. After calcining at 800oC for 4 hours, the color of the Ce1-xPrxO2 powders change from light red to red brown; and the powders show faceted polyhedral morphologies with improved crystallization.
     The valences of Ce and Pr and chromatic mechanism of the Ce1-xPrxO2 red pigments were investigated. The results show that all samples have a fluorite structure monophse in our research, and the crystallite size is smaller than 41 nm. With the increase of Pr content, the concentration of oxygen vacancies increase. There are trivalent Pr and tetravalent Ce in Ce1-xPrxO2 crystal lattice. The red value a* and the color saturation value C* is firstly increase and then decrease with the increase of the content of Pr. The chromatic performance of Ce1-xPrxO2 red pigments samples reache optimum while x is 0.05. The substitution of Ce4+ by Pr3+ will form oxygen vacancies, which cause the distortions and the defections of CeO2 crystal lattice. Therefore, the pigments can absorb the light with wavelength of less then approximate 600nm and present the red tonality.
     The mechanism of hydrothermal synthesis of Ce1-xPrxO2 powders was investigated. The results show that the growth process of Ce1-xPrxO2 Crystallites is a dissolution-deposition process of cerium and praseodymium ions. Crystallites particles make an orientation movement from solution to the surface of crystallites, resulting in the formations of planar crystallites nucleuses in the boundary layer. Molecules will diffuse from the solution to the nucleus surface and deposit at the edge of the step offered by the planar crystallite,forming a layer structure. The continue growth of crystallites will need new planar crystallite nucleus, which is provided by the edge distortions appeared at the never-disappeared steps. The steps will grow along the edge distortion, resulting in the growth of continuous crystallites.
引文
[1]. 白春礼.纳米科技及其发展前沿[C].2001,国际华人纳米科技报告会.
    [2]. R P Feynman , There is plenty of room at the bottom in Miniaturization[M].H.D.Gilbert, New York:Reinhold,1961,282-286.
    [3]. 朱静.纳米材料和纳米器件[M].北京:清华大学出版社,2003:2-3.
    [4]. 吴人洁.复合材料[M].天津:天津大学出版社,2000:263-267.
    [5]. 张立德.纳米材料[M].北京:化学工业出版社,2000:39-47.
    [6]. 张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001:1-22.
    [7]. K E Drexler.Molecular engineering: An approach to the development of general capabilities for molecular manipulation[J].Proc. Nat. Acad. Sci.,1981,78:5275-5285.
    [8]. G Binnig,H Rohrer.Scanning tunneling microscopy.Phys. Acta,55:726-735.
    [9]. 徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2001:28-52.
    [10]. 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002:7-19.
    [11]. Tang Z,Wan H,Clark R.The organic/inorganic interface in micro and nano composite materials[J].Materials Research Society Symposium Proceedings,2003,796:9-17.
    [12]. 马良,徐洮,张治军等.亲油性 MnS 纳米微粒的化学制备和结构[J].物理化学学报, 1999.15(1):5-9.
    [13]. 朱梓华,朱涛,刘忠范.大粒径单分散金纳米粒子的水相合成[J].物理化学学报,1999,15(1):966-970.
    [14]. 管自生,马颖,曹亚安.钛凝胶的光致色变和电致变色特性[J].物理化学学报,2000, 16(1):5-8.
    [15]. Z H Zhou,J Wang,X Liu.Synthesis of Fe3O4 nanoparticles from emulsions.J Mater Chem,2001,11,1704-1709.
    [16]. H C Zeng,Y Y Lim.Synthesis of Co3O4 spinel at ambient conditions.J Mater Res, 2000,15(6),1250-1253.
    [17]. 姜继森.高 α-Fe2O3纳米微粒的制备及其 Mossbauser 谱研究[J].物理化学学报,2000,16(4):312-316.
    [18]. Z K Zhang,Z L Cui.Nanometer metal particles catalyst with rare-earth thin shell and stored hydrogen[J].Chinese Science Bullietin,1997,42(18):1535-1540.
    [19]. 倪永红,葛学武,刘华蓉等.硫化银纳米晶的 C 辐射制备[J].高等学校化学学报,2002, 23(2):176-178.
    [20]. 李建林,江东亮,谭寿洪.AlN 对 MoSi2 材料的显微结构与力学性能的影响[J].硅酸盐学报,1999,27(4):493-499.
    [21]. 梁勇,马宗义,周荣灿等.全国第届纳米材料和技术应用会议论文集,中国材料研究学会[C],杭州:2001,5:24-29.
    [22]. 刘光华.稀土材料及应用技术[M].北京:高等教育出版社,2005:37-39.李红英.稀土功能材料[M].北京:化工工业出版社,2003:84-87.
    [23]. 李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003:101-105.
    [24]. 宋玉林,董贞俭.稀有金属化学[M].沈阳:辽宁大学出版社,1991:112-114.
    [25]. 林河成.氧化铈产品的生产、应用及市场[J].四川有色金属,2002,1:22-26.
    [26]. 日美稀土行情[J].稀土信息,2002:2.
    [27]. Yao J,Sun L,Qian C.Synthesis and optical properties of nano-sized rare earth composite oxides RE2O3: Eu(RE = Y, Gd)[J].Journal of the Chinese Rare Earth Society,2001,49 (5):426-430.
    [28]. Mohan K K,Chandrasekaran K,Ogale S B.Magnetic and optical properties of rare earth doped Sn0.95RE0.05O2-δ(RE =Gd, Dy, Er) [J].Journal of Applied Physics, 2005,97 (10):925-931.
    [29]. Mikio I,Yuta T.Thermoelectric properties of p-type Fe0.9Mn0.1Si2 with rare-earth oxide addition[J].Materials Transactions,2005,46 (7):1497-1501.
    [30]. Huang X,Xue X,Li H.Development status and research progress in rare earth hydrometallurgy in China[J].Journal of the Chinese Rare Earth Society (in Chin.), 2006,24(2):129-134.
    [31]. Huang X,Long Z, Li H.Development of rare earth hydrometallurgy technology in China[J].Journal of Rare Earths,2005,23 (1):1-5.
    [32]. 洪维民,田蓉平.稀土超微粉末的制备方法及应用[J].稀有金属,1995,19(5):384-388.
    [33]. R E Kiork,D F Othmer.Encyclopedia of chemistry and technology [M].Wiley,New York 1979,5:315-320.
    [34]. Matta J,Courcot D, Abi-aad E.Identification of vanadium oxide species and trapped single electrons in interaction with the CeVO4 phase in vanadium-cerium oxide systems[J].Chemistry of Materials,2003,14:4118-4125.
