大豆新质核互作雄性不育系的选育及NJCMS3A雄性育性基因的定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂种优势利用是大幅度提高作物单产的重要途径之一,目前大豆杂种优势利用育种还处于探索阶段,虽然国内多家单位已育成数十个质核互作雄性不育系并实现了“三系”配套,而且利用质核互作雄性不育系,育成3个正式通过品种审定的大豆杂交种品种,但是在生产上尚未大规模推广应用。质核互作雄性不育系及其育性恢复是杂交种制种的基础,为此本研究以N21566和N8855为不育细胞质背景进行新质核互作雄性不育系的选育,以及NJCMS3A雄性育性基因的SSR标记定位,另外对大豆核不育突变体NJS-1H进行遗传分析与细胞学研究。主要结果如下:
     1.以国家大豆改良中心育成的细胞质雄性不育系早代材料为基础,利用相应的保持系连续回交三代,初步育成以N21566为不育细胞质背景的2个新质核互作雄性不育系NJCMS 4A(BC8F1)与NJCMS (N21566/73-935) (BC3F1);以N8855为不育细胞质背景的3个新质核互作雄性不育系NJCMS5A(BC8F1), NJCMS(N8855/88-48) (BC4F1)与NJCMS (N8855/73-935) (BC3F1)。NJCMS 4A/NJCMS 3A、NJCMS 5A/ NJCMS 1A分别构成同核异质系。这5个质核互作雄性不育系在不同年份间花药散粉性、花粉萌发率和成熟期植株表型等方面鉴定表明不育性表现稳定。
     2.利用NJCMS3A的细胞质、核供体亲本N21566和N21249配置杂交组合,(N21566/N21249) F1结荚正常可育,对(N21566/N21249)F2代、(N21566/N21249 //N21249)BC1F1代分离群体进行育性鉴定,F2和BC1F1群体的可育与不育株分离比例分别符合3:1和1:1,表明NJCMS3A雄性育性由一对基因控制,其中可育等位基因显性,而与之对应的不育等位基因隐性。选用793对大豆SSR引物对F2和BC1F1群体进行大豆质核互作雄性不育系NJCMS3A雄性育性基因定位,发现O连锁群上的3对SSR引物(Satt331,CSSR133和Satt477)与NJCMS3A雄性育性基因连锁,遗传距离分别为8.1 cM,11.4 cM,13.3 cM。
     3.通过对核雄性不育突变体NJS-1H育性分离株行中可育单株的衍生后代M8:9,M9:10与Mi10:11的育性鉴定,验证该核不育突变体雄性育性由一对基因控制。进一步细胞学研究发现,该突变体在减数分裂时染色体联会异常,出现单价体。减数分裂过程中出现染色体落后,不对称分裂,不同步分裂等现象;在四分体阶段,出现各种畸形多分体以及大量微核。在花粉粒阶段,花粉粒退化,无内容物。总之,从减数分裂到花粉粒发育至成熟期都有败育发生,但是大量败育主要发生在减数分裂阶段,四分体以后的败育可能是减数分裂染色体联会异常的结果。
Utilization of heterosis is one of the most important ways to increase crop yield quickly, however, it is still at primary stage for soybean. Up to now dozens of cytoplasmic-nuclear male-sterile (CMS) lines have been developed and many sets of "three lines" have been obtained in many different research institutions in China, and three soybean hybrid cultivars based on the "three lines" of CMS system have been released. Because of the poor outcrossing rate of the CMS lines under natural cultivation condition, it is very difficult to produce enough soybean hybrid seeds with cheap price for soybean production. The objectives of this thesis were to develop new CMS lines with different sterile cytoplasm sources and nuclear backgrounds, to reveal the genetic mode of CMS line NJCMS3A and map its male fertility gene through SSR marker technique, and to investigate the cytomorphology of nuclear male-sterile mutant NJS-1H in soybean. The main results were as follows:
     1. Some CMS progenies derived from N8855 and N21566 cytoplasm were obtained from National Center for Soybean Improvement, and five new CMS lines have been developed by three times of successive backcrossing with corresponding maintainer line. Among them, two possessed identical male-sterile cytoplasm (N21566):NJCMS 4A (BC8F1) and NJCMS (N21566/73-935) (BC3F1); the other three ones derived from the male-sterile cytoplasm (N8855):NJCMS5A (BC8F1), NJCMS(N8855/ 88-48) (BC4F1) and NJCMS (N8855/73-935) (BC3F1). On the other hand, NJCMS 4A/NJCMS 3A、NJCMS 5A/ NJCMS 1A were iso-nuclear lines with different sterile cytoplasm. The male sterility of these five CMS lines was stable among different years based on pollen dispersiveness and germination viability, as well as fertility performance at maturity stage.
