QSAR研究中提高模型预测能力的新方法探讨及其在药物化学中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学的发展是服务于现实生活的。人们经常会以“到底有什么实际用途”、“与现实生活有什么关系”或者“能否解决实际问题”来衡量一个新鲜事物。定量结构活性关系(Quantitative Structure-Activity Relationship, QSAR)研究也不例外,其在解决实际问题中的实用性一直备受关注。QSAR发展至今,应用已经非常广泛,其研究对象包括化合物的生物活性、毒性、药代动力学参数和生物利用度以及分子的各种理化性质和环境行为等,研究领域涉及生物、药学、化学以及环境科学等诸多学科。人们期望通过各种QSAR模型从分子水平上理解化合物的微观结构与其宏观活性之间的关系,为设计、筛选或预测具有人们期望的性质的化合物提供信息。
     在众多的应用中,利用模型预测未经实验测定甚至未合成的新化合物的相关活性,是QSAR模型最重要的用途之一。但是要用于预测新化合物,QSAR模型必须具有较高且可信的外部预测能力。因此本论文从建立QSAR模型的各个步骤考虑,试图解决目前QSAR研究中某些还有待完善的问题,重点研究了定量构效关系研究中化合物低能构象的选择问题、提出了几种新的建模策略、引入新的建模方法,旨在尽可能地提高QSAR模型的可靠性以及外部预测能力。同时,将具有很好预测能力的定量构效关系模型用于活性化合物的设计和筛选。
     论文第一章对定量结构活性关系研究进行了概述。从QSAR的发展历史、研究现状到发展趋势,从模型的建立、检验到应用,都进行了详细的阐述,并重点讨论了模型的验证问题。另外为了对QSAR建模方法有清晰的认识,本章从不同角度对各种QSAR方法进行了分类归纳;
     论文第二章讨论了二维QSAR研究中的一个基本问题——化合物构象对于定量构效关系模型的影响。旨在分析不同能量优化方法所得到的低能构象的差别、对最终QSAR模型的影响有多大。基于什么样的构象对于建立最终模型的至关重要,这也是一个QSAR研究的基础。通过对三组复杂程度不同的化合物进行研究后,得出了以下主要结论:(1)进行分子的三维结构优化时所用的初始构象能够影响模型的最终结果,并且分子结构越复杂影响越大;(2)构象搜索能够给出能量较低的分子状态,它可以协助分子力学或半经验等优化方法很快很容易的找到全局最优的低能构象;(3)如果所建立的QSAR模型用于新化合物的预测,则新化合物最好与训练集数据使用同样的优化方法;
     第三章介绍本文提出的两种新颖的一致性建模分析方法:WCM和改进的CDFS。一致性建模分析是一种新型的建模方法,但目前用来建立一致性模型的方法都是平均策略(ACM)。实际上不同的子模型包含的信息不同,对于最终活性的贡献也不同。因此本文提出一种更加合理的加权策略(WCM),考虑用多元线性回归的方法给子模型不同的权重,并且提出了Q~2引导的子模型选择策略(QGMS)来指导子模型的选择过程。这两种策略用于一系列丙二酰辅酶A脱羧酶抑制剂的定量构效关系研究,WCM模型的表现优于ACM和最佳单个模型,模型的拟合能力和预测能力都有很大提高,且模型更加稳定可靠,可解释性增强。
     CDFS是另一种一致性建模思路。CDFS方法将数据集进行多次分组分别建模,然后取模型的公共描述符建立最终模型。该方法的缺点是很难保证所得到的若干训练集的代表性。本文提出利用科学的分组方法得到具有代表性的训练数据,基于该数据利用不同的描述符组合进行建模,描述符出现频率越高说明其包含的结构信息越重要,然后取出现频率高的描述符建立最终模型。该方法用于169个噻唑类淋巴细胞特异性激酶抑制剂的定量构效关系研究,最终得到了包含八个公共描述符的模型,得到了很好的结果;
     第四章指出了局部建模local lazy regression (LLR)方法中一个问题,并且提出了相应的解决办法。在局部建模分析中,如何确定最优的临近点数量(k)对模型的预测是至关重要的,目前使用的方法是利用抽一法交互验证(LOO-CV)的Q~2来自动决定。而LOO-CV只是一种内部检验技术,不能说明模型的外部预测能力,因此建立模型进行预测的可靠性值得怀疑。本文提出通过监测局部模型的外部预测能力来提高LLR预测的可靠性和准确性,并用于黑色素浓缩激素受体1拮抗剂的定量构效关系研究,提高了模型的预测能力和预测可信度,得到了很好的结果;
     第五章应用两种新型的非线性建模方法最小二乘支持向量机(LS-SVMs)和基因表达式编程(GEP)进行建模分析,使模型的拟合能力和预测能力都有一定的提高。本论文中, (1) LS-SVMs方法用于羟吲哚类细胞周期依赖性激酶(CDK)抑制剂的分类,模型分类正确率比线性判别分析(LDA)模型有很大提高;(2) LS-SVMs方法用于44个人类肝脏糖原磷酸化酶(hlGPa)抑制剂,模型的抽一法交互验证表明LS-SVMs模型更加稳定,非线性模型的预测能力比多元线性回归(MLR)模型更强,且在此工作中验证了QSAR研究中进行描述符选择的必要性;(3) LS-SVMs方法用于吡嗪-吡啶类血管内皮生长因子受体2(VEGFR-2)抑制剂的定量构效关系研究,模型的预测能力比线性MLR模型有很大程度的提高;(4)非线性GEP方法用于62个MCHR1拮抗剂的QSAR研究,所得GEP模型的拟和能力尤其是外部预测能力都比线性MLR方法有很大提高,R_(ext)~2从线性的0.756提高到0.819;
     第六章重在讨论模型的应用——数据库挖掘和虚拟筛选。提出了一个新颖的QSAR/docking混合策略对淋巴细胞特异酶Lck抑制剂进行QSAR研究,所建模型用于虚拟筛选化合物数据库,最终筛选出两个磺酰基脲类衍生物,它们与Lck激酶活性位点的结合模式与文献报道的已知抑制剂非常相似,并且具有较高的预测活性。其中关键的磺酰基脲和疏水基团子结构可以作为Lck抑制剂结构优化的先导骨架。本研究所提出的策略可以从多方面考虑训练数据的结构特征,并且可以保证训练集数据的多样性,成功地将基于配体的虚拟筛选(LBVS)和基于受体的虚拟筛选(SBVS)有机地结合到一起进行化合物数据库的筛选。
The development of science comes from the need of daily life.When people talk about a newthing,they always ask questions like:is it useful or can it really solve some problems?Quantitative structure-activity relationship (QSAR) methodology is also in this situation now.Actually the QSAR definition came up with the development of medicinal chemistry,so from thebeginning it is useful.Up to now,QSAR has been widely used in biology,chemistry,medicinalchemistry and environmental science etc.And the endpoints include bioactivity,toxicology,pharmacokinetics (ADME),molecular properties and some environmental related endpoints etc.Researchers try to understand the relationship between the microcosmic molecular structure andthe macroscopical behaviors,and find out the important structural information related to thecorresponding endpoints to facilitate the design or screening of compounds with desired activities.
