N-异丙基丙烯酰胺RAFT光聚合动力学研究及其在水凝胶的光合成应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能型(环境响应性)水凝胶,是对外界刺激如温度、pH值、溶剂组成、光、电场、化学物质等能产生敏感响应行为的一类水凝胶。N-异丙基丙烯酰胺(NIPAM)是一类及其重要的非离子型丙烯酰胺类单体。聚N-异丙基丙烯酰胺(PNIPAM)的低临界溶解温度接近人的体温(LCST = 33℃),它在药物控释方面具有良好的应用前景。可逆加成裂解链转移聚合(RAFT)是可控/“活性”自由基聚合的一种,适用于单体的范围广和反应条件温和,被广泛用于制备复杂结构的聚合物。本论文主要研究了NIPAM自由基光聚合动力学特征,并研究了PNIPAM水凝胶的光活化RAFT合成及其对温度响应性行为。所得结论对于不同性能的智能型水凝胶的RAFT制备方法提供了重要的理论意义和参考价值。主要工作和结论如下:
     一、在室温下,以S-正十二烷基-S'-(2-甲基-2-丙酸基)三硫代碳酸酯(DDMAT)为链转移剂、2,4,6-三甲基苯甲酰基二苯基氧化膦(TPO)为引发剂,研究了NIPAM的光聚合动力学。研究结果表明,光引发剂的加入可以缩短聚合反应的引发期、显著加快聚合反应速度。在链转移剂与引发剂的摩尔比为15 : 1和引发剂浓度为0.5 wt%时,三硫代碳酸酯DDMAT调控的NIPAM室温RAFT聚合是一典型的“活性”/可控聚合,聚合反应呈现准一级反应动力学特征,聚合物分子量随转化率线性增加,反应后期分子量分布较窄(PDI = 1.30~1.45)。聚合反应所得均聚物具有优异的扩链性能。
     二、PNIPAM水凝胶的退溶胀速率慢,但在某些领域如化学阀、人工肌肉,往往需要快速退溶胀的性能。为此,本论文采用RAFT光合成方法制备了一系列的水凝胶:
     1、分别在高温(50℃)和室温(25℃)下,以DDMAT为链转移剂,进行了NIPAM和N,N’-亚甲基双丙烯酰胺(BIS)的RAFT光共聚合研究,制备了不同结构的PNIPAM功能性水凝胶。研究结果表明,随着DDMAT浓度的增加,失水率明显增加,且高温下(50℃)法制得的PNIPAM凝胶具有更高的失水率。并通过对功能性水凝胶的扩链制备了PNIPAM-g-PNIPAM梳型水凝胶,扩链后的水凝胶退溶胀速率更快。
     2、用RAFT光合成方法制备了PNIPAM大分子链转移剂,用于制备梳型水凝胶(PNIPAM-g-PNIPAM)。水凝胶网络接枝链的链长和含量影响着水凝胶的溶胀性能和去溶胀性能。根据RAFT光聚合机理,利用水凝胶网络中三硫代碳酸酯基团的活性,对梳型PNIPAM-g-PNIPAM水凝胶进行了扩链,合成了更快速退溶胀的梳型水凝胶。
     3、聚N,N’-二甲基丙烯酰胺(PDMAA)具有很好的亲水性和生物相容性。本论文利用RAFT光合成方法制备了梳型/多孔PNIPAM-g-PDMAA水凝胶。PDMAA接枝链的存在提高了无孔水凝胶的溶胀比和退溶胀速率,LCST增高;孔结构能大幅度的提高无接枝链水凝胶的溶胀比和退溶胀速率,但没有改变水凝胶的LCST;接枝链的存在并没有提高多孔水凝胶的溶胀比,但提高了LCST,且失水率较低。
Responsive hydrogels are sensitive to the external stimulus such as temperature, pH, composition of solution, light, ionic strength, magnetic field, electric field and some biochemical molecules. N-Isopropylacrylamide (NIPAM) is an extremely important nonionic acrylamide monomer. Poly(NIPAM) (PNIPAM) possesses a readily accessible lower critical solution temperature (LCST) of 32℃in water, which is close to human body temperature (37℃) and as such has, for example, been evaluated in drug delivery applications. Reversible addition fragmentation chain transfer (RAFT) polymerization has proven itself to be an extremely versatile controlled/“living”free radical polymerization technique (CLRP). It has been shown to be applicable to the controlled polymerization of a wide-range of monomers, under a wide range of conditions to yield well-defined polymers or copolymers with both low polydispersity and functionalized end group as well as polymers with complex architectures. In this paper, kinetics of RAFT photopolymerization of NIPAM was studied. Using this technique of photo-induced RAFT polymerization, several hydrogels which include PNIPAM hydrogels, PNIPAM-g-PNIPAM and PNIPAM-g-PDMAA comb hydrogels and PNIPAM-g-PDMAA comb/porous hydrogels have been prepared. Their temperature behaviors, swelling ratio and dewelling rate were studied. Obtained conclusions were worth in academic and industrial to synthesize and characterize intelligent hydrogels. The followings are main conclusions of our work:
     1. In this paper, photo-induced RAFT polymerization of NIPAM were studied in the presence of S-dodecyl-S'-(α,α'-dimethyl-α''-acetic acid) trithiocarbonate (DDMAT) as a RAFT agent and (2,4,6-trimethylbenzoyl) diphenylphosphine oxide (TPO) as a photoinitiator, at room temperature. The variations factors such as the ratio of chain transfer agent and initiator ([CTA]/[I]) were discussed in the paper, which effects on the monomer conversions and molecular weights of the polymers. Additions of TPO photoinitiator remarkably suppress retardation effect in RAFT process, thus shorten initialization period and accelerate overall RAFT process. The experimental results showed that when [CTA]/[I] was 15:1, [I]/[monomer] was 0.5 wt%, The kinetic characteristic of the living polymerization was evidenced by narrow molecular weight distribution (PDI = 1.30~1.45) , linear increase of molecular weight with increasing conversion, well-controlled molecular weight, and first-order polymerization kinetics. The NIPAM homopolymers prepared by RAFT photopolymerization (PNIPAM-DDMAT) had ability of chains extension.