     2. The cross between cytoplasmic and nuclear donor parents (N21566/N21249) of CMS line NJCMS3A was made, its F1 plants were fertile according to the pod-setting situation. The results of the fertility performance of (N21566/N21249) F2, (N21566/N21249//N21249) BC1F1 generations showed that the segregation ratio of two phenotypes, i.e. fertile and sterile plants, in the F2 and BC1F1 fit 3:1 and 1:1 expected ratios, respectively. It indicated that there might be one pair of gene for the male fertility of NJCMS3A, and the plants which had the dominant gene were fertile, vice versa, sterile. The above-mentioned F2 and BC1F1 populations were utilized to map male fertility gene of NJCMS3A with 793 SSR markers selected randomly from the soybean public genetic linkage map reported by Song et al.(2004). Three SSR markers, Satt331, CSSR133 and Satt477 in linkage group O, were found linked to the fertility gene Rf of NJCMS3A, the genetic distance were Satt331/8.1 cM, CSSR133/11.4 cM, Satt477/13.3 cM, respectively..
     3. It confirmed that the male fertility of a nuclear male-sterile mutant NJS-1H was controlled by a single recessive nuclear gene according to the fertility segregation data of the NJS-1H progenies (M8:9, M9:10 and M10:11). Nomal squash and acetocarmine dyeing observation indicated that the meiosis of pollen mother cells of NJS-1H sterile plants was highly irregular with chromosome asynapsis or desynapsis. There were univalent, chromosome lagging, unequal and asynchrony distribution among other phenomena during meiotic division. At tetrad stage, various malformed polyad with micronucleus can be observed, then, the degenerated microspores were empty, shrunken without cytoplasm at uninuclear microspore stage. The results showed that there appeared different sterility characters from initial stages of meiosis to pollen maturity, and the pollen abortion of NJS-1H occurred mainly at meiosis stage, and the disorder of chromosome synapsis at meiosis might cause the pollen degeneration after tetrad stage.
引文
1. 白羊年,陈健,喻德跃等.大豆雄性不育系和人豆资源有关开花授粉性状的研究.大豆科学,2002,21(1):18-24.
    2. 白羊年,盖钧镒.大豆三系选育及杂交制种中存在的问题及对策.作物杂志,2002,(1):4-6.
    3. 白羊年,盖钧镒.大豆质核互作雄性不育系NJCMS2A的选育及其雄性育性恢复的研究.中国农业科学,2003,36(7):740-745.
    4.白羊年.大豆质核互作雄性不育系的选育、保持系与恢复源的鉴定以及育性恢复性的遗传.南京农业大学博士学位论文.2001.
    5.陈锋,张洁夫,陈松等,甘蓝型油菜隐性核不育基因的SRAP标记.江苏农业学报,2007,23(4):283-288.
    6.丁德荣,盖钧镒,崔章林等.大豆质核互作雄性不育系NJCMS1A及其保持系NJCMS1B的选育与验证.科学通报,1998,43(17):1901-1902.
    7.丁德荣,盖钧镒.南方地区大豆雄性不育材料的传粉昆虫媒介及其传粉异交结实程度.大豆科学,2000,19(1):74-79.
