磁控溅射法制备YSZ电解质薄膜及其在SOFC中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是一种全固态、高效的能量转换装置,由于自身特有的优点被认为是21世纪最有效的发电系统之一。目前研究的重点是开发可在中低温(600℃~800℃)区域工作的SOFC,为了保证电池良好的输出性能,Y2O3稳定的ZrO2(YSZ)电解质的薄膜化制备是一种非常有前景的技术路线。
     本文采用射频磁控溅射法制备YSZ电解质薄膜,研究了溅射过程中关键工艺参数对薄膜性能的影响。实验过程中主要通过对薄膜微观形貌、沉积速率以及组装单体电池性能的表征来优化工艺。确定的最佳工艺参数:沉积时间为35h,工作气压为0.75Pa,射频功率为350W,基体温度为600℃。采用优化后的溅射工艺获得的YSZ电解质薄膜再1400℃热处理2h,其厚度约为9μm,致密度高,与阳极基体结合紧密。组装单体电池,其开路电压可达到1.03V;电池在750℃、800℃和850℃时最大功率密度分别为570mW·cm-2、831m W·cm-2和1200mW·cm-2。
     另外研究了阳极基体对溅射制备YSZ电解质薄膜性能以及电池性能的影响。发现压片法制备的阳极预烧温度为1300℃时,片子的平整度和YSZ薄膜致密性较好,电池在800℃下的开路电压和最大功率密度分别为1.08V和834mW·cm-2;相对于压片法,采用流延法制备的阳极基体,颗粒分布均一,结构精细,催化活性高,电池的放电性能和稳定性较好,电池在800℃下的最大功率密度为1009mW·cm-2,运行10h基本无衰减。采用流延法烧制了70mm×70mm平整的NiO-YSZ阳极基体,在此基体上溅射了YSZ电解质薄膜,1400℃热处理2h后,薄膜的平整度和均匀性都较好,电解质致密度较高并且和电极结合紧密。
Solid Oxide Fuel Cell (SOFC), which is a solid-state and high-energy efficiency conversion device, is considered as one of the most promising electricity generating devices in the 21th century because of its particular advantages. The key current research is the fabrication of SOFC operating at reduced temperature (600oC~800oC). For achieving predominant output of cell, reducing the thickness of YSZ electrolyte is a promising technology route.
     YSZ electrolyte film is fabricated by radio frequency magnetron sputtering technique. The influence of sputtering parameters on the performance of YSZ electrolyte film was studied. The technical parameters were optimized by the YSZ film morphology observation, the deposition rate and the performance of assembly fuel cells in the course of experiments. Deposition time for 35 h, Work pressure of 0.75 Pa, RF power of 350 W amd substrate temperature of 600℃are identified as the best technical parameters. Under these condtion, YSZ electrolyte film obtained by magnetron sputtering technology is quite dense after heat-treatment at 1400℃for 2h. The YSZ electrolyte film with a thickness of 9μm is well adhesive to the anode. The open circuit voltage (OCV) of the fuel cell with this YSZ film via sputtering technology is 1.03V at 800oC that is close to the theoretical voltage. The maximum power densities are 1200 mW·cm-2, 831mW·cm-2 and 570mW·cm-2 at 850°C, 800°C and 750°C, respectively.
     Furthermore, the influence of anode substrate on the performance of YSZ electrolyte film and fuel cell was studied. The anode substrate is prepared by dry-pressing method with pre-treatment tempreture of 1300oC, on which the sputtering YSZ electrolyte film reveals better smoothnesses and density. The OCV and the maximum power density were 1.08V and 834mW·cm-2, respectively. The function layer of anode prepared by tape-casting method has a fine structure, and the particle distribution of which is more homogeneous than that of anode obtained by dry-pressing method. The assembly cell with this anode behaves the better electrochemical performance and stability. The maximum power densities of this cell are 1009mW·cm-2 and no obviously decline is found during the test of 10h. Then, a piece of NiO-YSZ anode substrate with the sizes of 70mm×70mm was prepared by tape-casting method. The YSZ electrolyte film was sputtered on this substrate and heat-treaed at 1400℃for 2h. The smoothness and uniformity of YSZ electrolyte film is fine, and the YSZ electrolyte film was dense and well adhesive to the anode.