     2. The conventional Poly(N-isopylacrylamide) hydrogels take more than several hours to days for completion of volume shrinking, which is the main drawback for their practical usage, such as on–off valves and artificial muscles, and was an important topic to be solved. For resolving this problem, herein, several gels were prepared by reversible addition-fragmentation chain transfer (RAFT) photopolymerization.
     a. Functional poly(N-isopylacrylamide) hydrogels have been prepared by the technique of photo-induced RAFT polymerization of NIPAM in the presence of DDMAT as a chain transfer agent and N,N’-methylenebisacylamide (BIS) as a cross-linker at different temperatures (50℃and 25℃) respectively. The hydrogels (RAFT gels) synthesized at the same temperatures showed accelerating to shrinking kinetics compared with the hydrogels synthesized by conventional photopolymerization. It could be attributed to the presence of dangling chains mainly caused by DDMAT. The RAFT gels synthesized at 50℃showed more excellent water releasing performance than one synthesized at 25℃. According to the mechanism of RAFT photopolymerization, re-grafting of the hydrogels were studied. It indicated more excellent water releasing performance than before.
     b. The NIPAM homopolymers (PNIPAM-DDMAT) were prepared by RAFT photopolymerization first. Then PNIPAM-g-PNIPAM comb hydrogels were prepared by photopolymerization in the presence of PNIPAM-DDMAT as a macro-CTA and BIS as a cross-linker. The results showed that the grafting chain amount and length had a significant influence on the deswelling kinetics and swelling ratio of gels. After chain extention of PNIPAM-g-PNIPAM comb hydrogels, gels indicated more excellent water releasing performance than before.
     c.Poly(N,N`-dimethylacrylamide) (PDMAA) is a kind of polymer with excellent biocompatibility. Firstly, the macro-CTA of PDMAA (PDMAA-DDMAT) were prepared by photo-induced RAFT polymerization. Then PNIPAM-g-PDMAA comb/porous hydrogels were prepared by RAFT photopolymerization in the presence of PDMAA-DDMAT, BIS as a cross-linker and poly(ethylene glycol)(PEG) as a pore-forming agent at 20℃. The grafting chain amount had a significant influence on the gel rapid LCST (lower critical solution temperature), deswelling kinetics and swelling ratio. The formation of a porous structure has been shown to effectively enhance the deswelling rate of PNIPAM hydrogels. But it has no effect on the swelling ratio and deswelling rate of the comb hydrogels.