     Mostly QSAR models are used to predict the corresponding endpoints for unmeasured orunseen new compound.But if we want to make prediction for new compounds,the used QSARmodels must be vigorously validated.And the higher and reliable external predictivity is essential.So this dissertation aimed to improve the reliability and predictive ability by considering the eachstep in the whole modeling process and tried to solve some aspects needed to be improved inQSAR methodology.We discussed the influence of molecular conformations optimized bydifferent methods on the quality of QSAR models,several novel modeling strategies and used twonovel nonlinear modeling methods to build QSAR models.Furthermore,we proposed a newhybrid QSAR/docking approach for virtual chemical database screening to screen novel pan-SrcLck inhibitors.
     In this dissertation,a brief description of the QSAR principle was given in Chapter 1,including the history,principle,and research status of QSAR studies.We discussed the process tobuild a stable,reliable and predictive model,and among them we gave an emphasis on the modelvalidation techniques.Furthermore,to understand different modeling methods clearly,weclassified all the methods from different views.Additionally the trend and several novel ideas inQSAR area were also summarized.
     In Chapter 2,we discuss a basic problem in QSAR modeling-the lowest-energyconformation used to build model,aiming to analyze the influence of molecular conformations optimized by different methods on the quality of QSAR models.We used three datasets withdifferent structural complexity,SMF,Lckl and NS5BI.Comparing the obtained results,we drewour conclusion as following:(1) The original input conformations are very important in structureoptimization task,which may influence the quality of the QSAR model,especially for moleculeswith much flexibility;(2) Conformation searching aimed to find better original conformation nearto the low-energy conformation maybe play an important role in the optimization process;(3)New samples in the test set should use the same optimization process with the training samples ifwe want to predict the corresponding endpoint accurately.
     In Chapter 3,we discussed two new consensus modeling strategy proposed by us.Consensusmodeling,which uses several submodels to make prediction for a new compound,is a novelstrategy in QSAR research.In all the published consensus models,the final prediction of a sampleis obtained by a simple average of the results predicted by all the contained submodels (averageconsensus modeling,ACM).However,maybe it is more reasonable to give each submodel adifferent weight (weighted consensus modeling,WCM).So in this work,to give a reasonableweight for every submodel,the results predicted by all the involved submodels serve as variables,and multiple linear regression (MLR) method was used to give them different weights.Furthermore we proposed Q~2 guided model selection (QGMS) to guide the sumbodels selection.The obtained results indicated that WCM consensus model based on QGMS submodel set couidgive highest fitting ability and external predictivity.
     Combined data splitting-feature selection (CDFS) is also a kind of consensus modelingmethod.With CDFS,data splitting is achieved many times and in each case feature selection isperformed.Then the resulted models are compared and the final model is the one whosedescriptors are the common variables among all of the resulted models.The shortcoming of CDFSis that it is very hard to say that each training set could span the whole descriptor space so as torepresent the studied data set.We proposed a new strategy to build this kind of final model in adifferent way.At first,we got a training set using rational data splitting method.Then a modelpopulation was established by GA-MLR using training set data only.Descriptors with higherfrequency were considered as key structure features related to the inhibition activities.So theywere extracted to build the final QSAR model.This strategy was used to analyze 169aminothiazole based Lck inhibitors,and the obtained results were satisfactory.
     In Chapter 4,we pointed out a self-contradictory problem in local QSAR prediction,andproposed a solution to this problem.The commonly used local method is local lazy regression(LLR).It has been proved that any improvement in prediction from LLR is dependent on thenature of the neighborhood obtained for a given query point.In LLR,the leave-one-out crossvalidation (LOO-CV) procedure is usually used to optimize the number of neighbors (k),and themodel giving the lowest LOO-CV error or highest LOO-CV correlation coefficient is chosen asthe best model to make prediction.However,LOO-CV is just an internal validation technique,andthe good statistical value from LOO-CV appears to be the necessary but not the sufficientcondition for the model to have a high predictive power.So we proposed a new strategy toimprove the predictive ability of LLR models and to access the accuracy of a query prediction.The bandwidth of k neighbor value for LLR is optimized by considering the predictive ability oflocal models using an external validation set.This approach was applied to the QSAR study of aseries of melanin-concentrating hormone receptor 1 (MCHR1) antagonists.The obtained resultsfrom the new strategy shows evident improvement compared with the commonly used LOO-CVlocal lazy regression methods and the traditional global linear model.
     In Chapter 5,we used two novel nonlinear methods to build QSAR models:least squaresupport vector machines (LS-SVMs) and gene expressing programming (GEP).The LS-SVMsmethod was used to analyze the structure-activity relationship (SAR) of a series of oxindole basedcycle-dependent kinase (CDK) inhibitors,and the LS-SVMs classifier predicted the test setsamples into the right class more accurately than linear discriminate analysis (LDA) classifier.Then LS-SVMs method was used to build QSAR models for 44 human liver glycogenphosphorylase a (hlGPa) inhibitors and 32 pyrazine-pyridine based vascular endothelial growthfactor receptor 2 (VEGFR2) inhibitors.The obtained nonlinear models perform much better thanthe linear MLR models.At the end,nonlinear GEP method was used to analyze the quantitativestructure-activity relationship of 62 melanin-concentrating hormone receptor 1 antagonists.Thefitting ability and external predictivity of GEP model were both better than MLR model.Especially the R_(ext)~2 of 0.819 for the GEP model was much higher than linear model.
     In Chapter 6,we proposed a new hybrid QSAR/docking approach for virtual chemical databasescreening and further used to mine a drug database to screen novel pan-Src Lck inhibitors.As aresult,two sulfonylurea derivatives were predicted to be the potential Lck inhibitors in silico, which could bind to the target protein active site in a very similar mode to other reportedinhibitors.And the key sulfonylurea and hydrophobic substructures can be used as a lead skeletonto further Lek inhibitor design.The proposed strategy is a successful combined application ofLBVS and SBVS,which can take into account all important aspects of the structure features forthe training samples while guaranteeing the diversity of training set.The obtained results indicatethat the proposed approach for chemical screening is of practical utility and can be used as ageneral tool to screen chemical database and discover lead compounds.
