水稻花药中Ca~(2+)的定位与花粉细胞骨架荧光标记方法的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光敏雄性核不育水稻是培育杂交稻的重要种质资源,其雄性不育的细胞学机制与很多方面有关,包括绒毡层发育、ATP酶、Ca~(2+)浓度、细胞骨架和细胞程序性死亡等。Ca~(2+)作为植物的第二信使广泛参与并调节着植物体内的生理生化反应,其在花药发育过程中对花粉形成和发育起重要作用;细胞骨架紊乱导致细胞死亡的现象比较普遍。因此,研究不育水稻花药发育过程中Ca~(2+)分布以及细胞骨架的变化与花粉败育的关系,有助于揭示光敏核不育水稻雄性不育的机理。
     本文采用焦锑酸钾沉淀法,观察了光敏核不育水稻(PGMR)农垦58S和正常可育品种农垦58N花药发育过程中药隔、药壁和花粉细胞中Ca~(2+)的分布差异,分析不育花药中Ca~(2+)分布与花粉败育的关系;以水稻为研究材料,采用几种不同的方法获得花粉细胞,分别进行微丝和微管的荧光标记和观察。
     主要研究结果如下:
     1.花药发育过程中Ca~(2+)异常分布及其与雄性不育的关系
     (1)可育花粉单核晚期细胞表面聚集丰富的Ca~(2+)沉淀,花粉壁发育完全,细胞质中Ca~(2+)颗粒很少;而不育花粉细胞表面Ca~(2+)较少,花粉外壁发育异常,不形成花粉内壁,细胞质中积累丰富的Ca~(2+)沉淀。
     (2)可育花药绒毡层细胞在单核早期开始解体,单核晚期迅速解体;而不育花药在花粉母细胞时期启动解体,解体过程十分缓慢,一直持续至花粉败育。不育花药较可育花药提前形成乌氏体,但其表面无Ca~(2+)沉淀分布,直到单核晚期才有明显分布,数量少于同期可育花药。除乌氏体以外,不育花药各壁层细胞中的Ca~(2+)沉淀多于可育花药。
     (3)花药发育过程中,不育花药和可育花药药隔组织中的Ca~(2+)沉淀都呈逐渐增多的趋势,同期相比,不育花药多于可育花药。
     结果表明,光敏核不育水稻绒毡层细胞提早解体及乌氏体功能异常,导致Ca~(2+)向药室的运输发生障碍,致使花粉表面缺乏Ca~(2+)而引起花粉外壁形成不正常;花粉发育后期细胞质内积累大量Ca~(2+)是花粉败育的主要因素之一。
     2.花粉细胞骨架荧光标记方法
     (1)多聚赖氨酸粘片法:固定花药后压片,挤出花粉于涂有多聚赖氨酸的盖玻片上,对黏附在盖玻片上的花粉进行酶解和标记。结果表明,实验过程中花粉较易脱落,且一些组织碎片影响荧光观察,不易进行后期花粉标记,也不易进行微管荧光标记。
     (2)研磨—离心法:固定小花后,研磨压出花粉,过滤,离心收集花粉,在离心管中对花粉进行酶解和标记。结果表明该法与粘片法相比,花粉细胞损失很少,制片上的花粉细胞分布均匀,无背景杂质影响荧光观察。只是此法不易获得早期花粉细胞。采用此法,分别设酶解时间梯度和标记液浓度梯度来摸索最佳标记条件,结果表明:标记微丝以酶解15~30min为宜,标记微管以酶解0.5~1h为宜;适当降低标记液浓度可使标记效果更好。
     (3)冰冻切片法:固定小花后,进行冰冻包埋,冷冻后切片,真空粘片后脱包埋剂再进行标记。此技术克服了以上两种方法存在的问题,可以方便快捷地获得各时期的花药结构,DAPI染核效果很好,但是荧光标记效果不太理想,药壁组织细胞荧光信号很强,无法分辨花粉中微丝和微管的特异性荧光。
     结果表明,粘片法和研磨—离心法虽各有优缺点,但可以用于微丝和微管的荧光标记,观察花粉发育中细胞骨架的动态变化,可以将两种方法结合起来使用,采用粘片法标记早期花粉细胞,采用研磨—离心法标记后期花粉细胞。
Photo-sensitive Genic Male-sterile Rice(PGMR) is a very important germplasm resource for cross-breeding of rice. Its cytological mechanism of male sterility including many aspects: the development of tapetum, ATPase, concentration of Ca~(2+), cytoskeleton and programmed cell death, etc. Ca~(2+)widely participate and regulate physiological and biochemical response in plants as second messengers, its very important for the formation and development of pollen during the development of anther; disorder of cytoskeleton lead to cell death is general. Therefore, researching the relationship between pollen abortion both distribution of Ca~(2+) and variation of cytoskeleton during the development of anther of rice, helpful to reveals the mechanism of male sterility for PGMR.