引文
[1] Matyjaszewski K., Spanswickt J.. Controlled/living Radical Polymerization. aterialsToday(March 2005), 26
    [2] Georges M. K., Veregin R. P. N., Kazmaier P. M.. Narrow Molecular Weight Resins by a Free Radical Polymerization Process. Macromolecules, 1993, 26(11): 2987
    [3] Hawker C. J., Bosman A. W., Harth E.. New Polymer Sythesis by Nitroxide Mediated Living Radical Polymerization. Chem. Rev., 2001, 101(12): 3661
    [4] Wayland B. B., Zhang X. X.. Rhodium(Ⅱ) Porphyrln Bimetalloradical Complexes: Preaparation and Enhanced Reactivity with CH4 and H2. J. Am. Chem. Soc., 1994, 116(17): 7943
    [5] Kato M., Kamigaito M., et al. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/dichlortris-(triphenylphosphine)ruthedum(II)/ Methylaluminum Bis(2, 6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical polymerization. Macromoleculaes, 1995, 28(5): 1721
    [6] Wang J. S., Matyjaszewski K.. Control1ed"Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes, J. Am. Chem. Soc. 1995, 117(20): 5614
    [7] Chiefari J., et al. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: thhe RAFT Process. Macromolecules, 1998, 31(16): 5559
    [8] Destarac M., Charmot D., Franck X., Zard S. Z.. Dithiocarbamates as Universal Reversible Addition-Fragmentation Chain Transfer Agents. Macromol. Rapid. Comm., 2000, 21(15): 1035
    [9] Matyjaszewski K., Gaynor S., Wang J. S.. Controlled Radical Polymerizations: The Use of Alkyl Iodides in Degenerative Transfer.. Macromolecules 1995, 28(6): 2093
    [10] Moad C., Moad C. L.. Use of Chain Length Distributions in Determining Chain Transfer Constants and Termination Mechanism, Macromolecules 1996, 29(24): 7717
    [11] Fischer H.. the Persistent Radical Effect: a Principle for Selective Radical Reactions and Living Radical Polymerizations, Chem. Rev., 2001, 101(12): 3581
    [12] Greszta D., Mardare D.. Matyjaszewski K..“Living”Radical Polymerization. 1. Possibilities and Limitations, Macromolecules 1994, 27(3), 638
    [13] Goto A., Fukuda T.. Kinetics of Living Radical Polymerization. Prog. Polym. Sci., 2004, 29(4): 329
    [14] Hawker C. J. , Bosman A. W. , Harth E.. New Polymer Sythesis by Nitroxide Mediated Living Radical Polymerization. Chem. Rev. , 2001, 101(12): 3661
    [15] Liu X. X., Zhang X. X., Zhang X. H.. Photoinduced Controlled/living Free-radical Polymerization of 4-Methacryloyl-1,2,2,6,6-Pentamethyl Piperidinayl, J. Polym. Sci. PartA: Polym. Chem., 2004, 42: 2659
    [16]刘晓暄,任亚娥,张婷,韩梅,吴光国. HTEMPO和TMPD调控下MMA可控/活性光聚合研究.高等学校化学学报, 2006, 27(1): 192
    [17] Liu Xiao-Xuan, Han Mei, Duan Lun-Yong et al.. Controlled Radical Photopolymerization of n-Butyl Methacrylate in Bulk Mediated by HTEMPO. Chin. Chem. Lett., 2006, 17(8): 1109
    [18]刘晓暄,荆燕妮,白迎坤,吴光国.甲基丙烯酸甲酯的可控/“活性”细乳液光聚合研究.高等学校化学学报, 2007, 28(4): 774
    [19] Mayadunne R.T.A.; Rizzardo e; Chiefari J.; Chong Y.K.; Moad G; Thang S.H.. Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) using dithiocarbamates as Chain Transfer Agents. Macromolecules, 1999, 32: 6977
    [20] McCormick, C. L., Lowe, A. B. Aqueous RAFT Polymerization: Recent Developments in Synthesis of Functional Water-Soluble (Co)polymers with Controlled Structures. Acc. Chem. Res., 2004, 37: 312
    [21] Kirkland, S. E., Hensarling, R. M., McConaughy, S. D., Guo, Y., Jarrett, W. L., McCormick, C. L. Thermoreversible Hydrogels from RAFT-Synthesized BAB Triblock Copolymers: Steps toward Biomimetic Matrices for Tissue Regeneration. Biomacromolecules, 2008, 9(2): 481
    [22] Schilli, C. M., Zhang, M., Rizzardo, E., Thang, S. H., Chong, Y. K., Edwards, K., Karlsson, G., Muller, A. H. E. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid). Macromolecules, 2004, 37: 7861
    [23] Zheng G.H., Pan C.Y.. Preparation of star polymers based on polystyrene or polystyrene-b-N-isopropyl acrylamide) and divinylbenzene via reversible addition-fragmentation chain transfer polymerization. Polymer, 2005, 46: 2802