引文
1 A. B. Stambouli, E. Traversa. Fuel cell, an Alternative to Standard Sources of Energy. Renewable and Sustainable Energy Reviews. 2002, 6(3): 297~306
    2 B. Yildiz, M. S. Kazimi. Efficiency of Hydrogen Production Systems Using Alternative Nuclear Energy Technologies. Int. J. Hydrogen Energy. 2006, 31(1): 77~92
    3 Qingshan Zhu, Baoan Fan. Low Temperature Sintering of 8YSZ Electrolyte Film for Intermediate Temperature Solid Oxide Fuel Cells. Solid State Ionics. 2005, 176(9-10): 889~894
    4 W. Bai, K. L. Choy, R. A. Rudkin, et al. The Process, Structure and Performance of PEN Cells for the Intermediate Temperature SOFCs. Solid State Ionics. 1998, 113-115(1): 259~263
    5 S. C. Singhal. Advances in Solid Oxide Fuel Cell Technology. Solid State Ionics. 2000, 135(1-4): 305~313
    6 K. Choy, W. Bai, S. Charojrochkul. The Development of Intermediate- Temperature Solid Oxide Fuel Cells for the Next Millennium. J. Power Sources. 1998, 71(1-2): 361~370
    7 B. Beboer. Anodes for Solid Oxide Fuel Cells. University of Twente, Twente, The Nether Ph. D Thesis, 1998: 59~81
    8 S. Zha. Ni-Ce0.9Gd0.1O1.95 Anode for GDC Electrolyte-Based Low-Temperature SOFCs. Solid State Ionics. 2004, 166(3-4): 241~250
    9 J. Yan, H. Matsurnato, M. Enoki, et al. High-Power SOFC Using La0.9Sr0.1Ga0.8Mg0.2O3-δ/Ce0.8Sm0.2/O2-δComposite Film. Electrochemical and Solid State Letters. 2005, 8(8): A389~A391
    10 H. Y. Jung, K. S. Hong, H. Kim, et al. Characterization of Thin-film YSZ Deposited via EB-PVD Technique in Anode-Supported SOFCs. J. Electrochem. Soc. 2006, 153(6): A961~A966
    11 C. Brahim, A. Ringuede, E. Gourba, et al. Electrical Properties of Thin Bilayered YSZ/GDC SOFC Electrolyte Elaborated by Sputtering. J. Power Sources. 2006,156(1): 45~59
    12 F. Mauvy, P. Lenormand, C. Lalanne, et al. Electrochemical Characterization of YSZ Thick Films Deposited by Dip-Coating Process. J. Power Sources. 2007, 171(2): 783~788
    13 T. L. Wen, D. Wang. Material Research for Planar SOFC Stack. Solid State Ionics , 2002, 148(3-4): 513~519
    14 M. C. Williams, J. P. Strakey, S. C. Singhal. U.S. Distributed Generation Fuel Cell Program. J. Power Sources. 2004, 131(1-2): 79~85
    15 S. H. Jeong, I. S. Bae, Y. S. Shin, et al. Physical and Electrical Properties of ZrO2 and YSZ High-k Gate Dielectric Thin Films Grown by RF Magnetron Sputtering. Thin Solid Films. 2005, 475(1-2): 354~358
    16 A. O. Isenberg. Cost Reduction in Fabrication Processes for SOFC Cell Components. European Fuel Cell Forum. Lucern, Switzerland, 2000: 745
    17彭苏萍,韩敏芳.固体氧化物燃料电池.物理学与新能源. 2003, 9: 90~94
    18 M. Dokiya. SOFC System and Technology. Solid State Ionics. 2002, 152-153: 383~392
    19于兴文,黄学杰.固体氧化物燃料电池研究进展.电池. 2002, 32(2): 110~113