     Potassium antimontate was adopted to investigate Ca~(2+) distribution in the anthers of photo-sensitive genic male-sterile line of rice Nongken 58S and fertile line Nongken 58N during their development, to study the relationship between Ca~(2+) distribution and male-sterile of rice. In order to investigate the relationship between the dynamic distribution of cytoskeleton and male-sterile of rice, a feasible immunofluorescence labeling method must be established firstly to observe the framework of cytoskeleton of pollen. We attempted several ways to gain pollen and made great efforts to improve experimental method, finally, a mature labeling system was established in our laboratory, by which we can label both microfilament and microtubule easily.
     The main results are listed as bellows:
     1. To research the relationship between Ca~(2+) distribution and male-sterile of rice
     (1) In the locule of fertile anther, the calcium precipitates gradually accumulated on the surface of uninucleate pollen until pollen mature, but its lack in the cytoplasm, the pollen wall formed completely composing of exine and intine. The calcium precipitates on the surface of sterile pollen were obviously fewer than fertile pollen, but they were abundant in the degradated cytoplasm of abortive pollen, the exine formed singularly and the pollen wall composed without intine.
     (2) The tapetum cells of the fertile anther began to degenerate at early microspore stage and degraded rapidly at late microspore stage, but that of sterile anther startuped degenerate at microsporocyte stage, and went on to pollen abortion. Ubish bodies began to form earlier in sterile anther than fertile anther, but with no calcium granules on them, till late microspore stage, many calcium granules appeared on the surface of them, but obviously less than in fertile anther. In sum, there were much more calcium granules in anther wall of sterile anther than in fertile anther, but the calcium granules on the surface of ubish bodies in sterile anther were much less than in fertile anther.
     (3) The calcium precipitates gradually increase in parechymatous cells of both sterile and fertile anther, but there were more in sterile anther than in fertile anther.
     Due to the tapetum cells degrading ahead and the abnormal function of ubish bodies, the transport of Ca~(2+) to locule occurred hindrance, induced to form abnormal exine. Abundent Ca~(2+) in the cytoplasm was one of the most factors of the pollen abortion.
     2. A labeling system was established to observe the cytoskeleton of pollen.
     (1) Pollen were extruded out from anther and were allowed to settle on the coverslip. The anther wall debris was removed, but difficult to clean out fully. The pollen lose easily during the process of experiment. The anther wall debris disturbed the backdrop of fluorescence. The method was not adapt to labell microtubule easily.
     (2) Gain pollen through grinding and centrifugation. This was used successfully to labell both the microfilament and microtubule. During the process of experiment, only a few pollen lost, and the backdrop of fluorescence was very clean. But it was difficult to gain the early pollen.
     (3) Used freezing apparatus to slice anther to flake could obtain pollen of each stage. its was easily to slice but was difficult to labell the cytoskeleton of pollen.
     (4) The pollen under label were photographed under both fluorescence microscope and Confocal microscope. The results showed that the cytoskeleton under the Confocal microscope was clearer and more bright than under the fluorescence microscope.
     It was obvious that these methods have virtue as well as defect. We could used two methods simultaneously to labell the pollen during its development. But it was a pity that we fail to label pollen by slicing.