    [24] Hong, C.Y., Pan, C.Y. Direct Synthesis of Biotinylated Stimuli-Responsive Polymer and Diblock Copolymer by RAFT Polymerization Using Biotinylated Trithiocarbonate as RAFT Agent. Macromolecules, 2006, 39(10): 3517
    [25] John F. Quinn, Leonie Barner, Christopher Barner-Kowollik, Ezio Rizzardo, Thomas P. Davis, Reversible Addition-Fragmentation Chain Transfer Polymerization Initiated with Ultraviolet Radiatio., Macromolecules, 2002, 35: 7620
    [26] Lican, Lu; Nianfa, Yang;Yuanli, Cai.Well-controlled Reversible Addition–Fragmentation Chain Transfer Radical Polymerisation under Ultraviolet Radiation at Ambient Temperature. Chem. Commun. 2005, 5287
    [27] Lican Lu ,Haijia Zhang ,Nianfa Yang ,Yuanli Cai. Toward Rapid and Well-controlled Ambient Temperature RAFT Polymerization under UV-Vis Radiation: Effect of Radiation Ware Rage, Macromolecule, 2006, 39: 3770
    [28]郑俊民.药用高分子材料学.北京:中国医药科技出版社, 2000: 60-63
    [29]戴亚妮,李平,王爱勤.智能高分子材料在智能给药系统中的应用.化学进展, 2007, 19(2-3): 362
    [30] Knuth et al.,亲水凝胶控释给药系统,国外医学药学分册, 1994, 21(5): 297
    [31]李贤真等.高分子水凝胶材料研究进展,功能材料, 2003, 34(4): 382
    [32]徐露,曾庆孝,张立彦.“智能”凝胶的合成及其在生物领域的应用.食品与机械, 2005, 22(4): 76
    [33]易菊珍,李海萍,马玉倩,潘玉萍,张黎明.腐植酸钠/聚N-异丙基丙烯酰胺水凝胶的合成及脱色性能研究.中山大学学报(自然科学版), 2008, 47(1):59
    [34]郁杨,尹静波,罗坤,谢勇涛,颜世峰,马嘉,陈学思.温度和pH双敏性PVME/CMCS水凝胶辐射交联制备及其性能.高等学校化学学报, 2008, 29(2): 409
    [35]刘崎,杨小敏,付海英,朱智勇.氮-异丙基丙烯酰胺温敏凝胶的辐射合成与性能表征.核技术, 2007, 30(8): 652
    [36]杨小敏,刘崎,付海英,姚思德,朱智勇. PVA/PVP/ws-chitosan水凝胶伤口敷料的辐射制备及性能表征.核技术, 2007, 30(4): 356.
    [37]刘晓暄,王洪波,陈兵,荆燕妮,吴光国.光化学合成快速响应聚(N,N-二甲基丙烯酰胺-co-N-异丙基丙烯酰胺)水凝胶.高分子学报, 2007, (9): 850
    [38]陈延锋,伊敏.含甲基丙烯酸-N,N-二甲氨基乙酯水凝胶的紫外辐射合成及其性质研究.高分子学报, 2001, (2): 215
    [39]杨晓莉,朱红军,金华.高亲水性有色隐形眼镜的紫外合成与表征.南京工业大学学报, 2006, 28(2): 16
    [40]黄瑞华,陈国华,孙红伟,高从.六亚甲基二异氰酸酯(HDI)交联壳聚糖与三甲基-烯氯化铵接枝共聚物/聚丙烯腈复合纳滤膜的研究.功能材料, 2007, 38(2): 308
    [41] Lokhande H T, Varadarajan P V. A new approach in the production of non-wood-based cellullosic superabsorbents through the pan grafting method. Bioresource Technol, 1993, 45(3): 161
    [42] Kiatkamjornwong S, Chomsaksakul W, Sonsuk M. Radiation modification of water absorption of cassava starch by acrylic acid Pacrylamide. Radiat Phys Chem, 2000, 59(4): 413
    [43] Aladesulu I, Grabam N B, Richards R W. Interstitial polymers based on a polyurethane network: melting points and fractional crystallinities. Polymer, 1984, 24(3): 279
    [44]翟茂林,哈鸿飞.水凝胶的合成、性质及应用.大学化学, 2001, 16(5) : 23
    [45] T okano, A Kikuchi, Y Sakurai et al. Temperature re-sponsive poly(N-isopropyl–acrylamide) as a modulatorfor alteration of hydrophilic/ hydrophobic surface. J Controlled Release, 1995, 36(1): 125
    [46] H Cicek, A Tuncel. Immobilization of chymot rypsin in thermally reversible isopropylacrylamide-hydroxyethyl- methacrylate copolymer gel. J Polym Sci, Part A: Polym Chem, 1998, 36(4): 543
    [47] R Fátima, B Jo. Ao, C Miguel. Kinetics of water absorbency in AA/AMPS copolymers: applications of a diffusion-re- laxation model. Polymer, 2002, 43: 63
    [48] H M Crowther, B Vincent . Swelling behavior of poly-N-isopropylacrylamide microgel particles in alcoholic solutions, Colloid Polym Sci, 1998, 276(1): 46
    [49] Xiaomei Ma, Xiaobin Huang, Lu Zhu, Xi'an Zhao, Xiaozhen Tang. Influence of ethyl methacrylate content on the volume-phase transition of temperature-sensitive poly[(N-isopropylacrylamide)-co-(ethyl methacrylate)] microgels. Polymer International, 2005, 54(1):83
    [50] A S E I Ejmi, MB Huglin. Thermoreversible behaviour in water of chemically crosslinked poly(2-methoxyethylacry-late-co-N,N-dimethylacryl amide). Polymer International, 1997, 44(3): 277
    [51] P.Hazot, J P Chapel, C Pichot et al. Preparation of poly(N-ethyl meth acrylamide) particles via an emulsion/ precipitation process: The role of the crosslinker. J Polym .Sci, Part A: Polym. Chem. 2002, 40(11):1808
    [52] B R Saunders, H M Crowther, B Vincent . Poly [(methylmethacrylate)-co- (methacrylic acid ) ] microgel particles: swelling control using pH, cononsolvency and osmotic de-swelling. Macromolecules, 1997, 30(3): 482