    20 J. H. Lee, J. W. Heo, J. D. Kim et al. Effect of the Pore Structure of Anode Substrate on the Anode Properties of SOFC. The Fifth European SOFC forum: 178~190
    21 J. W. Stevenson, S. Baskaran, L. A. Chick, et al. Solid Oxide Fuel Cell Development at PNNL. Electrochemical Society Proceedings. 2003, 7: 31~39
    22 C. M. Williams, J. P. Strakey. U. S. DOE. Office of Fossil Energy’s Solid Oxide Fuel Cell Programs. Electrochemical Society Proceedings. 2003, 7: 3~8
    23 S. Gile. Global Thermoelectric’s Integrated Cell Manufacturing of Planar SOFCs. Electrochemical Society Proceedings. 2003, 7: 935~943
    24 T. L. Nguyen, T. Honda, T. Kato, et al. Fabrication and Characterization of Anode Supported Tubular SOFCs with Zirconia Based Electrolyte for Reduced Temperature Operation. Electrochemical Society Proceeding. 2003, 7: 1019~1028
    25 H. Fujii. Status of National Project for SOFC Development in Japan. Electrochemical Society Proceedings. 2003, 7: 9~15
    26陈铭,温廷琏,黄臻等. YSZ陶瓷膜流延等静压复合成型新工艺研究.无机材料学报. 1994, 14(5): 745~750
    27查少武,顾云峰,付清溪等. CeO2-Y2O3固体氧化物燃料电池的电化学性能.功能材料. 2000, 31(6): 612~614
    28刘克艳,吕喆,贾莉等.双层干压制备阳极支撑的氧化锆薄膜燃料电池.电源技术. 2005, 29(11): 737~740
    29 Q. L. Ma, J. J. Ma, S. Zhou, et al. A High-Performance Ammonia-Fueled SOFC Based on a YSZ Thin-film Electrolyte. J. Power Sources. 2007, 164(1): 86~89
    30 X. S. Xin, Z. Lü, X. Q. Huang, et al. Solid Oxide Fuel Cells with Dense Yttria-Stabilized Zirconia Electrolyte Membranes Fabricated by a Dry Pressing Process. J. Power Sources. 2006, 160(2): 1221~1224
    31韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.科学出版社, 2004: 27~28
    32毛宗强.燃料电池.化学工业出版社, 2005: 302~303
    33李冬云,乔冠军,金志浩.流延法制备陶瓷薄片的研究进展.硅酸盐通报. 2004, (2): 44~47
    34韩敏芳,王玉清,李伯涛等.流延成型制备8YSZ电解质薄片及其性能研究.北京科技大学学报. 2005, 27 (2): 209~212
    35 S. M. Haile. Fuel Cell Materials and Components. Acta Materialia. 2003, 51(17): 5981~6000
    36 T. Hosomi, M. Matsuda, M. Miyake. Electrophoretic Deposition for Fabrication of YSZ Electrolyte Film on Non-Conducting Porous NiO–YSZ Composite Substrate for Intermediate Temperature SOFC. J. Euro. Ceram. Soc. 2007, 27(1):173~178
    37 Y. H. Zhang, X. Q. Huang, Z. Lü, et al. A Study of the Process Parameters for Yttria-Stabilized Zirconia Electrolyte Films Prepared by Screen-Printing. J. Power Sources. 2006, 160(2): 1065~1073
    38 X. G. Zhang, M. Robertson, C. D. Petit, et al. NiO–YSZ Cermets Supported Low Temperature Solid Oxide Fuel Cells. J. Power Sources. 2006, 161(1): 301~307
    39 O. H. Kwon, G. M. Choi. Electrical Conductivity of Thick Film YSZ. Solid State Ionics. 2006, 177(35-36): 3057~3062
    40 Z. S. Duan, M. Yang, A. Y. Yan, et al. Ba0.5Sr0.5Co0.8Fe0.2O3?δas a Cathode for IT-SOFCs with a GDC Interlayer. J. Power Sources. 2006, 160(1): 57~64