    [35]. Shahin A M,Schuman T P,Grandjean F.Cerium LIII-edge exafs investigation of the structure of crystalline and amorphous cerium oxides[J].ACS Division of Fuel Chemistry Preprints,2004,49(2):759-760.
    [36]. 王志慧.近年来我国 CeO2 的生产及应用[J].内蒙古石油化工,1994,21:20-24.
    [37]. M Ricken,J Noelting,I Riess,et a1.Specific heat and phase diagram of nonstoichioceria(CeO2-x)[J].J State Chem,1984,54:89-99.
    [38]. A Laachir,V Perrichon,A Badri,et a1.Reductiun of CeO2 by hydrogen[J].J Chem Soc Faraday Trans,1991,87:1601-1607.
    [39]. J Barbier,L Oliviero,B Renard,D Duprez.Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants[J].Catalysis Today, 2002,75:29-36.
    [40]. A Tschiipe , R Birringer.Oxyreduction studies on nanostructured cerium oxide[J].Nano-Structed Materials,1997,9:591-597.
    [41]. A E C Palmqvist,E M Johansson,S G Jaras.Total oxidation of methane over doped nanophase cerium oxides[J].Catalysis Letters,1998,56:69-75.
    [42]. Jasinski P., Suzuki T., Anderson H.U.. Nano-crystalline undoped ceria oxygen sensor[J].Sensors and Actuators B, Chemical, 2003,95 (1):73-77.
    [43]. Shirsat A N,Kaimal K N G,Bharadwaj S R.Thermodynamic stability of Sr2CeO4 [J].Thermochimica Acta,2006,447(1):101-105.
    [44]. Onoda H,Kojima K,Nariai H.Additional effects of rare earth elements on formation and properties of some transition metal pyrophosphates[J].Journal of Alloys and Compounds,2006,408-412:568-572.
    [45]. A Trovearelli,M Boaro,E Rocchini,et al.Some recent developments in the characterization of ceria-based catalysts[J].J Alloys and Compounds,2001:584-591.
    [46]. H Vidal,J Kaspar,M Pijolat,et al.Redox behavior of CeO2-ZrO2 mixed oxides I.Influence of redox treatments on low surface area catalysts II[J].Catal B,2001,30:25-28.
    [47]. F Fally,V Perrrichon,H Vidal,et al.Modification of oxygen storage capacity of CeO2-ZrO2 mixed oxides after redox cycling aging[J].Catal Today,2000, 59:373-386.
    [48]. A Gayen,K R Priolkar,P R Sarode,et al.Ce1-xRhxO2 solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD , TEM , XPS , and EXAFS[J].Chem Mater,2004,16:2317-2328.
    [49]. H C Yao,Y F Yao.Ceria in automotive exhaust catalysis[J].J Catal,1984,86(2): 254-265.
    [50]. S J Schmieg,D N Belton.Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst[J].Appl Catal B:Environmental,1995,6:127-144.
    [51]. J Z Shyu,W H Weber,H S Gandhi.Surface characterization of alumina-supportedceria[J].J Phys Chem,1988,92:4964-4970.
    [52]. S Bernal,G Blanco,M A Cauqui,et al.Oxygen buffering capacity (OBC) of praseodymium-modified CeO2:influence of the Pr distribution on the ceria host lattice[J].Surf Interface Anal,2000,30:85-89.
    [53]. Kaspar J.,Fornasiero P, Graziani M. Use of CeO2-based oxides in the three-way catalysis[J].Catalysis Today,1999,50 (2):285-298.
    [54]. Trovarelli A.Catalytic properties of ceria and CeO2-containing materials [J].Catalysis Reviews. Science and Engineering,1996,38 (4):439-520.
    [55]. Liu Y,Sun D.Development of Fe2O3-CeO2-TiO2/γ-Al2O3 as catalyst for catalytic wet air oxidation of methyl orange azo dye under room condition[J].Applied Catalysis B:Environmental,2007,72(3-4):205-211.
    [56]. Wang L,Ma J,Xie M.Catalytic reduction of SO2 and NO by CO on rare earth oxides (III)-simultaneous reduction by using CO as reducing agent[J].Chemical Journal of Chinese Universities,2002,23 (5):127-132.
    [57]. Hu H,Wang S,Zhang X.Study on simultaneous catalytic reduction of sulfur dioxide and nitric oxide on rare earth mixed compounds[J].Journal of Rare Earths,2006,24(6):695-698.
    [58]. Hu H, Li J, Cheng G.Study on the catalytic reduction of SO2 on CeO2-La2O3 rare earth mixed compounds[J].Journal of Rare Earths,2004,22 (4):470-475.
    [59]. S E Gounnski,H Hatcher,R R Rajaram,et al.Origins of low-temperature three-way activity in Pt/CeO2[J].Apply Catal B,1995,5(4):367-376.
    [60]. W D Wang,P Y Lin,Y L Fu,et al.Redox properties and catalytic behavior of praseodymium-modified (Ce-Zr)O2 solid solutions in three-way catalysts[J].Catal Lett,2002,82:19-27.
    [61]. Sanchez Escribano V,Fernandez Lopez E,Panizza M.Characterization of cubic ceria-zirconia powders by X-ray diffraction and vibrational and electronic spectroscopy [J].Solid State Sciences,2003,5 (10):1369-1376.
    [62]. Kosacki I,Petrovsky V,Anderson H U. Raman Spectroscopy of Nano-crystalline Ceria and Zirconia Thin Films [J].J. Amer. Ceram. Soc,2002,85(11):2646-2650.
    [63]. Colomban Ph. Mazerolles L. Nano-composites in Mullite-ZrO2 and Mullite-TiO2 systems synthesized through alkoxide hydrolysis gel routes. Microstructure and fractography [J].J. Material Sci.,1991,26:3503-3510.
    [64]. A Trovearelli,C D Leitenburg,M Boaro,et al.The utilization of ceria in industialcatalysis[J].Catal Today,1999,50:353-367.
    [65]. P Fornasiero,J Kaspar,M Grazinani.Redox behavior of high surface area Rh-Loaded Ce0.5Zr0.5O2 Mixed Oxide[J]. J Catal,1997,167:576-580.
    [66]. J Kaspai,P Fornasiero,M Graziani.Use of CeO2-based oxides in the three-way catalysis.Catal Today,1999,50:285-298.