    [53] Ingo Berndt, Jan Skov Pedersen, Walter Richtering. Temperature-Sensitive Core-Shell Microgel Particles with Dense Shell. Angewandte Chemie, 2006, 118(11): 1769
    [54] Azuya S ,Takeshi S ,Yuko T ,et al. Thermo-responsive release from interpenetrating porous silica-poly(N-iso-propylacrylamide) hybrid gels. J Controlled Release, 2001, 75(1): 183
    [55]陈兆伟,陈明清.温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成与表征.功能高分子学报, 2004(1): 46
    [56] X Z Zhang, R X Zhuo. Preparation of fast responsive, thermally sensitive poly (N-isopropylacrylamide)gel. European Polymer Journal, 2000, 36(8): 2301
    [57]刘晓华,王晓工,刘德山.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅱ,热力学行为及水的状态研究.高分子学报, 2002(3): 3542357
    [58] X Z Zhang, Ren-Xi Zhuo. Synthesis and properties of thermosensitive poly (N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response. Materials Letters, 2002, 52(1):5
    [59] R Yoshida, K Uchida, Y Kaneko et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature, 1995, 374: 240
    [60] H K J u, S Y Kim, YM Lee. pH/temperature-responsivebehaviors of semi-IPN and comb-type graft hydrogels composed of alginate and poly(N-isopropylacrylamide). Polymer, 2001, 42: 6851
    [61] B Jeong, Y H Bae, S W Kim. Thermoreversible gelationof PEG-PL GA-PEG triblock copolymer aqueous solu-tions. Macromolecules, 1999 , 32(21): 7064
    [62] J M Bezemer , R Radersma , D W Grijipma et al. Zero-or-der release of lysozyme f rom poly(ethylene glycol)/ poly(butylene terephthalate) matrices. J Controlled Release, 2000, 64: 179
    [63] H H Lin, Y L Cheng. In-situ thermoreversible gelation of block and star copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) of varying architectture. Macromolecuels, 2001, 34(11): 3710
    [64] R J H Stenekes, H Talsma, W E Hennink. Formation of dextran hydrogels by crystallization. Biomaterials, 2001, 22: 1891
    [65] A M Mathur, K F Hammonds, J Klier et al. Equilibrium swelling of poly(methacrylic acid-g-ethylene glycol) hydrogels: Effect of swelling medium and synthesis conditions. J Controlled Release, 1998, 54: 177
    [66] A Tang, C Wang, R J Stewart et al. The coiled coils in the design of protein-based constructs: hybrid hydrogels and epitope displays. J Controlled Release, 2001, 72: 57
    [67]赵三平,冯增国.基于光聚合星型PEG-b-PCL大分子单体可生物降解水凝胶的合成及表征,高分子学报, 2003(2): 201
    [68] Lynch, I., Sjostrom, J., Piculell, L. Reswelling of Polyelectrolyte Hydrogels by Oppositely Charged Surfactants. J. Phys. Chem. B., 2005, 109(9): 4258
    [69] N Isogai , T Narita, L Chen et al.Polymer-surfactant interactions: their cooperativity and stoichiometry.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 147: 189
    [70] T Miyazaki, K Yamaoka, T Kaneko et al. Hydrogels with the ordered structures. Science and Technology of Advanced Materials, 2000(1): 201-
    [71] M Takashi, Y Kanji, J P Gong et al. Hydrogels with Crystalline or Liquid Crystalline Structure. Macromol. Rapid Commun,2002, 23: 447
    [72] K Neeraj, N V Ravikumar Majeti, A J Domb. Biodegradable block copolymers. Advanced Drag Delivery Reviews, 2001, 53(1): 23
    [73]唐群委,孙慧,敖海勇,林建明,吴季怀.高压缩强度聚丙烯酸盐/聚硅氧烷互穿网络水凝胶的制备.功能材料, 2007, 38(12): 1993
    [74]卓仁禧,张先正.温度及pH敏感聚(丙烯酸)/聚(N-异丙基丙烯酰胺)互穿聚合物网络水凝胶的合成及性能研究.高分子学报, 1998, (1): 39
    [1] Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, Mayadunne R A, Meijs G F, Moad C L, Moad G, Rizzardo E, Thang S H. Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: thhe RAFT Process, Macromolecules 1998, 31(16): 5559
    [2] Mayadunne R.T.A.; Rizzardo e; Chiefari J.; Chong Y.K.; Moad G; Thang S.H.. Living Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization) using dithiocarbamates as Chain Transfer Agents, Macromolecules, 1999, 32, 6977Ganachaud F, Monteiro M J, Gilbert R G, Dourges M A, Thang S H, Rizzardo E. Macromolecules. 2000, 33: 6738
    [3] Goto A., Sato K., Tsujii Y., Fukuda T., Moad G., Rizzardo E., Thang S. H.. Mechanism and Kinetics of RAFT-Based Living Radical Polymerizations of Styrene and Methyl Methacrylate. Macromolecules, 2001, 34: 402