    41张耀辉.固体氧化物燃料电池两种电解质膜制备方法的研究及应用.哈尔滨工业大学博士论文. 2006: 34~36
    42 S. V. Samoilenkov, M. A. Stefan, G. Wahl. MOCVD of Thick YSZ Coatings Using Acetylacetonates. Surf. Coat. Techno. 2005, 192(1): 117~123
    43 P. Egger, G. D. Soraru, R. Ceccato, et al. Hybrid Organic–Inorganic Films by Assembling of Si–Zr-based Nanobuilding Blocks. J. Euro. Ceram. Soc. 2005, 25(12): 2647~2650
    44 D. Perednis, O. Wilhelm, S. E. Pratsinis, et al. Morphology and Deposition of Thin Yttria-Stabilized Zirconia Films Using Spray Pyrolysis. Thin Solid Films. 2005, 474(1-2): 84~95
    45 S. G. Kim, S. P. Yoon, S. W. Nam, et al. Fabrication and Characterization of a YSZ/YDC Composite Electrolyte by a Sol–Gel Coating Method. J. Power Sources. 2002, 110(1): 222~228
    46 Stoermer A O, Rupp J L, Gauckler L J. Spray Pyrolysis of Electrolyte Interlayers for Vacuum Plasma-Sprayed SOFC. Solid State Ionics. 2006, 177(19-25): 2075~2079
    47 B. Hobein, F. Tietz, D. St?ver, et al. Pulsed Laser Deposition of Yttria Stabilized Zzirconia for Solid Oxide Fuel Cell Applications. J. Power Sources. 2002, 105(2): 239~242.
    48 C. S. Song. Fuel Processing for Low-Temperature and High-Temperature Fuel cells: Challenges, and Opportunities for Sustainable Development in the 21st Century. Catalysis Today. 2002, 77(1-2): 17~49
    49 G. F. McLean, T. Niet, S. Prince-Richard, et al. An Assessment of Alkaline Fuel Cell Technology. Int. J. Hydrogen Energy. 2002, 27(5): 507~526
    50 N. Sammes, R. Bove, K. Stahl. Phosphoric Acid Fuel Cells: Fundamentals and Applications. Current Opinion in Solid State and Materials Science. 2004, 8(5): 372~378
    51 Bae J W, Park J Y, Hwang S W, et al. Application of Vacuum Deposition Methods to Solid Oxide Fuel Cells. J. Electrochem. Soc. 2000, 147: 2380~2384
    52 Nagata A, Okayama H. Characterization of Solid Oxide Fuel Cell Device Having a Three-Layer Film Structure Grown by RF Magnetron Sputtering. Vacuum. 2002, 66 (3-4): 523~529
    53 Mineshige A, Fukushima K, Tsukada K, et al. Preparation of Dense Electrolyte Layer Using Dissociated Oxygen Electrochemical Vapor Deposition Technique. Solid State Ionics. 2004, 175(1-4): 483~485
    54 Srivastava P K, Quach T, Duan Y Y, et al. Electrode Supported Solid Oxide Fuel Cells: Electrolyte Films Prepared By DC Magnetron Sputtering. Solid State Ionics. 1997, 99(3-4): 311~319
    55徐万劲.磁控溅射技术进展及应用(上).现代仪器. 2005, 5: 1~5
    56徐万劲.磁控溅射技术进展及应用(下).现代仪器. 2005, 6: 5~10
    57 S. H. Jeong, I. S. Bae, Y. S. Shin, et al. Physical and Electrical Properties of ZrO2 and YSZ High-k Gate Dielectric Thin Films Grown by RF Magnetron Sputtering. Thin Solid Films. 2005, 475(1): 354~358