    8.程勇,邹崇顺,李云昌等.甘蓝型油菜显性核雄性不育基因的AFLP标记鉴定.中国油料作物学报,2008,30(2):148-151.
    9. 戴欧和,张磊,黄志平等.杂交大豆M型三系和强优组合选育及其应用前景.安徽农学通报,2002,8(1):9-11.
    10.董建生,杨守萍,喻德跃等.大豆质核互作雄性不育系NJCMS2A的育性恢复性遗传和育性恢复基因的SSR标记.大豆科学,2008,27(2):181-185.
    11.凡军民.大豆质核互作雄性不育系的细胞形态学和细胞化学特征的研究.南京农业大学硕士学位论文.2003.
    12.范吕发,孙春昀,郭骁才等.A2型高粱细胞质雄性不育系与其保持系的胞DNA和核DNA差异.应用与环境生物学报,2001,7(3):291-296.
    13.冯纯大,张金发,刘金兰等.棉花雄性不育性研究进展.棉花学报,1998,10(4):168-177.
    14.付志远.玉米温敏核雄性不育系的生态学和遗传学研究及基因定位.河南农业大学硕士学位论文.2005.
    15.盖钧镒,胡蕴珠,陈建民等.保存大豆花粉生活力的试验.作物学报,1980,6(1):11-16.
    16.郭守鹏,刘海河,张彦萍等.西瓜核雄性不育两用系G17AB育性基因的AFLP分子标记.园艺学报,2009,36(3):427-430.
    17.何长征,萧浪涛,刘志敏等.植物激素与雄性不育关系的研究进展.中国农学通报,2002,18(3):65-69.
    18.何觉民.生态遗传雄性不育理论与两系杂交作物.长沙:湖南科学技术出版社,1997.
    19.黄青阳,何予卿,凌杏元等.3种水稻细胞质雄性不育系育性遗传的比较.中国农业科学,2000,33(3):8-13.
    20.李继耕,细胞质雄性不育性的分子机理.遗传,1992,14(2):37-40.
    21.李建平,李茂海,杨桂华等.大豆不育系传粉昆虫及传粉技术研究.吉林农业科学,2002,27(增刊):4-6.
    22.李建生.玉米雄花不育的遗传与育种.见:刘纪麟主编,玉米育种学.北京:农业出版社,2002.
    23.李磊,杨庆芳,胡亚敏等.栽培大豆双亲基因互作型不育材料的发现及其推断.安徽农业科学,1995,23(4):304-306.
    24.李小琴,万邦惠,刘纪麟等.玉米细胞质雄性不育材料WBMs的胞质分类研究.作物学报,2004,30(4):304-307.
    25.李子银,林兴华,谢岳峰等.利用分子标记定位农垦58S的光敏核不育基因.植物学报,41(7):731-735.
    26.利容千.凡种农作物雄性不育的细胞学研究.武汉大学学报(自然科学版),1978,(1):83-96.
    27.梁国华,法锦宁,杨华等.红莲型细胞质雄性不育恢复系特青和珍汕97的恢复性遗传分析,江苏农业研究,2001,22(1):7-11.
    28.梁业红,周洪生,蒋琬茹.玉米雄性不育基因(ms30)的RFLP作图.作物学报,2000,26(3):266-270.
    29.刘保中,孙其信,高庆荣等.K型小麦细胞质雄性不育系育性恢复基因SSR分子标记分析.中国农业科学,2002,35(4):354-358.
    30.刘秉华,杨丽.植物细胞核雄性不育的研究与利用.生物学通报,1992,5:15-16.
    31.刘春光,侯宁,刘根齐等.普通小麦D。型CMS系的育性基因及其遗传特性.遗传学报,2002,29(7):565-570.
    32.刘海河,侯喜林,张彦萍.西瓜核雄性不育育性基因的RAPD标记.果树学报,2004,21(5):491-493.