    [67]. C Janvier,M Pijiolat,F Valdivieso,et al.Thermodynamic description of the nonstoichiometric defect structure in Ce1-xZrxO2 solid solution powders[J].Solid State Ionics,2000,127:207-222.
    [68]. H Vidal,J Kaspar,M Pijolat,et al.Redox behavior of CeO2ZrO2 mixed oxides I.Influence of redox treatments on low surface area catalysts II[J].Appl Catal B,2000,27:49-63.
    [69]. Hideaki I,Hiroaki T.Ceria-based solid electrolytes[J]. Solid State Ionics, 1996,83:1-16.
    [70]. 林维明.燃料电池系统[M].北京:化学上业出版社,1996 年 6 月第 1 版:51-53.
    [71]. Zhang T.S.,Ma J.,Kong L.B.Aging behavior and ionic conductivity of ceria-based ceramics: a comparative study[J]. Solid State Ionics,2004,170 (3):209-217.
    [72]. Zha S,Xia C,Meng G.Effect of Gd(Sm) doping on properties of ceria electrolyte for solid oxide fuel cells[J].Journal of Power Sources,2003,115:44-48.
    [73]. Song H Z,Wang H B,Zha S W.Aerosol-assisted MOCVD of Gd2O3 doped CeO2 thin SOFC electrolyte film on anode substrate[J].Solid State Ionics,2003,156:249-254.
    [74]. Bernay C,Ringuede A.,Colomban Ph,et al.Yttria-doped Zirconia Thin Films Deposited by Atomic Layer Deposition [J].ALD - A Structural, Morphological and Electrical Characterization,2002,30:24-27.
    [75]. Feng B,Wang C Y, Zhu B.Catalysts and performances for direct methanol low-temperature(300 to 600oC) solid oxide fuel cells[J].Electrochemical and Solid State Letters,2006,9(2):A80-A81.
    [76]. Rocha R A,Muccillo E N S.Effect of calcination temperature and dopant content on the physical properties of ceria-gadolinia prepared by the cation complexation technique[J].Materials Science Forum,2000,16:71-77.
    [77]. M Sossina,Haile.Fuel cell materials and components[J].Acta Materialia,2003,51:5981-5986.
    [78]. Y Mishima,H Mitsuyasu,M Ohtaki.Solid oxide fuel cell with composite electrolyte consisting of samaria-doped ceria and yttria-stailized zirconia[J].J Electrochem Soc,1998,145(3):1004-1008.
    [79]. 毛宗强等.可再生能源丛书――燃料电池[M].北京:化学上业出版社,2005 年 4月第 1 版:281.
    [80]. M Mizutani.Development of high-performance electrolyte in SOFC[J].Solid State Ionics,1994,72:271-275.
    [81]. E C Subbarao,H S Maiti.Solid electrolytes with oxygen ion conduction[J].Solid State Ionics,1984,11:317-338.
    [82]. A N Vlasov,M V Perfiliev,Ageing of ZrO2-based solid electrolytes[J].Solid State Ionic,1987,25:245-253.
    [83]. T H Etsell,S N Flengas.Electrical properties of solid oxide electrolytes[J].Chem Rev,1970,70(3):339-376.
    [84]. H Inaba.Ceria-based solid electrolytes[J].Solid State Tonics,1996,83:1-16.
    [85]. H Takasi,H Atsuko,I Takao,et al.A low operating temperature solid oxide fuel cell in hydrocarbon-air mixtures[J].Science,2000,288(16):2031-2033.
    [86]. T Tsai,A Barnetts.Increased solid-oxide fuel cell power density using interfacial ceria layers[J].Solid State Ionics,1997,98(3-4):191-196.
    [87]. 梁广川,刘文西,陈玉如等.Sm,Gd 共同掺杂的 CeO2 基电解质性能研究[J].硅酸盐学报,2000,28(1):44-46.
    [88]. H Yahiro,K Eguchi,H Arai.Electrical properties and reducibilities of ceria-rare earth oxide systems and their application to solid oxide fuel cell[J].Solid State Tonics,1989,36:71-75.
    [89]. K Eguchi,T Setoguchi,T Moue,et al.Electrical properties of ceria-based oxides and their application to solid oxide fuel cells[J].Solid State Ionics,1992,52:165-172.
    [90]. D J M Bevan,E Summeerville.Handbook on the Physics and Chemistry on Rare Earth’s[M]. K A Gschneider,and L Eyring,(North-Holland,Amsterdam,1979) Vol.4:56-71.
    [91]. J A Killer,et al.Nonstonichiom etric oxides[M].Edited by O T Sorensen. Academic Press,New York,1981:475-483.
    [92]. H Yahiro,K Eguchi,H Arai.Oxygen ion conductivity of the ceria-samarium oxide system with fluorite structure[J].J Appl Electrochem,1988,18:527-531.
    [93]. K Zheng,et al.Solid oxide fuel cells based on Ce(Gd)O2-x electrolytes[J].Solid State Ionics,1996,86-88:1241-1244.
    [94]. B C H Steele,et al.Proc 4th Int Symp Solid Oxide Fuel Cells[M].Edited by M Dkiya,et al.1995,1028-1030.
    [95]. 卡伯特公司.用于氧化物 CMP 的组合物.中国专利,97181972.6,2000-3-29.
    [96]. 刘玉岭,檀柏梅,吴建明等.ULSI 制备中铈在 SiO2 介质 CMP 抛光中的作用研究[J].半导体技术,2000,25(5A):38-40.
    [97]. 韩爱珍.半导体工艺化学[M].南京:东南大学出版社,1991:173.
    [98]. 施为得,陈宝印.硅单晶片的 SiO2 抛光[J].半导体技术,1984,(2):26-27.
    [99]. E Mendel.Polishing of Silicon[J].Solid State Techno1,1967,(10):27-31.
    [100]. P Renteln,J Coniff.The evolution of chem-mechanical planarization:from aberrant to prosaic[J].Mat Res Soc Symp Proc,1994,337:105-109
    [101]. T F A Bibby,et al.CMP CoO reductionalurry reprocession[J].Thin Solid Films,1997,538:308-309.
    [102]. 曹丽梅,胡岳华.半导体工业中的化学机械抛光(CMP)技术[J].湖北化工,2000,4:7-9.
    [103]. B Davari,C Koburger,W R Schulz,et al.A new planarization technique,using a combination of RIE and chemical mechanical polishing (CMP)[J].Tech Dig Int Electron Devices Meet,1989,61:64-69.
    [104]. G V Samsonov.The oxide handbook[M].2nd Ed,IPI/plenum Data,New York,1982:192-198.