引文
[1]Esposito,E.X.;Hopfinger,A.J.;Madura,J.D.Methods for Applying the Quantitative Structure-Activity Relationship Paradigm.Methods in Molecular Biology:Chemoinformatics:Concepts,Methods,and Tools for Drug Discovery 275,131-213.
    [2]Basak,S.C.;Bertelsen,S.;Grunwald,G.D.Use of graph theoretic parameters in risk assessment of chemicals.Toxicol.Lett.1995,239-250.
    [3]Martin,Y.C.;Kofron,J.L.;Traphagen,L.M.Do Structurally Similar Molecules Have Similar Biological Activity? J.Med.Chem.2002,45,4350-4358.
    [4]王连生,韩朔睽.分子结构性质与活性.化学工业出版社:北京,1997.
    [5]Gasteiger,J.Of Molecules and Humans.J.Med.Chem.2006,49,6429-6434.
    [6]Katritzky,A.R.;Lobanov,V.S.;Karelson,M.QSPR:The Correlation and quantitative prediction of chemical and physical properties from structure.Chem.Soc.Rev.1995,24,279-287.
    [7]Katritzky,A.R.;Maran,U.;Lobanov,V.S.;Karelson,M.Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties.J.Chem.Inf.Comput.Sci.2000,40,1-18.
    [8]Katritzky,A.R.;Fara,D.C.;Petrukhin,R.O.;Tatham,D.B.;Maran,U.;Lomaka,A.;Karelson,M.The present utility and future potential for medicinal chemistry of QSAR/QSPR with whole molecule descriptors.Curr.Top.Med.Chem.2002,2,1333-1356.
    [9]Cros,A.F.A.cited from:S.Borman,New QSAR Tecimiques Eyed for Environmental Assessments,Chem.& Eng.News,February 19,pp.20-23 (1990).University of Strasbourg,1863.
    [10]Crum Brown,A.;Fraser,T.R.On the connection between chemical constitution and physiologic action.Part 1.On the physiological action of salts of the ammonium bases,derived from strychnia,brucia,thebia,codeia,morphia and nicotia.Trans.Roy.Soc.Edinburgh 1868,25,151-203.
    [11]Richet,C.;Seancs,C.R.Comptes rendus des s(?)ances de la Soci(?)t(?) de biologie et de ses filiales.Soc.Biol.Ses.Fil.1893,9,775-776.
    [12]Meyer,H.Zur Theorie der Alkoholnarkose:I.Welche Eigenschaft der anaesthetika bedingt ihre narkotische Wirkung? Arch.Exp.Pathol.Pharmakol.1899,42,109-118.
    [13]Overton,C.E.Studien u(?)ber die Narkose.Gustav Fischer Verlag:Jena,Germany,1901.
    [14]Ferguson,J.The use of chemical potentials as indices of toxicity.Proc.R.Soc.London Ser. B 1939,127,387-404.
    [15]Albert,A.;Rubbo,S.;Goldacre,R.;Darcy,M.;Stove,The influence of chemical constitution on antibacterial activity.Part 2:A general survey of the acridine series.J.Br.J.Exp.Pathol.1945,26,160-192.
    [16]Albert,A.Selective Toxicity:The Physicochemical Bases of Therapy.7 ed.;Chapman and Hall:London,1985;p 33.
    [17]Bell,P.H.;Roblin Jr.,R.O.Studies in Chemotherapy.Ⅶ.A Theory of the Relation of Structure to Activity of Sulfanilamide Type Compounds.J.Am.Chem.Soc.1942,64,2905-2917.
    [18]Hammett,L.P.Some Relations between Reaction Rates and Equilibrium Constants.Chem.Rev.1935,17,125-136.
    [19]Taft,R.W.Polar and Steric Substituent Constants for Aliphatic and o-Benzoate Groups from Rates of Esterification and Hydrolysis of Esters.J.Am.Chem.Soc.1952,74,3120-3128.
    [20]Hansch,C.;Maloney,P.P.;Fujita,T.;Muir,R.M.Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients.Nature 1962,194,178-180.
    [21]Hansch,C;Fnjita,T.A Method for the Correlation of Biological Activity and Chemical Structure.J.Am.Chem.Soc.1964,86,1616-1626.
    [22]Fujita,T.;Iwasa,J.;Hansch,C.A New Substituent Constant,π,Derived from Partition Coefficients.J.Am.Chem.Soc.1964,86,5175-5180.
    [23]Zhao,C.Y.Aplications of QSAR in Life Anal.Chem.and Environmental Chemistry.Lanzhou University,2006.
    [24]Free,S.M.;Wilson,J.W.A Mathematical Contribution to Structure-Activity Studies.J.Med.Chem.1964,7,395-399.
    [25]于瑞莲,胡恭任,环境化学中有机化合物毒性的QSAR研究方法.环境科学与技术2003,26,57-59.
    [26]Lyman,W.J.;Reehl,W.F.Handbook of Chemical Property Estimation Methods..McGraw-Hill Press:New Tork,1982.
    [27]Hansch,C.Structure activity relationships.Pergmon,Elmsford:New York,1973.
    [28]Kamlet,M.J.;Doherty,R.M.;Abboud,J.L.;Abraham,M.H.;Taft,R.W.Linear solvation energy relationships:36.Molecular properties governing solubilities of organic nonelectrolytes in water.JPharm Sci.1986,75,338-349.
    [29]Kier,I.B.;Hall,L.H.Molecular connectivity in chemistry and drug research..Academic press:New York,1976.
    [30]许禄,化学计量学方法科学出版社:1995.
    [31]Crippen,G.M.Distance geometry approach to rationalizing binding data.J.Med.Chem.1979,22,988-997.
    [32]Hopfinger,A.J.A QSAR investigation of dihydrofolate reductase inhibition by Baker triazines based upon molecular shape analysis.J.Am.Chem.Soc.1980,102,7196-7206.
    [33]Cramer,R.D.;Patterson,D.E.;Bunce,J.D.Comparative molecular field analysis (CoMFA).1.Effect of shape on binding of steroids to carrier proteins.J.Am.Chem.Soc.1988,110,5959-5967.
    [34]Cramer Iii,R.D.;Bunce,J.D.;Patterson,D.E.;Frank,I.E.Crossvalidation,Bootstrapping,and Partial Least Squares Compared with Multiple Regression in Conventional QSAR Studies.Quant.Struct.-Act.Relat.1988,7,18-25.