    33.刘曙东,何蓓如,王忠明等.K型小麦雄性不育体系育性恢复的遗传分析.西北农业学报,1992,1(4):27-30.
    34.刘忠松.不育花药的生理生化研究进展与展望.植物生理学通讯,1987,(2):16-21.
    35.刘忠松,官春云,陈社员.植物雄性不育机理的研究和应用.北京:中国农业出版社,2001.
    36.柳学余.叠氮化物诱变处理的方法、效果与应用前景.核农学通报,1987,(4):1-5.
    37.马国荣,刘佑斌,盖钧镒.大豆雄性不育突变体NJ89-1的发现与表现.大豆科学,1993,12(2):
    172-174.
    38.孟金陵,刘定富,罗鹏等.植物生殖遗传学.北京:科学出版社,1995.
    39.彭宝,赵丽梅,王曙明等.杂交豆2号选育及高产制种技术研究.吉林农业科学,2008,33(2):3-4,7.
    40.邱菊.大豆质核互作雄性不育系NJCMS1A育性恢复性的遗传和恢复基因的SSR标记及定位.南京农业大学硕士学位论文.2004.
    41.孙寰,赵丽梅,黄梅.大豆质-核互作不育系研究.科学通报,1993,38(16):1535-1536.
    42.孙寰,赵丽梅,王曙明等.大豆杂种优势利用研究进展.中国油料作物学报,2003,25(1):92-96,100.
    43.孙寰,赵丽梅,王曙明等.大豆花粉育性分类标准的研究.大豆科学,2006,25(4):339-343.
    44.孙寰.大豆杂种优势利用.见:王连铮,郭庆元主编,现代中国大豆.北京:金盾出版社,2007.
    45.孙日飞,吴飞燕,司家钢等.大白菜雄性不育两用系小孢子发生的细胞形态学研究.园艺学报,1995,22(2):153-156.
    46.汤复跃,周立人,程潇等.大豆M型细胞质雄性不育恢复基因SSR标记初步定位.2008,27(3):383-386.
    47.田长恩,张明永,梁承邺等.植物雄性不育生理生化研究新进展.生命科学,1999,S1(增刊):94-97.
    48.涂金星,郑用琏,傅廷栋.甘蓝型油菜核不育材料育性基因的RAPD标记.华中农业大学学报,
    49.1997,16(2):112-117.
    50.王芳,卫保国,李贵全等.大豆光敏雄性不育株88-428BY-827小孢子母细胞的细胞学观察.中国农业科学,2004,37(8):1110-1113.
    51.王曙明,孙寰,王跃强等.大豆杂种优势及其高优势组合选配的研究Ⅰ.F1代子粒产量的杂种优势与高优势组合选配.大豆科学,2002,21(3):161-167.
    52.王晓武,方智远,孙培田等,一个与甘蓝显性雄性不育基因连锁的RAPD标记.园艺学报,1998,25(2):197-198.
    53.王晓武,方智远,孙培田等,园艺学报,甘蓝显性雄性不育基因的延长随机引物扩增DNA(ERPAD)标记.1999,26(1):23-27.
    54.王学德,朱英国.水稻雄性不育与可育花药的mRNA差别显示和cDNA差别片段的分析.中国科学(C辑),1998,28(3):257-263.
    55.王学德.棉花细胞质雄性不育花药的淀粉酶与碳水化合物.棉花学报,1999,11(3):113-116.
    56.卫保国.大豆光温敏感型雄性不育系发现初报.作物品种资源,1991,(3):12.
    57.谢建坤,庄杰云,樊叶杨等.水稻CMS DA育性恢复基因定位及其互作分析.遗传学报,2002,29(7):565-570.
    58.谢纬武,康传红,王继志等.一种新型甜菜胞质雄性不育系的分子生物学鉴定.中国科学(C辑),1996,26(2):172-178.