引文
1.蔡雪,胡适宜.川百合花粉管的生殖细胞分裂过程中微管骨架的分布变化.植物学报,1996,38(10):761-766
    2.陈小军,刘树楠,魏磊,胡耀军,余金洪,赵洁,丁毅.云南紫稻细胞质雄性不育系花药发育过程中Ca~(2+)的分布特点.武汉植物学研究,2005,23(2):101-106
    3.丛斌,许萍,杨茂成,张丕方.小麦根尖细胞分化过程中微丝骨架分布格局.复旦大学学报(自然科学版),1996,35(6):661-664
    4.顾月华,程颖红,罗江虹.绿豆根尖细胞微管骨架有丝分裂时相发育变化的研究.激光生物学报,1997,6(4):1241-1246
    5.何群,尤瑞麟.应用Steedman's wax切片法观察植物细胞微管骨架.植物学通报,2004,21(5):547-555
    6.贺国良,贺浩华,刘宜柏,肖德兴.光敏核不育水稻农垦58S细胞学的研究.江西农业大学学报,2001,23(1):25-28
    7.贺新强,崔克明.植物细胞次生壁形成的研究进展.植物学通报,2002,19(5):513-522
    8.侯春燕,王冬梅,李小娟,韩胜芳,刘娟.细胞骨架解聚药物对小麦与叶锈菌互作诱发的细胞过敏性反应的影响.植物病理学报,2002,32(2):147-152
    9.胡适宜.被子植物胚胎学.北京:高等教育出版社,1983,22-30
    10.胡适宜,李春贵,朱澂.紫萼花粉粒和花粉管中微丝的超微结构.植物学报,1992,34(1):8-14
    11.黄荣峰,王学臣,娄成后.细胞骨架参与乙酰胆碱诱导的气孔开放.植物学报,2000,42(6):559-563
    12.雷宇华,闫芝芬.稻瘟病菌毒素对水稻根冠细胞微丝的影响.华北农学报,2000,15(增刊):1-4
    13.利容千,王建波,汪向明.光周期对光敏核不育水稻小孢子发生和花粉发育的超微结构的影响.中国水稻科学,1993,7:65-70
    14.利容千,朱英国,孟祥红,王建波.水稻红莲.粤泰不育系花粉与药隔组织Ca~(2+)的分布.作物学报,2001,27(2):230-233
    15.林善枝,张志毅.毛白杨幼苗低温锻炼过程中Ca2+的作用及细胞Ca~(2+)-ATP酶活 性的变化.植物生理与分子生物学学报,2002,28:449-456
    16.刘刚,王冬梅.细胞信号转导中Ca~(2+)和微管骨架的关系.植物生理学通讯,2006,42(2):331-336
    17.刘焕芳,廖景平.麻疯树花药发育过程中Ca~(2+)的分布特征.热带亚热带植物学报,2007,15(6):493-500
    18.刘继红,蔡学泳,何其华.细胞骨架的激光共焦研究技术.中国医学装备,2005,2(6):49-51
    19.刘宜柏,贺浩华,饶治祥,孙义伟,黄英金.光温条件对水稻两用核不育系育性的作用机理研究.江西农业大学学报,1991,13:1-7
    20.刘珠琴,张绍铃,徐国华.微丝骨架的构成及其对花粉管极性生长的调控作用.西北植物学报,2005,25(11):2356-2362
    21.孟祥红,王建波,利容千.绒毡层乌氏体在Ca~(2+)运输中的作用.科学通报,1999,44(24):2640-2643
    22.孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中Ca~(2+)-ATPase分布的影响.植物学报,2000a,42(3):446-454
    23.孟祥红,王建波,利容千.光周期对光敏胞质不育小麦花药发育过程中Ca~(2+)分布的影响.植物学报,2000b,42:15-22
    24.齐秀东.钙在果树生理代谢中的作用.河北科技师范学院学报,2005,19:69-71
    25.邱义兰,刘如石,谢潮添,杨延红,徐青,田惠桥.莴苣花药发育过程中钙的分布特征.实验生物学报,2005,38(5):377-386
    26.邱义兰,李红,陈松,刘如石,陈良碧.温敏雄性核不育水稻可育花药与不育花药的钙分布.生命科学研究,2007,11(2):167-171
    27.孙大业,郭艳林,马力耕.细胞信号转导(第二版).北京:科学出版社,1998,94-98
    28.孙俊,朱英国.湖北光敏感核不育水稻发育过程中花粉及花药壁超微结构的研究.作物学报,1995,21(3):364-367
    29.田惠桥,远彤.钙在被子植物受精过程中的作用.植物生理学报,2000,26:369-380
    30.童哲,张锦晖.农垦58S花药败育起始于造孢细胞时期.杂交水稻,1995,1995:35
    31.王凤茹,张笑归.植物细胞骨架及其在花粉萌发中的作用.河北农业科学,2002,6(2):18-23
    32.王台,童哲.光周期敏感核不育水稻农垦58S败育花粉的显微结构变化.作物学报,1992,18(2):132-136
    33.王昕,种康.植物小G蛋白功能的研究进展.植物学通报,2005,22(1):1-10
    34.吴钿,高秀梅,张建中.光温敏核不育水稻的育性及花药的发育解剖学研究.西南农业大学学报,2002,24(2):138-140
    35.吴慧涵,王建波,利容千.黄瓜种子萌发过程中Ca~(2+)分布的变化.植物生理学报,2001,27:141-144
    36.夏快飞,王雅琴,叶秀麟,梁承邺.野败不育水稻珍汕97A及其保持系珍汕97B 花药发育过程中Ca~(2+)的分布变化.中山大学学报(自然科学版),2004,43:263-267
    37.夏快飞,段中岗,梁承邺,叶秀麟.光敏核不育水稻农垦58S发育过程中药壁超微结构和Ca~(2+)分布的变化.亚热带植物科学,2005a,34(3):1-4
    38.夏快飞,梁承邺,叶秀麟,徐信兰,王亚琴.包台型水稻不育系花药发育过程中的Ca~(2+)分布.吉首大学学报(自然科学版),2005b,26(2):18-23
    39.夏快飞,梁承邺,叶秀麟,徐信兰.不同类型水稻不育系药隔发育过程中Ca~(2+)的分布变化.西北植物学报,2005c,25(8):1558-1565
    40.夏快飞,王亚琴,叶秀麟,梁承邺,徐信兰.水稻胞质雄性不育系珍汕97A及其保持系珍汕97B绒毡层发育过程中的Ca(2+)分布变化.云南植物研究,2005d,27(4):413-418