    [105]. T Hoshino,Y Kurata,Y Terasaki,et al.Mechanism of polishing of SiO2 Films by CeO2 particles[J].Joumal of Non-Crystalline Solids,2001,283:129-131.
    [106]. Semiconductor-catalyzed solar photo-oxidation of iodide ion[J].Journal of Molecular Catalysis A: Chemical,2007,265(1-2):153-158.
    [107]. Niesert A,Sievers R,Siggel A. Preparation and optical absorption of zircons co-doped with vanadium and rare earth elements[J].Solid State Sciences,2004,6:1149-1154.
    [108]. Yu X Y,Cheng J J,Yang Y.Effects of rare earth oxide doping on the photocatalytic activities of TiO2 [J].J East Chin Univ Sci Technol,2006,26(3):287-289.
    [109]. Jing L Q,Sun X J,Cai W M.Photolumine scence of Ce doped TiO2 nano-particles and their photo-catalytic activity[J].Acta Chim Sin,2003,(8):1241-1245.
    [110]. Bamwenda G R,Uesigi T,Abe Y.The photocatalytic oxidation of water to O2 over pure CeO2,WO3,and TiO2 using Fe3+ and Ce4+ as electron acceptors[J].Appl Catal A:Gen,2001,205:117-128.
    [111]. hengwen Z,Qian Z,Shujing Z.Preparation of yellow color pearlescent pigments ofCeO2-mica[J].Key Engineering Materials,2007, 336:2549-2551.
    [112]. Santos S F,De Andrade M C,Sampaio J A.Thermal study of TiO2-CeO2 yellow ceramic pigment obtained by the Pechini method[J].Journal of Thermal Analysis and Calorimetry,2007,87(3):743-746.
    [113]. Sulcova P.Thermal synthesis of the CeO2-PrO2-Nd2O3 pigments[J].Journal of Thermal Analysis and Calorimetry,2005,82(1):51-54.
    [114]. Topuz H,Ozel E,Turan S.Synthesis of the CeO2 based pigments by using enriched rare-earth oxides located at eski[J].Key Engineering Materials,2004,264-268(II):1553-1556.
    [115]. 沈化森,储茂友.γ-Cr2S3 型红颜料的制备研究[J].稀有金属,2002,9(26):409-412.
    [116]. Colomban Ph,Havel M.Raman Imaging of Stress-induced Phase Transformation in Transparent ZnSe Ceramics and Sapphire Single Crystal [J].J. Raman Spectr., 2002,33(10):789-795.
    [117]. 赖志华,黎先财,王春风.红色陶瓷颜料的研究和发展[J].江西化工,2001:22-26.
    [118]. M Rajendran,K K M allick,A K Bhattacharya.Combustion synthesis powder characteristics and crystalstructure of phases in Ce-Pr-O system[J].Journal of materials science,1998,33:5001-5006.
    [119]. P Prabhakar Rao,M L P Reddy.Synthesis and characterisation of (BiRE)2O3 (R E:Y, Ce) pigments[J].Dyes and Pigments,2004,63:169-174.
    [120]. Routkevich D.,Halett T L, Ryan,L.Synthesis and resonance Raman spectroscopy of CdS Nano-wire[J].Chem. Phys.,1996,210:343-352.
    [121]. G Baldi,N Dolen.钙钛矿类晶格的新型红色色料综合物及其在坯体着色和高温釉中的应用[J].陶瓷信息,2000,8:27-33.
    [122]. A G arcia,M Llusar,S Sorli,et al.Effectof the surfactant and precipitanton the synthesis of pink coral by a microemulsion method[J].Journalofthe European Ceramic Society,2003,2:1829-1838.
    [123]. F Bondioli,T Manfredini,et al.A new glass-ceramic red pigment[J].Journal of the European Ceramic Society,2004,24:3597-3601.
    [124]. 余康泰.陶瓷色釉料与装饰导论[M].武汉:武汉工业大学出版社,1998:31-38.
    [125]. 张文丽.色料的呈色机理[J].生产与应用,1997,(2):10-16.
    [126]. 余康泰,彭长琪,张勇等.硅铁红颜料包裹机理的研究[J].陶瓷,2000,3:23-27.
    [127]. 潘云利,余筱勤.釉上耐热镉硒红颜料的试制[J].陶瓷研究,2001,12(16):27-29.
    [128]. 任致伟.轻稀土应用概述[J].云南化工,1998,4:56-60.
    [129]. Wang S,Jia J,Liao C.Synthesis, structure and characterization of Y-Al-Cr red pigment[J].Journal of the Chinese Rare Earth Society,2006,24 (3):357-362.
    [130]. 余康泰.现代陶瓷色釉料与装饰导论[M].武汉:武汉工业大学出版社,1999:13-23.
    [131]. 刘康时等.陶瓷工艺学[M].北京:中国建筑工业出版社,1981:15-36.
    [132]. D Theomas.Selecting ceramics pigments[J].Ceramic Bull,1987,66(11):1600-1601.
    [133]. D R Eppler . Predicting glaze color from pigment and opacifier calculations[J].Cermics Industry,1998,12(9):40-45.
    [134]. Nahum Masó , Hestor Beltrán , Raquel Muńoz , et al . Optimization of Praseodymium-Doped Cerium Pigment Synthesis Temperature[J].J Am Ceram Soc,2003,86(3):425-430.
    [135]. Sulcova P , Trojan M . Thermal synthesis of the CeO2-PrO2-La2O3 pigments[J].Journal of Thermal Analysis and Calorimetry,2004,77(1):99-104.
    [136]. Sulcova P Trojan M.The synthesis and analysis of Ce0.95-yPr0.05SmyO2-y/2 pigments [J].Dyes and Pigments,2003,58 (1):59-63.
    [137]. Sulcova P,Trojan M.Study of Ce1-xPrxO2 pigments [J].Thermochimica Acta, 2003,395 (1):251-255.
    [138]. Sulcova P.The synthesis and analysis of Ce0.95-yPr0.05GdyO2-y/2 pigments [J].Dyes and Pigments,2002,52 (2):89-93.
    [139]. Sulcova P,Trojan M.Thermal analysis of pigments based on CeO2[J].Journal of Thermal Analysis and Calorimetry,2001,65 (2):399-403.
    [140]. Sulcova Petra.Synthesis of Ce0.95-yPr0.05NdyO2-y/2 pigments [J].Dyes and Pigments, 2000,47 (3):285-289.