    [35]Klebe,G.;Abraham,U.;Mietzner,T.Molecular Similarity Indices in a Comparative Analysis (CoMSIA) of Drug Molecules to Correlate and Predict Their Piological Activity.J.Med.Chem.1994,37,4130-4146.
    [36]李仁利,三维以上定量构效关系.国际药学研究杂志2007,34,241-245.
    [37]Vedani,A.;McMasters,D.R.;Dobler,M.Multi-conformational Ligand Representation in 4D-QSAR:Reducing the Bias Associated with Ligand Alignment.Quant.Struct.-Act.Relat.2000,19,149-161.
    [38]Vedani,A.;Dobler,M.Multidimensional QSAR:Moving from three-to five-dimensional concepts.Quant.Struct.-Act.Relat.2002,21,382-390.
    [39]Vedani,A.;Dobler,M.;Lill,M.A.Combining Protein Modeling and 6D-QSAR.Simulating the Binding of Structurally Diverse Ligands to the Estrogen Receptor.J.Med.Chem.2005,48,3700-3703.
    [40]王惠文,偏最小二乘回归方法及其应用.国防工业出版社:北京,1999.
    [41]Vapnik,V.The Nature of Statistical Learning Theory.Springer Verlag:1995.
    [42]Vapnik,V.Statistical Learning Theory.Wiley:1998.
    [43]Cristianini,N.;Shawe-Taylor,J.Introduction to support vector machine and other kernel based learning methods.Cambridge University Press:Cambridge,2000.
    [44]Burges,C.J.C.A tutorial on support vector machines for Pattern Recogn..Data Min.Knowl.Discov.1998,2,121-167.
    [45]Vapnik,V.;Golowich,S.;Smola,A.Support vector method for function approximation,regression estimation,and signal processing.Adv.Neural Inform.Process.Systems.1997,9,281-287.
    [46]Derks,E.P.P.;Sanchez,P.M.S.;Buydens,L.M.C.Robustness Analysis of Radial Basis Function and Multi-Layered Feed-Forward Neural Network Models.Chemom.Int.Lab.Syst.1995,28,49-60.
    [47]Yao,X.J.;Panaye A.;Doucet J.P.;Zhang,R.S.Comparative Study of QSPR/QSAR Correlations Using Support Vector Machines,Radial Basis Function Neural Networks,and Multiple Linear Regression.J.Chem.Inf.Comput.Sci.2004,44,1257-1266.
    [48]Holland,J.Adaptation in natural and artificial systems.University of Michigan Press:Arbor,A.,Eds,1975.
    [49]Goldberg,D.E.Genetic Algorithms in Search,Optimization and Machine Learning.MA:Addison-Wesley Publishing Company-1989
    [50]Rogers,D.;Hopfinger,A.J.Application of Genetic Function Approximation to Quant.Struct.-Act.Relat.and Structure-Property Relationship.J.Chem.Inf.Comput.Sci.1994,34,854-866.
    [51]俞庆森,朱龙观,分子设计导论.高等教育出版社:北京,2000.
    [52]Otto,M.Chemometrics:Statistics and Computer Application in Anal.Chem..Wiley-VCH:Weinheim:1998.
    [53]Jackson,J.E.A user's guide to principal components.John Wiley:New York,1991.
    [54]Ferreira,C.Gene Expression Programming:A New Adaptive Algorithm for Solving Problems.Complex.Sys.2001,13,87-129.
    [55]Ferreira,C.Gene Expression Programming,Mathematical Modeling by an Artificial Intelligence.1st ed.Springer-Verlag,Germany:2002.
    [56]De Julian-Ortiz,J.Virtual Darwinian drug design:QSAR inverse problem.Comb.Chem. High Throughput Screening 2000,4, 295-310.
    [57] Thomsen, M; Dobel, S.; Lassen, P.; Carlsen, L; Mogensen, B. B.; Hansen, P.E. Reverse quantitative structure-activity relationship for modelling the sorption of esfenvalerate to dissolved organic matter: A multivariate approach. Chemosphere 2002, 49, 1317-1325.
    [58] Kvasnicka, V.; Pospichal, J. Simulated Annealing Construction of Molecular Graphs with Required Properties. J. Chem. Inf. Comput. Sci. 1996, 36, 516-526.
    [59] Lewis, R. A. A General Method for Exploiting QSAR Models in Lead Optimization. J. Med.Chem. 2005,48, 1638-1648.
    [60] Galvez, J.; Garcia-Domenech, R.; Bernal, J.M.; Garcia-March, FJ. Development of a New Method for Drug Design Based Upon Molecular Topology. Its Application to Non-narcotic Analgesics. An. Real Acad. Farm. 1991, 57, 533-546.
    [61] Guha, R.; Dutta, D.; Jurs, P. C; Chen, T. Local Lazy Regression: Making Use of the Neighborhood to Improve QSAR Predictions. J. Chem. Inf. Model. 2006,46, 1836-1847.
    [62] Yuan, H.; Wang, Y.; Cheng, Y. Y. Local and Global Quantitative Structure-Activity Relationship Modeling and Prediction for the Baseline Toxicity. J. Chem. Inf. Model. 2007,47, 159-169.
    [63] Ren, Y. Y. Application of QSPR/QSAR Studies in Medicinal Chemistry, Anal. Chem. and Environmental Science. Lanzhou University, Lanzhou, 2007.
    [64] Corani, G. Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol. Mo del. 2005,185, 513-529.
    [65] Zhang, S. X.; Golbraikh, A.; Oloff, S.; Kohn, H.; Tropsha, A. A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach: Method Development, Applications, and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models. J. Chem. Inf. Model.2006,46,1984-1995.
    [66] Kipouros, K.; Kachrimanis, K.; Nikolakakis, I.; Tserki, V; Malamataris, S. Simultaneous Quantification of Carbamazepine Crystal Forms in Ternary Mixtures (Ⅰ, Ⅲ, and Ⅳ) by Diffuse Reflectance FTIR Spectroscopy (DRIFTS) and Multivariate Calibration. J. Pharm.Sci. 2006,95,2419-2431.
    [67] Zhang, M. L.; Zhou, Z. H. ML-KNN:Alazy learning approach to multi-label learning.Pattern Recogn. 2007,40, 2038-2048.
    [68]Kipouros,K.;Kachrimanis,K.:Nikolakakis,I.;Malamataris,S.Quantitative analysis of less soluble form Ⅳ in commercial carbamazepine (form Ⅲ) by diffuse reflectance fourier transform spectroscopy (DRIFTS) and lazy learning algorithm.Anal.Chim.Acta 2005,550,191-198.