    41.肖翊华.光敏核不育水稻的光周期及其生理学.武汉:武汉大学出版社,1993,32-38
    42.肖玉梅,陈玉玲,黄荣峰,陈珈,王学臣.拟南芥保卫细胞微丝骨架的解聚可能参与了细胞外钙调素诱导的气孔关闭.中国科学(C辑)生命科学,2004,34(2):129-135
    43.谢潮添,杨延红,邱义兰,葛丽丽,田惠桥.白菜核雄性不育两用系可育和不育花药中Ca~(2+)的分布.植物生理与分子生物学学报,2005,31(6):615-624
    44.谢潮添,魏冬梅,田惠桥.高等植物雄性不育的细胞生物学研究进展.植物生理与分子生物学学报,2006,32(1):17-23
    45.徐是雄,朱澂,胡适宜.百合生殖细胞分裂过程中微管分布的显微荧光观察.植物学报,1990,32(11):821-836
    46.徐是雄.百合花粉原生质体中肌动蛋白微丝的荧光共焦镜观察.植物学报,1992, 34(2):907-911
    47.徐是雄,李春贵,朱潋.洋水仙花粉和花粉原生质体中肌动蛋白微丝的共焦显微镜观察.植物学报,1993a,35(1):12-19
    48.徐是雄,李春贵,朱潋.洋水仙花粉原生质体中微管骨架的免疫荧光及共焦显微镜观察.植物学报,1993b,35(7):513-518
    49.徐霞,任海云.微丝骨架动态参与花粉萌发的研究.植物资源与环境学报,2005,14(3):7-11
    50.杨弘远.水稻生殖生物学.杭州:浙江大学出版社,2005,45-52
    51.杨淑娟,张亚,叶律,宋玉霞,田惠桥.枸杞花药发育过程中钙的分布.分子细胞生物学报,2006,39(6):516-526
    52.于青,肖翊华,刘文芳.Ca~(2+)-CAM在PGMR育性转换中的作用研究.武汉大学学报(自然科学版),1992,1:123-126
    53.袁明,傅缨,王凤,黄炳权,徐是雄.蓝猪耳受精过程中中央细胞和初生胚乳细胞中微丝骨架的组装和细胞核的迁移.中国科学(C辑),2002,32(1):13-24
    54.翟中和.细胞生物学.北京:高等教育出版社,2000,318-335
    55.张妙彬,王小菁.植物细胞的形态建成.西北植物学报,2004,24(1):154-160
    56.张自国.湖北光敏核不育水稻在不同海拔条件下的育性转换规律及适应的初步分析.华中农业大学学报,1990,9:348-354
    57.赵莎,姚家玲.光敏核不育水稻花粉发育过程中的细胞学研究和PCD检测.华中农业大学学报,2007,26(3):283-288
    58.郑茂钟,杨延红,郭娟,邱义兰,谢潮添,田惠桥.烟草花药发育过程中钙动态分布的初步观察.厦门大学学报,2004,43(增刊):126-132
    59.周嫦,杨弘远,徐是雄.玉米花粉与唐菖蒲花粉原生质体中肌动蛋白微丝的荧光显微镜观察.植物学报,1990,32(9):657-662
    60.周丽华,黄光文.激光扫描共聚焦显微镜在植物学中的应用.激光生物学报,2005,14(1):76-79
    61.朱澂,李春贵,胡适宜.用非固定的荧光探针方法观察紫萼花粉管肌动蛋白纤丝的形式.植物学报,1991,33(1):1-6
    62.朱洪亮,刘向东,卢永根,徐是雄.研究植物胚囊中微管的PEG切片法的改进.华南农业大学学报,2001,22(4):52-54
    63.朱英国.水稻雄性不育生物学.武汉:武汉大学出版社,2000,158-180
    64.左明雪.聚乙二醇切片技术及其应用.北京师范大学学报(自然科学版),1996,32(2):271-273
    65.Bednara J,Willemse M T M,Van Lammeren A A M.Organization of the actin cytoskeleton during megasporogenesis in Gasteria verrucosa visualized with fluorescent-labelled phalloidin.Acta Botanica Neerlandica,1990,39:43-48
    66.Bush D S.Calcium regulation in plant cells and its role in signaling.Annu Rev Plant Physiol Plant Mol Biol,1995,46:95-122
    67.Eun S O,Lee Y.Actin filaments of guard cell are reorganized in response to light and abscisci acid.Plant Physiol,1997,115:1491-1498
    68.Funada R,Abe H,Furusawa O,Imaizumi H,Fukuzawa K,Ohtani J.The orienlation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion.Plant cell Physiol,1997,38:210-212
    69.He Q,You R L,Mwange K.Changes of the microtububle arrays during mitosis in prothallus cells of Dryopteris crassirhizoma.Acta Botanica Sinica,2003,45(2):193-199
    70.Hepler P K,Cleary A L.Cytoskeletal dynamics in living plant cells.Cell Biol.Int,1993,17:127-142
    71.Huang B Q,Sheridan W F.Female gametophyte development in maize:microtubular organization and embryo sac polarity.Plant Cell,1994,6:845-861
    72.Huang R F,Wang X C,Lou C H.Cytoskeletal inhibitors suppress the stomatal opening of Vicia faba L.induced by fusicoccin and IAA.Plant Sic,2000,156:65-71