    [141]. Sulcova P,Trojan M.The synthesis of the Ce0.95-yPr0.05LayO2-y/2 pigments [J].Dyes and Pigments,2000,44 (3):165-168.
    [142]. Sulcova P,Trojan M.Synthesis of Ce1-xPrxO2 pigments with other lanthanides [J].Dyes and Pigments,1999,40 (1):87-91.
    [143]. Petra ?ulcová,Miroslav Trojan.Synthesis of Ce1-xPrxO2 pigments with other lanthanides [J].Dyes and Pigments,1998,40:87-91.
    [144]. S T Aruna,S Ghosh,K C Patil.Combustion synthesis and properties of Ce1-xPrxO2-δ red ceramic pigments[J].International Journal of Inorganic Materials,2000,3:387-392.
    [145]. T.C.Rojas,M.Ocana.Uniform nanoparticles of Pr(Ⅲ)/Ceria solid solutions prepared by homogeneous precipitation[J]. Scripta Materialia,2002,46: 655-660.
    [146]. Maso-Carcases N, Beitran H, Julian B. Influence of the synthesis method and some mineralizers on the color hue of CeO2-PrO2 system[J].Key Engineering Materials,2001:2149-2152.
    [147]. Garcia A,Llusar M,Calbo J.Low-toxicity red ceramic pigments for porcelainised stoneware from lanthanide-cerianite solid solutions [J].Green Chemistry,2001,3 (5): 238-242.
    [148]. 郝仕油,周雪珍,李良超等.抛光用 Ce1-xZrxO2 粉末合成工艺的优化及其性能[J].稀有金属,2004,28(4):639-641.
    [149]. 彭新林,龙志奇,崔梅生等.共沉淀法合成铈锆复合氧化物及其表征[J],中国稀土学报,2002,20:104-107.
    [150]. L P Lou,X Y Jiang,Y X Chen.Ce1-xTixO2 mixed oxides supported CuO catalyst for NO reduction by CO[J].Journal of Rare Earths,2003,21(3):331-333.
    [151]. Godinho M.J.,Goncalves R.F.,Santos L.P.,et al.Room temperature co-precipitation of nano-crystalline CeO2 and Ce0.8Gd0.2O1.9-δ powder[J].Materials Letters,2007,61 (8):1904-1907.
    [152]. Ji-guang L I,Ikegami T,Wang Y et al.10mol% Gd2O3 doped CeO2 solid solutions via carbonate co-precipitation: a comparative study[J].Journal of the American Ceramic Society,2003,86 (6):915-921.
    [153]. FengShou Feng,RuRen Xu.New materials in hydrothermal synthesis[J].Acc. Chem. Res.,2001,34(3):239-247.
    [154]. K Byrappa,Masahiro Yoshimura.Handbook of hydrothermal technology[M].New Jersey, USA:William Andrew Publishing,2001:2-10.
    [155]. 陈代荣.溶剂热合成无水 NaBiO3 多晶粉末[J].无机化学学报,1997,13(1):109-117.
    [156]. 施尔畏.水热法制备的陶瓷粉体晶粒粒度[J].硅酸盐学报,1997,25(3):287-294.
    [157]. M Yoshimura.Importance of soft solution processing for advanced inorganic materials[J].J Mater Res,1998,13(5):1091-1098.
    [158]. 施尔畏.水热法的应用与发展[J].无机化学学报,1996,11(2):193-206.
    [159]. 张勇.水热法在低维人工晶体生长中的应用与发展[J].硅酸盐通报,2002,(3):22-26.
    [160]. Dikmen S,Shuk P,Greenblatt M.,Gocmez H.Hydrothermal synthesis and propertiesof Ce1-xGdxO2-δ solid solutions[J].Solid State Sciences,2002,4:585-590.
    [161]. A Rabenau.The role of hydrothermal synthesis in materials science[J] J Mater Educ,1988,10(5):543-592.
    [162]. A Rabenau.The role of hydrothermal synthesis in preparative chemistry[J].Angew Chem Int Ed Engl,1985,24:1026-1040.
    [163]. 王成云,苏庆德,钱逸泰.非水溶剂水热法制备 CeO2 纳米粉[J].化学研究与应用,2001,13(4):402-407.
    [164]. P Knauth,H L Tuller.Nonstoichiomestry and relaxation kinetics of nonocrystalline mixed praseodymium-cerium oxide Pr0.7Ce0.3O2-x[J].Journal of the European Society,1999,19:831-838.
    [165]. 徐招弟,周新木,李永绣.水热法制备 Ce(Zr)O2 纳米复合氧化物粉体[J].功能材料,2004,35(3):364-368.
    [166]. 宋晓岚,杨振华,邱冠周等.纳米 CeO2 在高新技术领域中的应用及其制备研究进展[J].材料导报,2003,17(12):36-37.
    [167]. X Li, PY Lin,W D Wang,et al.A novel preparation route of three-way catalysts[J].Topics in Catalysis,2001,16/17(1-4):107-110.
    [168]. Rocha R A,Muccillo E.N.S. Preparation and characterization of Ce0.8Gd0.2O1.9 solid electrolyte by polymeric precursor techniques[J].Advanced Powder Technology III Materials Science Forum,2003,416:711-717.
    [169]. Wang S,Maeda K.Direct formation of crystalline gadolinium-doped ceria powder via polymerized precursor solution[J].Journal of the American Ceramic Society, 2002,85 (7):1750-1752.
    [170]. Yan Q Z,Su X T,Huang Z Y.Sol-gel auto-igniting synthesis and structural property of cerium-doped titanium dioxide nano-sized powders[J].Journal of the European Ceramic Society,2006,26(6):915-921.
    [171]. Pramanik N C,Bhuiyan T I,Nakanishi M.Synthesis and characterization of cerium substituted hematite by sol-gel method[J].Materials Letters,2005,59(28):3783-3787.
    [172]. Groselj N.Optical properties of europium-doped Gd2O3 waveguiding thin films prepared by the sol-gel method[J].Optical Materials,2002,19:161-168.
    [173]. Colomban Ph.Gel Technology in Ceramics, Glass-Ceramics and Ceramic-Ceramic Composites[J].Ceramics International,1989,15 (1):23-50.
    [174]. Lavrencic U , Orel B , Groselj N . In-situ Resonance Raman Studies of a Dye-Sensitized Photo-electrochemical Cell with a Sol-Gel Electroly [J] . J.Electrochemical Soc.,2002,149(11):13-23.