    [69]Aha,D.W.Lazy Learning.Artif.Intell.Rev.1997,11,7-10.
    [70]Atkeson,C.G.;Moore,A.W.;Schaal,S.Locally Weighted Learning.Artif.Intell.Rev.1997,11,11-73.
    [74]Birattari,M.;Bontempi,G.;Bersini,H.Lazy learning for modeling and control design.Int.J.Control 1999,72,643-658.
    [72]Armengol,E.;Plaza,E.Discovery of Toxicological Patterns with Lazy Learning.Knowl.-Based Intell.Inf.Eng.Syst.,Pt 2,Proc.2003,2774,919-926.
    [73]Armengol,E.;Plaza,E.Relational Case-Based Reasoning for Carcinogenic Activity Prediction.Artif.Intell.Rev.2003,20,121-141.
    [74]Wettschereck,D.;Aha,D.W.;Mohri,T.A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms.Artif.Intell.Rev.1997,11,273-314.
    [75]Gramatica,P.Principles of QSAR models validation:internal and external.QSAR Comb.Sci.2007,26,694-701.
    [76]Alexander,G.;Alexander,T.Beware of q2! J.Mol.Graphics Model.2002,20,269-276.
    [77]Tropsha,A.;Gramatica,P.;Gombar,V.K.The importance of being earnest:validation is the absolute essential for successful application and interpretation of QSPR model.QSAR Comb Sci.2003,22,69-77.
    [78]Li,J.Z.;Lei,B.L.;Xi,L.L.;Liu,H.X.;Yao,X.J.;Liu,M.C.;Gramatica,P.A new strategy to improve the predictive ability of the local lazy regression and its application to the QSAR study of melanin-concentrating hormore receptor 1 antagonists.J.Comput.Chem.2009,Accepted.
    [79]Sheridan,R.P.;Hunt,P.;Culberson,J.C.Molecular transformations as a way of finding and exploiting consistent local QSAR.J.Chem.Inf.Model.2006,46,180-192.
    [80]Agrafiotis,D.K.;Bandyopadhyay,D.;Wegner,J.K.;van Vlijmen,H.Recent Advances in Chemoinformatics.J.Chem.Inf.Model.2007,47,1279-1293.
    [81]http://ecb.irc.ee.europa.eu/qsar/background/index.pbp?c=CAT.Read across.
    [82]Gramatica,P.;Pilutti,P.;Papa,E.Validated QSAR Prediction of OH Tropospheric Degradation of VOCs:Splitting into Training/Test Sets and Consensus Modeling.J.Chem.Inf.Comput.Sci.2004,44,1794-1802.
    [83]Gramatica,P.;Giani,E.;Papa,E.Statistical external validation and consensus modeling:A QSPR case study for Koc prediction.J.Mol.Graph.Model.2007,25,755-766.
    84.Sutherland,J.J.;Weaver,D.F.Development of Quantitative Structure-Activity Relationships and Classification Models for Anticonvulsant Activity of Hydantoin Analogues.J.Chem.Inf.Comput.Sci.2003,43,1028-1036.
    [85]Hewitt,M.;Cronin,M.T.D.;Madden,J.C.;Rowe,P.H.;Johnson,C.;Obi,A.;Enoch,S.J.Consensus QSAR Models:Do the Benefits Outweigh the Complexity? J.Chem.Inf.Model.2007,47,1460-1468.
    [86]Votano,J.R.;Parham,M.;Hall,L.H.;Kier,L.B.;Oloff,S.;Tropsha,A.;Xie,Q.;Tong,W.Three new consensus QSAR models for the prediction of Ames genotoxicity.Mutagenesis 2004,19,365-377.
    [87]Asikainen,A.H.;Ruuskanen,J.;Tuppurainen,K.A.Performance of (consensus) kNN QSAR for predicting estrogenic activity in a large diverse set of organic compounds.Environ.Sci.Technol.2004,38,6724-6729.
    [88]Li,Y.;Shao,X.;Cai,W.A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples.Talanta 2007,72,217-222.
    [89]Horvath,D.;Bonachera,F.;Solov'ev,V.;Gaudin,C.;Varnek,A.Stochastic versus Stepwise Strategies for Quantitative Structure-Activity Relationship Generation How Much Effort May the Mining for Successful QSAR Models Take? J.Chem.Inf.Model.2007,47,927-939.
    [90]Katritzky,A.R.;Kuanar,M.;Slavov,S.;Dobchev,D.A.;Fara,D.C.;Karelson,M.;Acree,J.W.E.;Solov'ev,V.P.;Varnek,A.Correlation of blood-brain penetration using structural descriptors.Bioorg.Med.Chem.2006,14,4888-4917.
    [91]Yap,C.W.;Li,Z.R.;Chen,Y.Z.Quantitative structure-pharmacokinetic relationships for drug.clearance by using statistical learning methods.J.Mol.Graphics Model.2006,24,383-395.
    [92]Wang,J.;Krudy,G.;Xie,X.-Q.;Wu,C.;Holland,G.Genetic Algorithm-Optimized QSPR Models for Bioavailability,Protein Binding,and Urinary Excretion.J.Chem.Inf.Model.2006,46,2674-2683.
    [93]Asikainen,A.H.;Ruuskanen,J.;Tuppurainen,K.A.Performance of (consensus) kNN QSAR for predicting estrogenic activity in a large diverse set of organic compounds SAR QSAR Environ.Res.2004,15,19-32.
    [94]Lill,M.A.Multi-dimensional QSAR in drug discovery.Drug Discovery Today 2007,12,1013-1017.
    [95]So,S.-S.;Karplus,M.Evolutionary Optimization in Quantitative Structure-Activity Relationship:An Application of Genetic Neural Networks.J.Med.Chem.1996,39,1521-1530.
    [96]Hopfinger,A.J.;Wang,S.;Tokarski,J.S.;Jin,B.;Albuquerque,M.;Madhav,P.J.;Duraiswami,C.Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism.J.Am.Chem.Soc.1997,119,10509-10524.
    [97]Robinson,D.D.;Winn,P.J.;Lyne,P.D.;Richards,W.G.Self-Organizing Molecular Field Analysis: ;A Tool for Structure-Activity Studies.J.Med.Chem.1999,42,573-583.
    [98]Ekins,S.;Bravi,G.;Binkley,S.;Gillespie,J.S.;Ring,B.J.;Wikel,J.H.;Wrighton,S.A.Three-and Four-Dimensional-Quantitative Structure Activity Relationship (3D/4D-QSAR) Analyses of CYP2C9 Inhibitors.Drug Metab.Dispos.2000,28,994-1002.