    59.许占友,李磊,邱丽娟等.大豆三系的选育及恢复基因的SSR初步定位研究.中国农业科学,1999a,32(2):32-38.
    60.许占友.李磊.常汝镇等.大豆质核互作雄性不育系核不育基因的遗传分析.中国农业科学,1999b,S1(增刊):1-8.
    61.杨光圣,傅延栋,Brown G G.甘蓝型油菜细胞质雄性不育的遗传分类研究.中国农业科学,1998,31(1):27-31.
    62.杨加银,盖钧镒等.黄淮地区大豆重要亲本间产量的杂种优势、配合力及其遗传基础.作物学报,2009,35(4):620-630.
    63.杨守萍,盖钧镒,徐汉卿.大豆雄性不育突变体NJ89-1的细胞学研究.作物学报,1999,25(6):663-668.
    64.杨守萍,盖钧镒,邱家驯.大豆雄性不育突变体NJ89-1核雄性不育基因的等位性测验.作物学报,2003,9(3):372-378.
    65.余凤群,傅廷抹.甘蓝型油菜凡个雄性不育系花药发育的细胞形态学研究.武汉植物学研究,1990,8(3):209-216.
    66.余建章,荐立.沈农雄性不育大豆L-78-387等位性测验研究.沈阳农学院学报,1985,16(4):19-24.
    67.于伟,李磊,李智等.大豆质核互作不育系杂交种制种技术研究Ⅰ.不育系繁种技术研究.中国油料作物学报,2001,23(2):11-13.
    68.袁隆平.杂交水稻学.北京:中国农业出版社,2003.
    69.张磊,戴瓯和,黄志平等.M型杂交大豆研究进展与展望.安徽农业科学,2004,32(4):775-777.
    70.张磊,戴瓯和,黄志平等.杂交大豆杂优豆1号选育.大豆通报,2007,(2):14-16.
    71.张福耀,刘天堂,韦耀明等.高粱非买罗细胞质A2,A3,A4,A5,A6,9E雄性不育性研究.山西农业科学,1996,24(3):3-6.
    72.张磊,戴瓯和,黄志平等.大豆质核互作M型雄性不育系的选育及其育性表现.中国农业科学,1999a,22(4):24-32.
    73.张磊,戴瓯和,张丽亚.大豆质核互作雄性不育系W945A、W948A的选育.大豆科学,1999b,18(4):327-330.
    74.张磊,戴瓯和.大豆质核互作不育系W931A的选育研究.中国农业科学,1997,30(6):90-91.
    75.张磊,黄志平,李杰坤等.大豆雄性不育突变体Wh921及其杂种优势初步研究.中国油料作物学报,1999,21(1):20-23.
    76.张明永,梁承邺,黄毓文等.水稻细胞质雄性不育系与保持系的呼吸途径比较.植物生理学报, 1998,24(1):55-58.
    77.张大真,靖深蓉.棉花雄性不育杂交种选育的理论与实践.北京:中国农业出版社,1998.
    78.张子学,侯喜林.辣椒细胞质雄性不育与活性氧代谢的关系.西北植物学报,2005,25(4):799-802.
    79.赵丽梅,孙寰,黄梅.大豆雄性不育系的转育研究.见:东北大豆种质资源拓宽与改良.pp200-205.哈尔滨:黑龙江科技出版社,1994.
    80.赵丽梅,孙寰,黄梅.大豆细胞质雄性不育系ZA的选育和初步研究.大豆科学,1998,17(3):268-270.
    81.赵丽梅,孙寰,马春森等.大豆昆虫传粉研究初探.大豆科学,1999,18(1):73-76.
    82.赵丽梅,孙寰,于曙明等.大豆杂交种杂交豆1号选育报告.中国油料作物学报,2004,26(3):15-17.
    83.赵丽梅.大豆细胞质雄性不育的遗传和分子基础研究.东北师范大学博士学位论文,2005.
    84.赵丽梅,王玉民,孙寰等.大豆细胞质雄性不育恢复基因的SSR标记.大豆科学,2007,26(6):835-939.