    58 Zonging Shao, Sossina M.Haile, Jeongmin Ahn, et al. A Thermally Self-Sustained Micro Solid-Oxide Fuel-Cell Stack with High Power Density. Nature. 2005, 435(9): 785~788
    59赵嘉学,童洪辉.磁控溅射原理的深入探讨.真空. 2004, 41(4): 74~79
    60郑伟涛.薄膜材料与薄膜技术.化学工业出版社. 2004: 68~73
    61王福贞.气相沉积应用技术.机械工业出版社. 2007: 47~158
    62田民波.薄膜技术与薄膜材料.清华大学出版社. 2006: 177~183
    63刘志文,谷建峰,张庆瑜等.磁控溅射ZnO薄膜的成膜机制及表面形貌演化动力学研究. 2006, 25(4): 1965~1973
    64 P.Briois, E.Gourba, A.Billard, et al. Microstructure - Electrical Properties Relationship of YSZ Thin Films Reactively Sputter-Deposited at Different Pressures. Ionics. 2005,11(4): 301~304
    65 C.Brahim, A.Ringued′e, E. Gourba, et al. Electrical Properties of Thin Bilayered YSZ/GDC SOFC Electrolyte Elaborated by Sputtering. J. Power Sources. 2006, 156(1): 45~49
    66 P.Briois, F.Lapostolle, V.Demange, et al. Structural Investigations of YSZ Coatings Prepared by DC Magnetron Sputtering. Surf. Coat. Techno. 2007,201(12): 6012~6018
    67 Y. Chen, C. Wen, J. Wei. Processing and Characterization of Ultra-Thin Yttria-Stabilized Zirconia (YSZ) Electrolytic Films for SOFC. Solid State Ionics. 2006, 177(3-4): 351~357
    68 A. F. Jankowski, J. P. Hayes. Reactive Sputter Deposition of YSZ. Surf. Coat. Technol. 1995, 76~77(1): 126~131
    69 P. Gao, L.J. Meng, M. P. Santos, et al. Study of ZrO2 -Y2O3 Films Prepared by RF Magnetron Reactive Sputtering. Thin Solid Films. 2003, 377-378: 32~36
    70 A. Nagata, H. Okayama. Characterization of Solid Oxide Fuel Cell Device Having a Three-Layer Film Structure Grown by RF Magnetron Sputtering. Vacuum. 2002, 66(3-4): 523~529
    71 E. Wanzenberg, F. Tietz, D. Kek, et al. Influence of Electrode Contacts on Conductivity Measurements of Thin YSZ Electrolyte Films and the Impact on Solid Oxide Fuel Cells. Solid State Ionics. 2003, 164(3-4): 121~129
    72 B. Hobein, F. Tietz, D. Stover, et al. DC Sputtering of Yttria-Stabilised Zirconia Films for Solid Oxide Fuel Cell Applications. J. Euro. Ceram. Soc. 2001, 21(10-11): 1843~1846
    73 P. Briois, A. Billard. A Comparison of Electrical Properties of Sputter-Deposited Electrolyte Coatings Dedicated to Intermediate Temperature Solid Oxide Fuel Cells. Surf. Coat. Techno. 2006, 201(3-4): 1328~1334
    74 E. Wanzenberg, F. Tietz, P. Panjan, et al. Influence of Pre- and Post-Heat Treatment of Anode Substrates on the Properties of DC-Sputtered YSZ Electrolyte Films. Solid State Ionics. 2003, 159(7): 1~8
    75 S. P. Jiang, S. H. Chan. A Review of Anode Materials Development in Solid Oxide Fuel Cells. Journal of Materials Science. 2004, 39: 4405~4438
    76 J. Kong, K. Sun, D. Zhou, et al. Ni-YSZ Gradient Anodes-Supported SOFCs. J. Power Sources. 2007, 166(2): 337~342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700