    73.Huang R F,Wang X C.Roles of cytoplasmic microtubules in the regulation of stomatal movement.Acta Bot Sin,1997,39:253-258
    74.Jian L H,Sun L H,Li J H,Wang H,Sun D L.Ca~(2+)-homeostasis differs between Plant species with different cold-tolerance at 4℃ chilling.Acta Bot Sjn.,2000,42:358-366
    75.Joos U,Van A J,Kristen U.Microtubule are involved in maintainming cellulat polarity in pollen tubes of Nicotiana sylvestris.Protoplasma,1995,187:182-191
    76.Kapoor S,Kobayashi A,Takatsuji H.Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. Plant Cell, 2002,114: 2353-2367
    77. Ku S J, Yoon H, Suh H S, Chung Y Y. Male-sterility of thermosensitive genic male-sterile rice is with premature programmed cell death of the tapetum. Planta, 2003,217:559-565
    78. Liu N, Shan Y, Wang F P, Xu C G, Peng K M, Li X H, Zhang Q. Identification of an 85-kb fragment containing pms1, a locus for photoperiod-sensitive genic male sterility in rice. Mol Genet Genomics, 2001, 266: 271-275
    79. Liu X D, Lu Y G, Zhu H L, Xu X B, Feng J H, Xu S X. Abnormal behavior of nuclei and microtubule (MT) organizational changes during embryo sac development in the poly-Egg mutant APⅣ of rice. Acta Botanica Sinica, 2004,46(7): 829-838
    80. Lu Q, Li X H, Guo D, Xu C G, Zhang Q. Localization of pms3, a gene for photoperiod-sensitive genic male sterility, to a 28.4-kb DNA fragment. Mol Gen Genomics, 2005, 273: 507-511
    81. Lu Q, Wang F L, Li X H, Xu C G, Zhang Q F. Separation of the two-locus inheritance of photoperiod sensitive genic male sterility in rice. Euphyitca, 2001,119: 343-348
    82. Mei M H, Di X K, Xu C G. Mapping and genetic analysis of the genes for photoperiod sensitive male sterility in rice using the original mutant Nongken 58S. Crop Science, 1999, 39: 1711-1715
    83. Nick P, Heuing A, Ehmann B. Plant chaperonins: a role in microtubule dependent wall formation. Protoplasma, 2000, 211: 234-244
    84. Sanders D, Brownlee C, Harper J F. Communicating with calcium. Plant Cell, 1999, 11:691-706
    85. Sutter J U, Homann U, Thiel G. Ca~(2+)-stimulated exocytosis in maize coleoptile cells. Plant Cell, 2000, 12: 1127-1136
    86. Tang T S, Dong J B, Huang X Y, Sun F Z. Ca~(2+) oscillations induced by a cytosolic sperm protein factor are mediated by a maternal machinery that functions only once in mammalian eggs. Development, 2000,127: 1141-1150
    87. Tian H Q, Kuang A X, Musgrave M E, Russell S D. Calcium distribution in fertile and sterile anthers of a photoperiodsensitive genic male-sterile rice. Planta, 1998, 204: 183-192
    88. Tung S H, Ye X L, Zee S Y, Yeung E C. The microtubular cytoskeleton during megasporogenesis in the Nun orchid, Phaius tankervilliae. New Phytol, 2000,146: 503-513