    [4] Alberti A., Benaglia M., Laus M., Macciantelli D., Sparnacci K. Direct ESR Detection of Free Radicals in the RAFT Polymerization of Styrene. Macromolecules, 2003, 36: 736
    [5] Ganachaud F., Monteiro M. J., Gilbert R. G., Dourges M. A., Thang S. H., Rizzardo E.. Molecular Weight Characterization of Poly(N-isopropylacrylamide) Prepared by Living Free-Radical Polymerization. Macromolecules, 2000, 33: 6738
    [6] Schilli C., Lanzendorfer M. G.., Muller A. H. E.. Benzyl and Cumyl Dithiocarbamates as Chain Transfer Agents in the RAFT Polymerization of N-Isopropylacrylamide. In Situ FT-NIR and MALDI-TOF MS Investigation. Macromolecules, 2002, 35: 6819
    [7] Ray B., Isobe Y., Morioka K., Habaue S., Okamoto Y., Kamigaito M., Sawamoto M.. Synthesis of Isotactic Poly(N-isopropylacrylamide) by RAFT Polymerization in the Presence of Lewis Acid. Macromolecules, 2003, 36: 543
    [8] Ray B., Isobe Y., Matsumoto K., Habaue S., Okamoto Y., Kamigaito M., Sawamoto M.. RAFT Polymerization of N-Isopropylacrylamide in the Absence and Presence of Y(OTf)3: Simultaneous Control of Molecular Weight and Tacticity. Macromolecules, 2004, 37: 1702
    [9] Convertine A. J., Ayres N., Scales C. W., Lowe A. B., McCormick C. L.. Facile, Controlled, Room-Temperature RAFT Polymerization of N-Isopropylacrylamide. Biomacromolecules, 2004, 5: 1177
    [10] John F. Quinn, Leonie Barner, Christopher Barner-Kowollik, Ezio Rizzardo, Thomas P. Davis. Reversible Addition-Fragmentation Chain Transfer Polymerization Initiated with Ultraviolet Radiation, Macromolecules, 2002, 35: 7620
    [11] You Y. Z., Hong C. Y., Bai R. K., Pan C.Y., Wang J.. Photo-Initiated Living free Radical Polymerization in the Presence of Dibenzyl Trithiocarbonate. Macromol. Chem. Phys. 2002, 203: 477
    [12] Lican, Lu, Nianfa, Yang, Yuanli Cai. Well-controlled Reversible Addition–Fragmentation Chain Transfer Radical Polymerisation under Ultraviolet Radiation at Ambient Temperature. Chem. Commun., 2005, 5287
    [13] Lican Lu, Haijia Zhang, Nianfa Yang,Yuanli Cai. Toward Rapid and Well-controlled Ambient Temperature RAFT Polymerization under UV-Vis Radiation: Effect of Radiation Ware Rage. Macromolecule, 2006, 39: 3770
    [14]卢礼灿.紫外-可见光活化室温可逆断裂链转移自由基聚合.湘潭大学博士论文, 2006, 89-91
    [1]郑俊民.药用高分子材料学[M] ,北京:中国医药科技出版社, 2000: 60
    [2] Knuth et al.,亲水凝胶控释给药系统[J],国外医学药学分册, 1994, 21(5): 297
    [3] Guangguo Wu, Yuanpei Li, Mei Han, Xiaoxuan Liu. Novel Thermo-sensitive Membranes Prepared by Rapid Bulk Photo-grafting Polymerization of N,N-diethylacrylamide onto the Microfiltration Membranes of Nylon. J. Membr. Sci., 2006, 283: 13
    [4] Azuya S ,Takeshi S ,Yuko T ,et al. Thermo-responsive release from interpenetrating porous silica-poly(N-iso-propylacrylamide) hybrid gels. J Controlled Release, 2001, 75(1): 183
    [5]陈兆伟,陈明清.温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成与表征.功能高分子学报, 2004(1): 46
    [6] X Z Zhang, Ren-Xi Zhuo. Synthesis and properties of thermosensitive poly (N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response. Materials Letters, 2002, 52(1):5
    [7] R Yoshida, K Uchida, Y Kaneko et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature, 1995, 374: 240
    [8] H K Ju, S Y Kim, YM Lee. pH/ temperature-responsivebehaviors of semi-IPN and comb-type graft hydrogelscomposed of alginate and poly(N-isopropylacrylamide). Polymer, 2001(42): 6851
    [9] Chengfa Jiang, Youqing Shen, Shiping Zhu, David Hunkeler,. Gel Formation in the Atom Transfer Radical Polymerization of 2-(N,N-dimethylamino)ethyl Methacrylate and Ethylene Glycol Dimethyacrylate. J. Polymer Science Part A: Polymer Chemistry, 2001, 39(15): 3780
    [10] Qunfeng Liu, Ping Zhang, Mangeng Lu. Synthesis and swelling Behavior of comb-Type Grafted Hydrogels by Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Polymer Science Part A: Polymer Chemistry, 2005, 43: 2615