    [175]. 彭程,蒋凯,李五聚等.Ce1-xCaxO2 的溶胶-凝胶的合成及性质[J].应用化学,2001,18(6):53-56.
    [176]. 闫宗兰,林霞,罗建海等.Ce1-xPrxO2-δ 复合氧化物的制备、表征及 CO 和 CH4氧化性能的研究[J].无机材料学报,2005,20(3):654-647.
    [177]. 赵雷洪,刘广宇,罗孟飞等.Ce1-xThxO2 的制备及表征[J].中国稀土学报,2004,22(2):288-290.
    [178]. 李汶霞,殷声.低温燃烧合成陶瓷粉体[J].硅酸盐学报,1999,27(1):71-77.
    [179]. Wang Y,Mori T,Ji L et al.Low-temperature synthesis of praseodymium-doped ceria nano-powders[J].Journal of the American Ceramic Society,2002,85 (12):3105-3107.
    [180]. Shahin A M,Grandjean F,Long G J.Cerium LIII-edge XAS investigation of the structure of crystalline and amorphous cerium oxides[J].Chemistry of Materials,2005,17(2):315-321.
    [181]. Mokkelbost T,Kaus I,Grande T.Combustion synthesis and characterization of nanocrystalline CeO2-based powders[J].Chemistry of Materials,2004,25(16):5489-5494.
    [182]. Lopez-Navarrete,Caballero A,Gonzalez-Elipe A R.Low-temperature preparation and structural characterization of Pr-doped ceria solid solutions [J].Journal of Materials Research,2002,17 (4):797-804.
    [183]. 崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999:73-99.
    [184]. L M Prince.Microemulsions,Theory and Practice[M].Academic Press,New York, 1977:57-79.
    [185]. 朱步瑶,赵振国.界面化学基础[M].北京:化学工业出版社,1996:159-166.
    [186]. 连洪洲,石春山.用于纳米粒子合成的微乳液[J].化学通报,2004,67(5):333-340.
    [187]. 施利毅,华彬,张剑平.微乳液的结构及其在制备超细颗粒中的应用[J].功能材料,1998,29(2):136-139.
    [188]. E Caponetti,L Pedone,D C Martino,et al.Synthesis,size control,and passivation of CdS nanoparticles in water/AOT/n-heptane microemulsions[J].Materials Science and Engineering C,2003,23:531-539.
    [189]. S Quintillán,C Tojo, M C Blanco,et al.Effects of the intermicellar exchange on the size control of nanoparticles synthesized in microemulsions[J].Langmuir,2001,23(17):7251-7254.
    [190]. E J Kim,S H Hahn.Microstructure and photoactivity of titania nanoparticlesprepared in nonionic W/O microemulsions[J].Materials Science and Engineering,2001,303:24-29.
    [191]. 陈磊,陈建敏,周惠娣.微乳化技术在无机纳米材料制备中的应用及发展[J].材料科学与工程学报,2004,22(1):138-141.
    [192]. 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002:523-526.
    [193]. 阎建辉,黄可龙,戴潇燕.反胶束微乳法制备无机功能纳米材料[J].精细化工中间体,2003,33(3):4-7.
    [194]. 崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999:404-413.
    [195]. T Masui,T Ozaki,K Machida,et al.Effects of surface modification by chemical filing on the redox behavior of a ceria-zirconia mixed oxide[J].Journal of Alloys and Compounds,1999,292(1-2):8-10.
    [196]. 吴其胜.均相沉淀-水热法制备稳定 Y-Ce-O2 纳米粉体[J].材料科学与工程学报,2004,22(4):519-521.
    [197]. 汤 根 土 , 骆 仲 泱 , 余 春 江 等 . 溶 胶 - 凝 胶 低 温 燃 烧 合 成 纳 米 级Sm0.15-Gd0.05-CeO0.8O1.9 粉体[J].硅酸盐学报,2004,32(9):1121-1123.
    [198]. O A Kirichenko,G M Graham. Effect of coprecipitation conditions on the surface area, phase composion,and reducibility of CeO2-ZrO2-Y2O3 materials for automotive three-way catalysts[J].Stud Surf Sci Catal,1998,118 (Preparation of Catalysts VII):411-420.
    [199]. S Enzo,R Frattini,F Delogo,et al.Neutron diffraction studies of ceria-zirconia catalysts prepared by high-energy mechanical milling[J].Nano Structured Materials,1999,12:673-676.
    [200]. F Bondioli,A M Ferrari,L Lusvarghi,et al.Synthesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route[J].Journal of Materials Chemistry,2005,15:1061-1065.
    [201]. Bondioli F , Corradia B , Manfredini T . Non-conventional synthesis of praseodymium-doped ceria flux method[J].Chemistry of Materials,2000,12:324-330.
    [202]. Yu J C, Zhang L,Lin J.Direct sono-chemical preparation of high-surface areanano-porous ceria and ceria-zirconia solid solutions[J].Journal of Colloid and Interface Science,2003,260:240-243.
    [203]. Djuricic B,Pickering S.Nano-structured cerium oxide: preparation and properties of weakly-agglomerated powders [J].Journal of the European Ceramic Society,1999,19:1925-1934.
    [204]. M Rajendran,K K Mallick,A K Bhattacharya,et al.Conbustion synthesis,powder characteristics and crystal structure of phases in Ce-Pr-O System [J].Journal of Materials Science,1998,33:5001-5004.
    [205]. 焦新建,文进.陶瓷颜料的色彩调配及彩饰技法[M].武汉:武汉工业大学出版社,2000:52-68.
    [206]. 王培铭主编.无机非金属材料学[M].上海:同济大学出版社,1999:114-131.
    [207]. George G,Rao P P, Reddy M L.Synthesis and characterization of CeO2TiO2Pr 6O11 solid solutions for environmentally benign nontoxic red pigments[J].Chemistry Letters,2006,35(12):1412-1413.
    [208]. Prabhakar Rao P,Reddy M L P.(TiO2)(CeO2)1-x(RE2O3)x novel environmental secure pigments[J].Dyes and Pigments,2007,73(3):292-297.
    [209]. Jansen M , Letschert H P . Inorganic yellow-red pigments without toxic metals[J].Nature,2000,404:980-982.
    [210]. Masui T , Furukawa S , Imanaka N . Synthesis and characterization of CeO2-ZrO2-Bi2O3 solid solutions for environment-friendly yellow pigments[J].Chemistry Letters,2006,35(9):1032-1033.
    [211]. A E C Palmqvist,E M Johansson,S G Jaras.Total oxidation of methane over doped nanophase cerium oxides[J].Catalysis Letters,1998,56:69-75.