    [99]Vedani,A.;Briem,H.;Dobler,M.;Dollinger,H.;McMasters,D.R.Multiple-Conformation and Protonation-State Representation in 4D-QSAR: ;The Neurokinin-1 Receptor System.J.Med.Chem.2000,43,4416-4427.
    [100]Lukacova,V.;Balaz,S.Multimode Ligand Binding in Receptor Site Modeling:Implementation in CoMFA.J.Chem.Inf.Comput.Sci.2003,43,2093-2105.
    [101]Vedani,A.;Dobler,M.5D-QSAR:The Key for Simulating Induced Fit? J.Med.Chem.2002,45,2139-2149.
    [102]Lill,M.A.;Vedani,A.;Dobler,M.Raptor:Combining Dual-Shell Representation,Induced-Fit Simulation,and Hydrophobicity Scoring in Receptor Modeling:Application toward the Simulation of Structurally Diverse Ligand Sets.J.Med.Chem.2004,47,6174-6186.
    [103]Lill,M.A.;Dobler,M.;Vedani,A.Prediction of Small-Molecule Binding to Cytochrome P450 3A4:Flexible Docking Combined with Multidimensional QSAR.ChemMedChem 2006,1,73-81.
    [104]Jaworska,J.C.,M.;Auer,C.;van Leeuwen,C.J.Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints.Environ.Health Perspect.2003,111,1358-1360.
    [105]http://www.oecd.org/dataoeed/33/37/37849783.pdf.In.
    [106]Cronina,M.T.D.;Schultz,T.W.Pitfalls in QSAR.J.Mol.Struc-Theochem 2003,622,39-51.
    [107]Stouch,T.R.;Kenyon,J.R.;Johnson,S.R.;Chen,X.Q.;Doweyko,A.Li,Y.In silico ADME/Tox:why models fail.J.Comput.-Aided Mol.Des 2003,17,83-92.
    [108]Russom,C.L.;Bradbury,S.P.;Broderius,S.J.;Hammenmeister,D.E.;Drummond,R.A.Predictint models of toxic action from chemical structure:acute toxicity in the fathad minnow (Pimephales promelas).Environ.Toxicol.Chem.1997,16,948-967.
    [109]Cronin,M.T.D.;Basketter,D.A.Multivariate Qsar Analysis of a Skin Sensitization Database.SAR QSAR Environ.Res.1994,2,159-179.
    [110]Egan,W.J.;Morgan,S.L.Outlier detection in multivariate analytical chemical data.Anal.Chem.1998,70,2372-2379.
    [111]Barnett,V.;Lewis,T.Outliers in Statistical Data.John Wiley &Sons:New York,1994.
    [112]Furusjo,E.;Svenson,A.;Rahmberg,M.;Andersson,M.The importance of outlier detection and training set selection for reliable environmental QSAR predictions.Chemosphere 2006,63,99-108.
    [113]Talete srl.DRAGON for Windows (Software for molecular Descriptor Calculation),5.4 2006.
    [114]HyperChem 7.0 Hypercube.Inc,2002.
    [115]Chemofce.CambridgeSoft,2008.
    [116]SYBYL6.9.Tripos Associates Inc.,2003.
    [117]Molecular Operating Environment 2008.10;2008.
    [118]ISIS Draw.http://www.mdli.com/downloads/downloadable/index.jsp.
    [119]ChemSketch http://www.acdlabs.com/products/chem_dsn_lab/chemsketch/.
    [120]Gaussian http://www.gaussian.com/.
    [121]http://cactus.nci.nih.gov/services/translate/.In.
    [122]CORINA http://www2.ccc.uni-erlangen.de/software/corina/index.html.
    [123]Gold,L.S.;Zeiger,E.Handbook of Carcinogenicity Potency and Genotoxicity Databases.CRC Press:Cleveland,1997.
    [124]Young,D.;Martin,T.;Venkatapathy,R.;Harten,P.Are the Chemical Structures in Your QSAR Correct? QSAR Comb.Sci.2008,27,1337-1345.
    [125]J.Z.Li,B.L.Lei,L.L.Xi,H.X.Liu,X.J.Yao,M.C.Liu,P.Gramatica.Low-energy conformation problem in 2D QSAR analysis,part 1:The influence of original optimization methods.J.Comput.Chem.2009,Submitted.
    [126]Todeschini,R.;Consonni,V.Hanbook of Molecular Descriptors.Wiley-VCH:Germany,2000.
    [127]Hawkins,D.M.The Problem of Overfitting.J.Chem.Inf.Comput.Sci.2004,44,1-12.
    [128]Kubinyi,H.QSAR:Hansch analysis and related approaches.VCH:Weinheim:Germany,1993.
    [129]ADAPT,http://research.chem.psu.edu/pcjgroup/adapt.html.
    [130]Predictor,A.,http://www.simulations-plus.com/.
    [131]ADRIANA.Code,http://www.molecular-netwcrks.com/software/adrianacode/index.html.
    [132]ALMOND,http://www.moldiscovery.com/soft_almond.php.
    [133]GRID,http://www.moldiscovery.com/soft_grid.php.
    [134]JOELib,http://www.ra.cs.uni-tuebingen.de/software/joelib/index.html.
    [135]MOE,http://www.chemcomp.com/.
    [136]MOLCONN-Z,http://www.edusoft-lc.com/molconn/.
    [137]MOLGEN-QSPR,http://www.molgen.de/?src=documents/molgenqspr.html.
    [138]PowerMV,http://www.niss.org/PowerMV/.
    [139]PreADMET,http://preadmet.bmdrc.org/preadmet/index.php.
    [140]Sarchitect,http://www.st randls.com/sarchrtect/index.html.
    [141]CODESSA,http://www.codessa-pro.com/.
    [142]Nicolotti,O.;Carotti,A.QSAR and QSPR Studies of a Highly Structured Physicochemical Domain.J.Chem.Inf.Model.2006,46,264-276.
    [143]Johnson,S.R.The Trouble with QSAR (or How I Learned To Stop Worrying and Embrace Fallacy).J.Chem.Inf.Model.2008,48,25-26.
    [144]Chong,I.G.;Jun,C.H.Performance of some variable selection methods when multicollinearity is present.Chemometr.Intell.Lab.Syst.2005,78,103-112.
    [145]Mager,P.P.;Luis,S.Variable Subset Selection in the Presence of Flagged Observations and Multicollinear Descriptors in QSAR.Curr.Comput.Aided Drug Des.2005,1,163-177.
    [146]Brenton,R.G.Chemometrics Data Analysis for the Laboratory and Chemical Plant.Wiley & Sons:New York,2003.