    85.赵团结,杨守萍,盖钧镒.大豆显性核雄性不育突变体N7241S的发现与遗传分析.中国农业科学,2005,38(1):22-26.
    86.赵团结.大豆雄性不育性自然变异、种质发掘和选育研究.南京农业大学博士学位论文,2006.
    87.郑用链.若干玉米细胞质雄性不育类型(CMS)育性机理的研究.华中农学院学报,1982,1(1):44-47.
    88.周培疆,凌杏元,周涵韬等.细胞质雄性不育水稻线粒体能量释放的热力学和动力学特征.作物学报,2000,26(6):818-824.
    89.周元飞.水稻光温敏核雄性不育遗传及基因定位研究.浙江大学博士学位论文,2007.
    90. Arats M, Dirkse W G, Stiekema, W J, et al.1993. Transposon tagging of a male sterility gene in Arabidopsis. Nature,363:715-717.
    91. Aarts M, Hodge R, Kalantidis K, et al. The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes. The Plant Journal,1997,12(3): 615-623.
    92. Albertsen M C, Phillips R L. developmental cytology of 13 genetic male sterile loci in maize. Genome,1981,23(2):195-208.
    93. Bai Y N, Gai J Y. Development of a new cytoplasmic-nuclear male-sterility line of soybean and inheritance of its male-fertility restorabllity, Plant Breeding,2006,125(1):85-88.
    94. Bai Y N, Gai J Y. Inheritance of male fertility restoration of the cytoplasmic-nuclear male-sterile line NJCMS1A of soybean [Glycine max (L) Merr.]. Euphytica,2005,145:25-32.
    95. Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. USA,2002,99(16):10887-10892.
    96. Bione N C P, Pagliarini M S, Almeida L A. An ms2 male-sterile, female-fertile soybean sharing phenotypic expression with other ms mutants. Plant Breeding,2002,121:307-313.
    97. Cervantes-Martineza I, Xu M, Zhang L, et al. Molecular Mapping of Male-Sterility Loci ms2 and ms9 in Soybean. Crop Sci,2007,47(1):374-379.
    98. Chaudhury A M. Nuclear genes controlling male fertility. The Plnat Cell,1993,5(10):1277-1283.
    99. Datta R, Chamusco K C, Chourey P S. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiology,2002,130(4):1645-1646.
    100. Davis W H. Route to hybrid soybean production. United States Patent.1985, US 4 545 146.
    101. Davis W H. Mutant male-sterile gene of soybean. U. S. patent. No.6 046 385.2000.
    102. Ding D R, Gai J Y, Cui Z L, et al. Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica,2002,124:85-91.
    103. Elkonin L A, Kozhemyakin V V, Ishin A G. Nuclear-cytoplasmic interactions in restoration of male fertility in the'9E'and A4 CMS-inducing cytoplasms of sorghum. Theoretical and Applied Genetics, 1998,97(4):626-632.
    104. Gai J Y, Cui Z L, Ji D F, et al. A report on the nuclear cytoplasmic male sterility from a cross between two soybean cultivars. Soybean Genetics Newsletter,1995,22:55-58.
    105. Golubovskaya I N, Grebennikova Z K, Auger D L, et al. The maize desynaptic 1 mutation disrupts meiotic chromosome synapsis. Developmental Genetics.1997,21(2):146-159.
    106. Gottschalk W, Kaul M L H. The genetic control of microsporogenesis in higher plants. Nucleus, 1974,17(3):133-166.
    107. Gottschalk W, Kaul M L H. Asynapsis and desynapsis in flowering plants. Ⅰ. Asynapsis. Nucleus, 1980a,23:1-15.
    108. Gottschalk W, Kaul M L H. Asynapsis and desynapsis in flowering plants. Ⅱ. Desynapsis. Nucleus, 1980b,23:97-120.
    109. Guo D P, Sun Y Z, Chen Z J. Involvement of polyamines in cytoplasmic male sterility of stem mustard (Brassica juncea var. tsatsai). Plant Growth Regulation,2003,41(1):33-40.