    [212]. Sun Y,Wang Z,Tian J.Coloration of mica glass-ceramic for use in dental CAD/CAM system [J].Materials Letters,2002,57 (2):425-428.
    [213]. 徐强,张幸红,韩杰才.自蔓延高温合成 (SHS) 技术的新进展[J].宇航材料工艺,2003(2):4-9.
    [214]. A G Merzhanov . History and Recent Development in SHS[J] . Ceramics Internatio-nal,1995,21:371-379.
    [215]. E G Kandalova,V I Nikitin,Jie Wangqi,et al. Effect of Al powder content on SHS Al-Ti grain refiner [J].Materials Letters,2002,54:131-134.
    [216]. G Galina,Xanthopoulou.Self-Propagating SHS of Inorganic Pigments [J].The American Ceramic Society Bulletin,1998,8:87-96.
    [217]. Q M Ming.Combustion synthesis of complex oxides [D].University of Houston,USA,1999:151-174.
    [218]. H C Yi,J Y Guigne,J J Moore,et al.Combustion Synthesis of Glass (BO-AlO-MgO)-Ceramic(TiB) Composites[J] . Journal of Materials Synthesis and Processing,2002,10(4):163-174.
    [219]. A G Merzhanov.Theory and Practice of SHS: Worldwide State of the Art and the Newest Results[J] . International Journal of Self-Propagating High-Temperature Synthesis,1993,2(2):113-156.
    [220]. G X anthopoulou.Oxide catalysts for pyrolysis of fuel made by self-propagating high-temperature synthesis, Part I cobalt-modified Mg-Al spinel catalysts [J].Applied catalysis A General,1999,182:285-295.
    [221]. A Makino.Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis(SHS) process[J] . Progress in Energy and Combustion Science,2001,27:1-74.
    [222]. 唐振宁.无机颜料的表面处理[J].中国涂料,2005,20(12):8-10.
    [223]. 李秀珍,潘湛昌,肖楚民,张环华.纳米二氧化铈的制备方法研究[J].化工装备技术,2002,23(6):20-21.
    [224]. 董相廷,闫景辉,于薇.水热晶化法制备 CeO2 纳米晶[J].稀有金属材料与工程,2002,31(4):312-314.
    [225]. J Karch,R Birringer,H Gleiter.Ceramics Ductile at low temperature[J].Nature,1987,330:556-558.
    [226]. T P Hoar,J H Schulman.Transparent water-in-oil dispersions: the oleopathic hydro-micelle [J].Nature,1943,152:102-103.
    [227]. J H Schulman,M Stoeckenius,L M Prince.Mechanism of formation and structure of micro emulsions by electron microscopy[J].J. Phys. Chem.,1959,63:1677-1680.
    [228]. 陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001:35-40.
    [229]. M Bourrel,R S Schechter.Microemulsion and related systems: Fomulation, Solvency and Physical Properties[M].Marcel Dekker Inc.,New York and Basel,1988.
    [230]. 苗鸿雁,罗宏杰.新型陶瓷材料制备技术[M].西安:陕西科学技术出版社,2003:61-63.
    [231]. 邵庆辉,古国榜,章莉娟.微乳化技术在纳米材料制备中的应用研究[J].化工新型材料,2001,29(7):9-12.
    [232]. 焦学瞬,贺明波.乳状液与乳化技术新应用-专用乳液化学品的制备及应用[M].北京:化学工业出版社,2006:15-38.
    [233]. 崔正刚,殷福珊.微乳液化技术及应用[M].北京:中国轻工业出版社,1999:19-21.
    [234]. L M Prince.Microemulsions, Theory and Practice [M].New York:Academic Press,1977:55-67.
    [235]. M L Robbins.Micellization, Solubilization and Microemulsion[M].New York:Plenum Press,1977,713-729.
    [236]. 李梅,柳召刚,胡艳宏.铈基稀土氧化物粉体的制备研究[J].中国稀土学报,2003,21:18-20.
    [237]. 储茂友,沈化森,沈剑韵等.新型颜料-稀土倍半硫化物(Ln2S3)的制备及应用前景[J].稀土金属,2002,26(2):134-138.
    [238]. 曹小安,王鸿博,王春林.稀土紫萝蓝色陶瓷颜料[J].中国陶瓷,1997,33(4):16-18.
    [239]. A Garcia,M Llusar,J Calbo,et al.Low-toxicity red ceramic pigments for porcelainised stoneware from lanthanide-cerianite solid solutions[J].Green Chemistry,2001,3:238-242.
    [240]. 化工百科全书 第四卷 化学工业出版社,北京,1993:294 -300.
    [1]. 李汶霞,殷声.低温燃烧合成陶瓷粉体[J].硅酸盐学报,1999,27(1):71-77.
    [2]. Q M Ming.Combustion synthesis of complex oxides [D].University of Houston,USA,1999:151-174.
    [3]. A Makino.Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis(SHS) process[J] . Progress in Energy and Combustion Science,2001,27:1-74.
    [4]. H C Yi , J Y Guigne , J J Moore , et al . Combustion Synthesis of Glass (BO-AlO-MgO)-Ceramic(TiB) Composites[J] . Journal of Materials Synthesis and Processing,2002,10(4):163-174.
    [5]. A G Merzhanov.Theory and Practice of SHS: Worldwide State of the Art and the Newest Results[J] . International Journal of Self-Propagating High-Temperature Synthesis,1993,2(2):113-156.
    [6]. G X anthopoulou.Oxide catalysts for pyrolysis of fuel made by self-propagating high-temperature synthesis, Part I cobalt-modified Mg-Al spinel catalysts [J].Applied catalysis A General,1999,182:285-295.
    [7]. A G Merzhanov.History and Recent Development in SHS[J].Ceramics Internatio-nal,1995,21:371-379.
    [8]. A Trovearelli,M Boaro,E Rocchini,et al.Some recent developments in the characterization of ceria-based catalysts[J].J Alloys and Compounds,2001:584-591.
    [9]. M Rajendran,K K M allick,A K Bhattacharya.Combustion synthesis powder characteristics and crystalstructure of phases in Ce-Pr-O system[J].Journal of materials science,1998,33:5001-5006.
    [10]. 杨南如.无机非金属材料测试方法[M].武汉,武汉工业大学出版社,2000:97-101.
    [11]. 张文丽.色料的呈色机理[J].生产与应用,1997,2:10-16.