    [147]Furnival,G.M.;Wilson,Jr R.W.Regression by leaps and bounds.Technometrics 1974,16,499-511.
    [148]Selwood,D.L.;Livingstone,D.J.;Comley,J.C.W.;O'Dowd,A.B.;Hudson,A.T.;Jackson,P.;Jandu,K.S.;Rose,V.S.;Stables,J.N.Structure-activity relationships of antifilarial antimycin analogs:a multivariate Pattern Recogn.study.J.Med.Chem.1990,33,136-142.
    [149]Hxugo,K.Variable Selection in QSAR Studies.I.An Evolutionary Algorithm.QSAR Comb.Sci.1994,13,285-294.
    [150]Luke,B.T.Comparison of different data set screening methods for use in QSAR/QSPR generation studies.J.Mol.Struc-Theochem 2000,507,229-238.
    [151]Waller,C.L.;Bradley,M.P.Development and Validation of a Novel Variable Selection Technique with Application to Multidimensional Quantitative Structure-Activity Relationship Studies.J.Chem.Inf.Comput.Sci.1999,39,345-355.
    [152]Cho,S.J.;Hermsmeier,M.A.Genetic Algorithm Guided Selection: ;Variable Selection and Subset Selection.J.Chem.Inf.Comput.Sci.2002,42,927-936.
    [153]Leardi,R.B.,R.;Terrile,M.Genetic algorithms as a strategy for feature selection.J.Chemom.1992,6,267-281.
    [154]Li,J.Z.;Lei,B.L.;Liu,H.X.;Li,S.Y.;Yao,X.J.;Liu,M.C.;Gramatica,P.,QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling.J.Comput.Chem.2008,29,2636-2647.
    [155]Li,J.Z.;Du,J.;Xi,L.L.;Liu,H.X.;Yao,X.J.;Liu,M.C.Validated quantitative structure-activity relationship analysis of a series of 2-aminothiazole based p56Lk inhibitors. Anal.Chim.Acta 2009,631,29-39.
    [156]Li,J.Z.;Liu,H.X.;Yao,X.J.;Liu,M.C.;Hu,Z.D.;Fan,B.T.Structure-activity relationship study of oxindole-based inhibitors of cyclin-dependent kinases based on least-squares support vector machines.Anal.Chim.Acta 2007,581,333-342.
    [157]Li,J.Z.;Qin,J.;Liu,H.X.;Yao,X.J.;Liu,M.C.;Hu,Z.D.In Silico Prediction of Inhibition Activity of Pyrazine-Pyridine Biheteroaryls as VEGFR-2 Inhibitors Based on Least Squares Support Vector Machines.QSAR Comb.Sci.2008,27,157-164.
    [158]Li,J.Z.;Liu,H.X.;Yao,X.J.;Liu,M.C.;Hu,Z.D.;Fan,B.T.Quantitative structure-activity relationship study of acyl ureas as inhibitors of human liver glycogen phosphorylase using least squares support vector machines.Chemometr.Intell.Lab.Syst.2007,87,139-146.
    [159]Li,J.Z.;Liu,H.X.;Yao,X.J.;Liu,M.C.In silico prediction of the activity for a series of thienopyrimidinone antagonists of melanin-concentrating hormone receptor 1 using gene expression programming.Conferentia Chemometrica 2007.Budapest,Hungary,September 2-5,2007.(Poster) http://www.chemres.hu/CC2007/
    [160]Liu,H.X.;Yao,X.J.;Zhang,R.S.;Liu,M.C.;Hu,Z.D.;Fan,B.T.Accurate Quantitative Structure-Property Relationship Model To Predict the Solubility of C60 in Various Solvents Based on a Novel Approach Using a Least-Squares Support Vector Machine.J.Phys.Chem.B 2005,109,20565-20571.
    [161]Yao,X.J.;Liu,H.X.;Zhang,R.S.;Liu,M.C.;Hu,Z.D.;Panaye,A.;Doucet,J.P.;Fan,B.T.QSAR and Classification Study of 1,4-Dihydropyridine Calcium Channel Antagonists Based on Least Squares Support Vector Machines.Mol.Pharm.2005,2,348-356.
    [162]Liu,H.X.基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究.Lanzhou University,Lanzhou,2006.
    [163]Leach,A.R.Molecular modelling:principles and applications.Pearson Education Limited:Harlow,England,2001.
    [164]Good,P.Resampling methods:A practical guide to data analysis.Birkhauser:1999.
    [165]Gramatica,P.In Evaluation of different statistical approaches to the validation of Quantitative Structure-Activity Relationships,2007;http://ecb.jrc.it/DOCUMENTS/QSAR/Report_on_OSAR_validation_methods.pdf,Ed. 2007.
    [166]Shao,J.Linear model selection by cross-validation.J.Am.Slat.Assoc.1993,88.486-494.
    [167]Wehrens,R.;Putter,H.;Buydens,L.M.C.The bootstrap:a tutorial.Chemometr.Intell.Lab.Syst.2000,54,35-52.
    [168]Merkwirth,C.;Mauser,H.;Schulz-Gasch,T.;Roche,O.;Stahl,M.;Lengauer,T.Ensemble Methods for Classification in Cheminformatics.J.Chem.Inf.Comput.Sci.2004,44,1971-1978.
    [169]Polanski,J.;Bak,A.;Gieleciak,R.;Magdziarz,T.Modeling Robust QSAR.J.Chem.Inf.Model.2006,46,2310-2318.
    [170]Polanski,J.;Gieleciak,R.;Bak,A.Probability Issues in Molecular Design:Predictive and Modeling Ability in 3D-QSAR Schemes.Comb.Chem.High Throughput Screening 2004,7,793-807.
    [171]Wold,S.;Sjostrom,M.;Ericksson,L.;Partial least squares projections to latent structures (PLS) in chemistry.In Encyclopedia of computational chemistry.von Rague Schleyer,P.(ed.),John Wiley & Sons,Chichester:1998;Vol.3,p 2006-2021.
    [172]Yasri,A.;Hartsough,D.Toward an Optimal Procedure for Variable Selection and QSAR Model Building.J.Chem.Inf.Comput.Sci.2001,41,1218-1227.
    [173]Wold,S.;Eriksson,L.Statistical validation of QSAR results,in:H.van de Waterbeemd (Ed.),Chemometrics Methods in Molecular Design.VCH,Weinheim:1995;p 309-318.
    [174]Gramatica,P.Evaluation of different statistical approaches to the validation of Quantitative Structure-Activity Relationships-ECVAM,JRC,Ispra.2004.http://ecb.jrc.it/QSAR/.