    110. Guo Z B, Lin J X. Genetic engineering of male sterile and fertility restorer in soybean, Soybean Genetics Newsletter,1997,24:50.
    111. Hong C J, Etoh T, Landry B, et al. RAPD Markers Related to Pollen Fertility in Garlic (Allium sativum L.). Breeding Science,1997,47(4):359-362.
    112. Jin W, Palmer R G, Homer H T, et al. Molecular Mapping of a Male-Sterile Gene in Soybean. Crop Science,1998,38(6):1681-1685.
    113. Kamps T L and Chase C D. RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theoretical and Applied Genetics,1997,95(4):525-531.
    114. Kaul M L H, Murthy T G K. Mutant genes affecting higher plant meiosis. Theoretical and Applied Genetics,1985,70(5):449-466.
    115. Kaul M L H. Male sterility in higher plants. Berlin Heidelberg:Springer-Verlag,1988.
    116. Kemble R J, Bedbrook J B. Low molecular weight circular and linear DNA in mitochondria from normal and male-sterile Zea mays cytoplasm. Nature,1980,284(5756):565-566.
    117. Komori T, Ohta S, Murai N, et al. Map-based cloning of a fertility restorer gene Rf-1, in rice (Oryza sativa L.). The Plant Journal,2004,37:315-325.
    118. Landgren M, Zetterstrand M, Sundberg E, et al. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3' of the atp6 gene and a 32kDa protein. Plant Molecular Biology,1996,32(5):879-890.
    119. Laser K D, Lersten N R. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. The Botanical Review,1972,38(3):425-454.
    120. Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmic male sterility in Gossypium hirsutum L. Theoretical and Applied Genetics,2003,106(3):461-469.
    121. Liu X Q, Xu X, Tan Y P, et al. Inheritance and molecular mapping of two fertility-restoring loci for Honglian gametophytic cytoplasmic male sterility in rice (Oryza sativa L.). Molecular Genetics and Genomics,2004,271(5):586-594.
    122. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregate analysis:A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA,1991,88(21):9828-9832.
    123. Mφller I M. A more general mechanism of cytoplasmic male fertility? Trends in Plant Science, 2001,6(12):560.
    124. Olsen O, Wang X Z, Wettstein D V. Sodium azide mutagenesis: Preferential generation of A·T-> G·C transitions in the barley Ant18 gene. Proc. Natl. Acad. Sci. USA,1993,90(17):8043-8047.
    125. Palmer R G, Gai J, Sun H, et al. Production and evaluation of hybrid soybean. Plant Breeding Reviews,2001,21:263-307.
    126. Palmer R G, Pfeiffer T W, Buss G R, et al. Qualitative genetics. In:Boerma H R, Specht J E, ed. Soybeans: Improvement, Production, and Uses (3rd ed.). USA:American Society of Agronomy. Inc., 2004:171-174.
    127. Peirson B N, Owen H A, Feldmann K A, et al. Characterization of three male-sterile mutants of Arabidopsis thaliana exhibiting alterations in meiosis. Sexual Plant Reproduction,1996,9(1):1-16.
    128. Pring D R, Tang H V, Howad W, et al, A unique two-gene gametophytic male sterility system in sorghum involving a possible role ofRNA editing in fertility restoration. Journal of Heredity,1999, 90(3):386-393.
    129. Regan S M, Moffatt B A. Cytochemical analysis of pollen development in wild-type arabidopsis and a male-sterile mutant. The Plant Cell,1990,12(9):877-889.
    130. Sarria R, Lyznik A, Vallejos C E, et al. A cytoplasmic male sterility-associated mitochondrial peptide in common bean is post-translationally regulated. The Plant Cell,10:1217-1228.