    89. Wick S M, Hepler P K. Selective localization of intracellular Ca~(2+) with potassium antimonite. J Histochem Cytochem, 1982, 30: 1190-1204
    90. Xu S X, Liu X D, Feng J H, Lu Y G. Comparative studies on the changes of microtubule distribution and reorganization during the meiotic stages of development in normal(IR36) and a temperature/ photoperiod sensitive male sterile line (Peiai 64S) of rice. Acta Botanica Sinica, 2001, 43(3): 221-226
    91. Xu S X, Liu X D, Zhu H L, Lu Y G. Further studies on microtubule organizational changes during megagametogenesis in rice embryo sac. Acta Botanica Sinica, 2001, 43(9): 910-917
    92. Xu S X, Wang L J, Qiu Z P, Ye Y J, Yu X H. Actin visualization in living immature pollen of rice using a GFP-mouse talin fusion protein. Acta Botanica Sinica, 2002, 44(6): 642-648
    93. Xu S X, Ye X L, Wang L J, Qiu Z P, Ye Y J. F-actin Visualization in Generative and sperm cells of living pollen of rice using a GFP-mouse talin fusion protein. Acta Botanica Sinica, 2003,45(8): 949-958
    94. Xu S X, Ye X L. Changes in the pattern of organization of microtubules during microspore in rice. Acta Botanica Sinica, 1998,40(7): 585-590
    95. Ye X L, Yeung E, Xu S X, Liang C Y. Microtubule structure and male sterility in a gene-cytoplasmic male sterile line Of rice Zhen Shan 97A. Acta Botanica Sinica, 2003, 45(2): 183-192
    96. Ye X L, Yeung E, Zee S Y, Tung S H. Confocal microscopic observations on microtubular cytoskeleton changes during megasporogenesis and megagametogenesis in Phaius tankervilliae(Aiton) Bl. Acta Botanica Sinica, 1996, 38: 677-685
    97. Zee S Y, Nisa A U. Mitosis and microtubule organizational changes in isolated generative cells of Allemanda neriifolia. Sex Plant Reprod, 1991,4: 132-137
    98. Zee S Y, Ye X L. Changes in the pattern of organization of the microtubular cytoskeleton during magasporogenesis in Cymbidium sinense. Protoplasma, 1995,185: 170-177
    99. Zee S Y,Ye X L. Microtubule reorganization during pollen development of rice(Oryza sativa L.). Protoplasma, 2000,210: 188-201
    100. Zee S Y. Confocal laser scanning microscopy of microtubule organizational changes in isolated generative cells of Allemanda neriifolia during mitosis. Sex Plant Reprod, 1992,5:182-188
    101. Zhang Q F, Shen B Z, Dai X K. Using bulked extremes and recessive class to map genes for photoperiod sensitive genic male sterility in rice. Proceedings of the National Academy of Sciences of USA, 1994, 91: 8675-8679
    102. Zhou C, Yang H Y. Microtubule changes during the development of generative cells in Hippeastrum vittatum pollen. Sex Plant Reprod, 1991,4: 293-297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700