    [11] Lican Lu ,Haijia Zhang ,Nianfa Yang ,Yuanli Cai. Toward Rapid and Well- controlled Ambient Temperature RAFT Polymerization under UV-Vis Radiation: Effect of RadiationWare Rage. Macromolecule, 2006, 39: 3770
    [12] Yoshiyuki G. Takei, Takashi Aoki, Kohei Sanui, Naoya Ogata, Yasuhisa Sakurai, Teruo Okano. Dynamic contact angle measurement of temperature-responsive surface properties for poly(N-isopropylacrylamide) grafted surfaces. Macromolecules, 1994, 27(21): 6163
    [13] Qunfeng Liu, Ping Zhang, Aixiang Qing, Yanxun Lan, Mangeng Lu. Poly(N-isopropylacrylamide) hydrogels with improved shrinking kinetics by RAFT polymerization. Polymer, 2006,47: 2330
    [14] Hirokawu Y, Tanaka T. Volume phase transition in a nonionic gel. J Chem. Phys, 1984, 81(12): 6397
    [15] Hirotsu S. Phase transition of a polymer gel in pure and mixed solvent media. J Phys Soc Japan, 1987, 56(1): 233
    [16]赖金洪,潘春跃,饶燕平.合成温度对PNIPAm水凝胶结构与性能的影响.中南大学学报(自然科学版),2005,36(6): 1006
    [17] Lican Lu ,Haijia Zhang ,Nianfa Yang ,Yuanli Cai. Toward Rapid and Well-controlled Ambient Temperature RAFT Polymerization under UV-Vis Radiation: Effect of Radiation Ware Rage, Macromolecule, 2006, 39, 3770
    [1] Knuth et al..亲水凝胶控释给药系统.国外医学药学分册, 1994, 21(5): 297
    [2] Azuya S ,Takeshi S ,Yuko T ,et al. Thermo-responsive release from interpenetrating porous silica-poly(N-iso-propylacrylamide) hybrid gels. J Controlled Release, 2001, 75(1): 183
    [3]陈兆伟,陈明清.温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成与表征.功能高分子学报, 2004(1): 46
    [4]刘晓华,王晓工,刘德山.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅱ,热力学行为及水的状态研究.高分子学报, 2002(3): 3542357
    [5] X Z Zhang, Ren-Xi Zhuo. Synthesis and properties of thermosensitive poly (N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response. Materials Letters, 2002, 52(1):5
    [6] R Yoshida, K Uchida, Y Kaneko et al. Comb-type grafted hydrogels with rapid deswelling response to temperature changes. Nature, 1995, 374: 240
    [7] H K Ju, S Y Kim, YM Lee. pH/temperature-responsivebehaviors of semi-IPN and comb-type graft hydrogelscomposed of alginate and poly(N-isopropylacrylamide). Polymer, 2001(42): 6851
    [8] Qunfeng Liu, Ping Zhang, Mangeng Lu. Synthesis and swelling Behavior of comb-Type Grafted Hydrogels by Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Polymer Science Part A: Polymer Chemistry, 2005, 43: 2615
    [9] Wu X. S., Hoffman A S, Yager P. J.. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polymer Science Part A: Polymer Chemistry, 1992, 30(10): 2121
    [10] Lican, Lu; Nianfa, Yang;Yuanli, Cai.Well-controlled Reversible Addition–Fragmentation Chain Transfer Radical Polymerisation under Ultraviolet Radiation at Ambient Temperature. Chem. Commun. 2005, 5287
    [11] Lican Lu ,Haijia Zhang ,Nianfa Yang ,Yuanli Cai. Toward Rapid and Well-controlled Ambient Temperature RAFT Polymerization under UV-Vis Radiation: Effect of Radiation Ware Rage. Macromolecule, 2006, 39, 3770
    [1] Guangguo Wu, Yuanpei Li, Mei Han, Xiaoxuan Liu. Novel Thermo-sensitive Membranes Prepared by Rapid Bulk Photo-grafting Polymerization of N,N-diethylacrylamide onto the Microfiltration Membranes of Nylon. J. Membr. Sci., 2006, 283: 13
    [2]刘晓暄,王洪波,陈兵,荆燕妮,吴光国.光化学合成快速响应聚(N,N’-二甲基丙烯酰胺-co- N-异丙基丙烯酰胺)水凝胶.高分子学报, 2007, 9: 835
    [3]刘晓暄,王洪波,白迎坤,吴光国.光化学合成聚N,N’-二甲基丙烯酰胺共聚物水凝胶及其性能研究.感光科学与光化学, 2007, 25(25): 436
    [4] S. Tsuji, H. Kawaguchi. Temperature-sensitive hairy particles prepared by living radical graft polymerization. Langmuir, 2004, 20: 2449
    [5] B. Yang., W. Yang. Thermo-sensitive switching membranes regulated by pore-covering polymer brushes, J. Membr. Sci., 2003, 218: 247
    [6] T. Peng, Y. -L. Cheng. pH-responsive permeability of PE-g-PMAA membranes. J. Appl.Polym. Sci., 2000, 76: 778
    [7] T. Caykara, M. Dogmus, O. Kantoglu. Network structure and swelling-shrinking behaviors of pH-sensitive poly(acrylamide-co-itaconic acid) hydrogels. J. Polym. Sci., Part B: Polym. Phys., 2004, 42: 2586.