    [12]. S.T.Aruna,S.Ghosh,K.C.Patil.Combustion synthesis and properties of Ce1-xPrxO2-δ red ceramic pigments [J].International Journal of Inorganic Materials,2000,3:387.
    [13]. Shahin A M,Schuman T P,Grandjean F.Cerium LIII-edge exafs investigation of the structure of crystalline and amorphous cerium oxides[J].ACS Division of Fuel Chemistry Preprints,2004,49(2):759-760.
    [14]. R E Kiork,D F Othmer.Encyclopedia of chemistry and technology [M].Wiley,New York 1979,5:315-320.
    [15]. T.C.Rojas,M.Ocana.Uniform nanoparticles of Pr(Ⅲ)/Ceria solid solutions prepared byhomogeneous precipitation[J]. Scripta Materialia,2002,46: 655-660.
    [16]. Nahum Masó , Hestor Beltrán , Raquel Muńoz , et al . Optimization of Praseodymium-Doped Cerium Pigment Synthesis Temperature[J].J Am Ceram Soc,2003,86(3):425-430.
    [17]. S T Aruna,S Ghosh,K C Patil.Combustion synthesis and properties of Ce1-xPrxO2-δ red ceramic pigments[J].International Journal of Inorganic Materials,2000,3:387-392.
    [1]. 任卫.反相微乳液法制备纳米羟基磷灰石的研究[D].武汉:武汉理工大学,2003.
    [2]. 李长青.Bi2O3和Bi2Sn2O7粉体的微乳液制备、表征及其性质的研究[D].福州:福州大学,2004:240-249.
    [3]. Lim B P,Wang J,Ng SC et al.A bicontinuous microemulsion route to zinc oxide powder[J].Ceramics International,1998,24:205-209.
    [4]. Doruk O. Yener,Herbert Giesche.Synthesis of pure and mangnese-nickel and zinc-doped ferrite particles in water-in-oil microemulsions.Journal of the American Ceramic Society, 2001,84(9):87-95.
    [5]. 焦学瞬,贺明波.乳状液与乳化技术新应用-专用乳液化学品的制备及应用[M].北京:化学工业出版社,2006,15-38.
    [6]. 崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工业出版社,1999:73-99.
    [7]. 李玲.表面活性剂与纳米技术[M].北京:化学工业出版社,2003:59-61.
    [8]. Nahum Masó,Hector Beltrán,Raquel Mu?oz.Optimization of Praseodymium-Doped Cerium Pigment Synthesis Temperature[J].Journal of the American Ceramic Society,2003,86(3):425-430.
    [9]. 陆佩文.无机材料科学基础[M].武汉:武汉工业大学出版社,1999:144-152.
    [1]. 闫宗兰等. CexPr1-xO2-δ复合氧化物的XRD和Raman表征[J].无机化学学报,2005,21(3):425-428.
    [2]. 卫芝贤等.表面活性剂PEG在掺锑纳米SnO2粉末氧化共沉淀制备中的作用[J].过程工程学报,2005,5(3):305-308.
    [3]. 贾晓林,钟香崇. 聚乙二醇在MgAL2O4前驱体表面的吸附及改性作用[J].中国粉体技术,(5):12-15.
    [4]. 彭程. Ce1-xPrxO2-x/2的溶胶-凝胶法的合成及其性质[J] .功能材料,2003,34(3):301-303.
    [5]. 闫宗兰等.CexPr1-xO2-δ复合氧化物的制备、表征及CO和CH4氧化性能研究[J] .无机材料学报,20(3):653-656.
    [6]. F. Bondioli.Synthesis and characterization of praseodymium-doped ceria powders by a microwave-assisted hydrothermal (MH) route[J] . Journal of materials chemistry,2005,15:1061-1066.
    [7]. 吴南春等.水热介质pH值对纳米(Ce)ZrO2晶粒制备的影响[J] .中国粉体技术,2000,6:284-286.
    [1]. Nahum Masó , Hestor Beltrán , Raquel Muńoz , et al . Optimization of Praseodymium-Doped Cerium Pigment Synthesis Temperature[J].J Am Ceram Soc,2003,86(3):425-430.
    [2]. Shahin A M,Schuman T P,Grandjean F.Cerium LIII-edge exafs investigation of the structure of crystalline and amorphous cerium oxides[J].ACS Division of Fuel Chemistry Preprints,2004,49(2):759-760.
    [3]. Kosacki I,Suzuki T,Petrovsky V.Raman Scattering and Lattice Defects in Nano-crystalline CeO2 Thin Films [J]. Solid State Ionics,2002,149 (1):99-105.
    [4]. Weber W H, Hass K C, McBride J R.Raman Study of CeO2: Second-Order Scattering, Lattice Dynamics and Particle-Size Effects [J]. Phys. Rev. B,1993,48:178-185.
    [5]. 董相廷,洪广言,于得财.CeO2 纳米粒子形成过程中 Ce 的价态变化[J].硅酸盐学报,1997,25(3):323-327.
    [6]. Sulcova P,Trojan M.Study of Ce1-xPrxO2 pigments [J].Thermochimica Acta, 2003,395 (1):251-255.
    [7]. S.T. Aruna,S.Ghosh,K.C. Patil.Combustion synthesis and properties of Ce1-xPrxO2-δ red ceramic pigments[J].International Journal of Inorganic Materials,2000,3:387-392.
    [8]. Petra ?ulcová,Miroslav Trojan. Synthesis of Ce1-xPrxO2 pigments with other lanthanide [J].Dyes and Pigments,1998,40:7-91.
    [9]. T.C.Rojas, M.Ocana.Uniform nanoparticles of Pr(Ⅲ)/Ceria solid solutions prepared by homogeneous precipitation[J].Scripta Materialia,2002,46:655-660.
    [10]. McBride J R,Hass K C,Poindexter B D,et al.Raman and x-ray studies of Ce1-xRExO2-y,where RE=La,Pr,Nd,Eu,Gd,and Tb[J].J Appl Phys,1994,76(4):2435-2441.
    [11]. Bondioli F , Corradia B , Manfredini T . Non-conventional synthesis of praseodymium-doped ceria flux method[J].Chemistry of Materials,2000,12:324-330.
    [12]. 冯世宏等.晶体生长机理的研究进展[J].有色矿冶,2004,20(6):48-50.
    [13]. 于锡玲.晶体生长机理研究的新近发展[J].中国科学基金,2002,(4):215-218.
    [14]. 罗电宏,马荣骏.湿法制备纳米级粉末的晶体生长理论探讨[J].2002,21(4):169-173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700