    131. Sisco P H, Gracen V E, Everett H L, and et al. Fertility restoration and mitochondrial nucleic acids distinguish at least five subgroups among cms-S cytoplasms of maize (Zea mays L.). Theoretical and Applied Genetics,1985,71(1):5-15.
    132. Small I D, Peeters N. The PPR motif-a TPR-related motif prevalent in plant organellar proteins. Trends in Biochemical Sciences,2000,25(2):46-47.
    133. Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics,2004,109(1):122-128.
    134. Sun H, Zhao L M, Huang M. Studies on cytoplasmic-nuclear male sterile soybean. Chinese Science Bulletin,1994,39(2):175-176.
    135. Taylor L, Jorgensen P R. Conditional male fertility in chalcone synthase-deficient petunia. Journal of Heredity,1992; 83:11-17.
    136. Touzet P, Budar F. Unveiling the molecular anns race between two conflicting genomes in cytoplasmic male sterility? Trends in Plant Science,2004,9(12):568-570.
    137. Trimnell M R, Fox, T W, Albertsen M C. New chromosome 10S male-sterile mutant:ms29. Maize Genetics Cooperation Newsletter,1998a,72:37-38.
    138. Trimnell M R, Fox T W, Albertsen M C. New chromosome 2L male-sterile mutants ms30 and ms31. Maize Genetics Cooperation Newsletter,1998b,72:38.
    139. Van Ooijen J W, Voorrips R E. JoinMap(?) 3.0:Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, the Netherlands,2001.
    140. Vidakovic M B, Vancetovic J. A new seareh for restorer cytoplasm:the restorer cytoplasm for the gene ms10 most probably does not exist in maize. Joumal of Heredity,2002,93(6):444-447.
    141. Wang B, Xu W W, Wang J Z. Tagging and mapping the thermo-sensitive genic male-sterile gene in rice (Oryza sativa L.) with molecular markers. Theoretical and Applied Genetics, Theor Appl Genet, 1995,91(6-7):1111-1114.
    142. Wang Z, Zou Y, Zhang Q, et al. Cytoplasmic male mterility of rice with Boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell,2006.18:676-687.
    143. Wei Baoguo. Photoperiod sensitivity of a photoperiod sensitive male sterile line in soybean. In: Proceedings of the International Symposium on Two Line System Heterosis Breeding in Crops. pp. 114-120. Changsha, China.1997.
    144. Wise R P, Schnable P S. Mitochondrial transcript processing and restoration of male fertility in T-cytoplasm maize. Journal of Heredity,1999,90(3):380-385.
    145. Xia Z, Tsubokura Y, Hoshi M, et al. An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using A single F2 population. DNA Research,2007,14(6):257-69.
    146. Yamaguchi Y, Ikeda R, Hirasawa H, et al. Linkage Analysis of Thermosensitive Genic Male Sterility Gene, tms-2 in Rice (Oryza sativa L.). Breeding Science,1997,47(4):371-373.
    147. Yang M, Hu Y, Lodhi M, et al. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc. Natl. Acad. Sci. USA,1999,96(20):11416-11421.
    148. Yang S P, Duan M P, Meng Q C, et al. Inheritance and gene tagging of male fertility of cytoplasmic-nuclear male-sterile line NJCMS1A in soybean. Plant Breeding,2007,126:302-305.
    149. Yesodi V, Izhar S, Hauschner H, et al. Homologous recombination involving cox2 is responsible for a mutation in the CMS-specific mitochondrial locus of Petunia. Molecular and General Genetics, 1997,255(1):106-114.
    150. Zhang J F and Stewart J M. Inheritance and genetic relationships of the D8 and D2-2 restorer genes for cotton cytoplasmic male sterility. Crop Science,2001,41(2):289-294.
    151. Zhao T J, Gai J Y. Discovery of new male-sterile cytoplasm sources and development of a new cytoplasmic-nuclear male-sterile line NJCMS3A in soybean. Euphytica,2006,152(3):387-396.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700