    [8] T. Nonaka, S. Matsumura, T. Ogata, S. Kurihara. Synthesis of amphoteric polymer membranes from epithiopropyl methacrylate-butylmethacrylate-N,N- dimethylaminopropyl acrylamide–methacrylic acid copolymers and the permeation behavior of various solutes through the membranes. J. Membr. Sci., 2003, 212: 39
    [9] W. G. Chen, Y. N. He, X. G.. Wang, Photo-responsive azopolymer grafted PET films and their orientation properties. Acta Polymerica Sinica., 2003, 2: 225
    [10] T. Peng, Y. -L. Cheng, PNIPAAm and PMAA co-grafted porous PE membranes: living radical co-grafting mechanism and multi-stimuli responsive permeability. Polymer, 2000, 76: 778
    [11] Knuth et al.,亲水凝胶控释给药系统,国外医学药学分册, 1994, 21(5): 297
    [12] R Fátima, B Jo. Ao, C Miguel. Kinetics of water absorbency in AA/AMPS copolymers: applications of a diffusion-re- laxation model. Polymer, 2002, 43: 63
    [13] H M Crowther, B Vincent . Swelling behavior of poly-N- isopropylacrylamide microgel particles in alcoholic solu tions. Colloid Polym Sci, 1998, 276(1): 46
    [14] Azuya S, Takeshi S, Yuko T, et al. Thermo-responsive release from interpenetrating porous silica-poly(N-iso-propylacrylamide) hybrid gels. J Controlled Release, 2001, 75(1): 183
    [15]陈兆伟,陈明清.温敏性聚(N-异丙基丙烯酰胺)水凝胶的合成与表征.功能高分子学报, 2004(1): 46
    [16] X Z Zhang, R X Zhuo. Preparation of fast responsive, thermally sensitive poly (N-isopropylacrylamide)gel. European Polymer Journal, 2000, 36(8): 2301
    [17]刘晓华,王晓工,刘德山.快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅱ,热力学行为及水的状态研究.高分子学报, 2002(3): 3542357
    [18] X Z Zhang, Ren-Xi Zhuo. Synthesis and properties of thermosensitive poly (N-isopropylacrylamide-co-methyl methacrylate) hydrogel with rapid response. Materials Letters, 2002, 52(1):5
    [19] R Yoshida, K Uchida, Y Kaneko et al. Comb-type grafted hydrogels with rapid deswelling response to temper2ature changes. Nature, 1995, 374: 240
    [20] H K J u, S Y Kim, YM Lee. pH/ temperature-responsivebehaviors of semi-IPN and comb2type graft hydrogelscomposed of alginate and poly(N-isopropylacrylamide). Polymer, 2001, 42: 6851
    [21] Qunfeng Liu, Ping Zhang, Mangeng Lu. Synthesis and swelling Behavior of comb-Type Grafted Hydrogels by Reversible Addition-Fragmentation Chain Transfer Polymerization. J. Polymer Science Part A: Polymer Chemistry, 2005, 43: 2615
    [22] Wu X. S., Hoffman A S, Yager P. J.. Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels. J. Polymer Science Part A: Polymer Chemistry, 1992, 30(10): 2121
    [23] Xia J., Zhang X, Matyjaszewski, K. Synthesis of star-shaped polystyrene by atom transfer radical polymerization using an 'arm first' approach. Macromolecules, 1999, 32(13): 4482
    [24] Baek K. Y., Kamigaito M., Sawamoto. M. Core-Functionalized Star Polymers by Transition Metal-Catalyzed Living Radical Polymerization. 1. Synthesis and Characterization of Star Polymers with PMMA Arms and Amide Cores. Macromolecules, 2001, 34(22): 7629

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700