    [175]Guha,R.;Serra,J.R.;Jurs,P.C.Generation of QSAR sets with a self-organizing map.J.Mol.Graphics Model.2004,23,1-14.
    [176]Hawkins,D.M.;Basak,S.C.;Mills,D.Assessing Model Fit by Cross-Validation.J.Chem.Inf.Comput.Sci.2003,43,579-586.
    [177]Golbraikh,A.;Tropsha,A.Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection.J.Comput.Aided Mol.Des.2002,16,357-369.
    [178]Wu,W.;Walczak,B.;Massart,D.L.;Heuerding,S.;Erni,F.;Last,I.R.;Prebble,K.A. Artificial neural networks in classification of NIR spectral data:Design of the training set.Chemometr.Intell.Lab.Syst.1996,33,35-46.
    [179]Eriksson,L.;Johansson,E.Multivariate design and modeling in QSAR.Chemometr.Intell.Lab.Syst.1996,34,1-19.
    [180]Mitchell T.J.An algorithm for the Construction of “D-optimal” Experimental Designs.Technometrics 1974,16,203-210.
    [181]Bourguignon,B.;de Aguiar,P.F.;Khots,M.S.;Massart,D.L.Optimization in Irregularly Shaped Regions:pH and Solvent Strength in Reversed-Phase High-Performance Liquid Chromatography Separations.Anal.Chem.1994,66,893-904.
    [182]Galv(?)o,R.K.H.;Araujo,M.C.U.;Jos(?),G.E.;Pontes,M.J.C.;Silva,E.C.;Saldanha,T.C.B.A method for calibration and validation subset partitioning.Talanta 2005,67,736-740.
    [183]Snee,R.D.Validation of regressiong models:mothods and examples.Technometrics 1977,19,415-428.
    [184]吴静珠,王一鸣,张小超,张巧杰,近红外光谱分析中定标集样品挑选方法研究.农业机械学报2005,37,80-82.
    [185]Golbraikh,A.;Shen,M.;Xiao,Z.;Xiao,Y.-D.;Lee,K.-H.;Tropsha,A.Rational selection of training and test sets for the development of validated QSAR models.J.Comput.Aided Mol.Des.2003,17,241-253.
    [186]Adams,M.J.Chemometrics in Analytical Spectroscopy,The Royal Society of Chemistry.Cambridge,UK,1995.
    [187]Taylor,R.Simulation Analysis of Experimental Design Strategies for Screening Random Compounds as Potential New Drugs and Agrochemicals.J.Chem.Inf.Comput.Sci.1995,35,59-67.
    [188]Potter,T.Matter,H Random or Rational Design? Evaluation of Diverse Compound Subsets from Chemical Structure Databases.J.Med.Chem.1998,41,478-488.
    [189]Burden,F.R.Robust QSAR Models Using Bayesian Regularized Neural Networks.J.Med.Chem.1999,42,3183-3187.
    [190]Gramatica,P.;Consonni,V.;Todeschini,R.QSAR study on the tropospheric degradation of organic compounds.Chemosphere 1999,38,1371-1378.
    [191]Johann Gasteiger,J.Z.Neural Networks in Chemistry.Angewandte Chemie International Edition in English 1993,32,503-527.
    [192]Daszykowski,M.;Walczak,B.;Massart,D.L.On the Optimal Partitioning of Data with K-Means,Growing K-Means,Neural Gas,and Growing Neural Gas.J.Chem.Inf.Comput.Sci.2002,42,1378-1389.
    [193]Ren,Y.Y.,Liu,H.X.;Yao,X.J.;Liu,M.C.Prediction of ozone tropospheric degradation rate constants by projection pursuit regression.Anal.Chim.Acta 2007,589,150-158.
    [194]Rajer-Kanduc,K.;Zupan,J.;Majcen,N.Separation of data on the training and test set for modelling:a case study for modelling of five colour properties of a white pigment.Chemometr.Intell.Lab.Syst.2003,65,221-229.
    [195]Weaver,S.;Gleeson,M.P.The importance of the domain of applicability in QSAR modeling.J.Mol.Graphics Model.2008,26,1315-1326.
    [196]Lavine,B.;Workman,J.Chemometrics.Anal.Chem.2006,78,4137-4145.
    [197]http://www.oecd.org/dataoecd/33/37/37849783.pdf
    [198]Schroeter,T.S.;Schwaighofer,A.;Mika,S.;Laak,A.T.;Suelzle,D.;Ganzer,U.;Heinrich,N.;M(u|¨)ller,K.R.Estimating the domain of applicability for machine learning QSAR models:a study on aqueous solubility of drug discovery molecules J.Comput.Aided Mol.Des.2007,21,651-664.
    [199]Dimitrov,S.;Dimitrova,G.;Pavlov,T.;Dimitrova,N.;Patlewicz,G.;Niemela,J.;Mekenyan,O.A Stepwise Approach for Defining the Applicability Domain of SAR and QSAR Models.J.Chem.Inf.Model.2005,45,839-849.
    [200]Sheridan,R.P.;Feuston,B.P.;Maiorov,V.N.;Kearsley,S.K.Similarity to Molecules in the Training Set Is a Good Discriminator for Prediction Accuracy in QSAR.J.Chem.Inf.Comput.Sci.2004,44,1912-1928.
    [201]Jaworska,J.;Nikolova-Jeliazkova,N.;Aldenberg,T.http://ecb.j rc.ec.europa.eu/home.php?CONTENU=/DOCUMENTS/QSAR/INFORMATION SOURCES/.2005.
    [202]Stanforth,R.W.;Kolossov,E.;Mirkin,B.A Measure of Domain of Applicability for QSAR Modelling Based on Intelligent K-Means Clustering.QSAR Comb.Sci.2007,26,837-844.
    [203]Atkinson,A.C.Plots,Transformations and Regression:An Introduction to Graphical Methods of Diagnostic Regression Analysis.Clarendon Press:Oxford,1985.
    [204]Gedeck P.;Rohde,B.,Bartels C.QSAR-How Good Is It in Practice? Comparison of Descriptor Sets on an Unbiased Cross Section of Corporate Data Sets.J.Chem.Inf.Model.2006,46,1924-1936.
    [205]Bajorath,J.METHODS IN MOLECULAR BIOLOGY-Chemoinformatics.Concepts,Methods,and Tools for Drug Discovery.Humana Press:Vol.275.
    [206]Danail,B.;Dennis H.R.Chemical Graph Theory:Introduction and Fundamentals.Gordon and Breach Science Publishers:1990.
    [207]Lipinski,C.A.;Loimbardo,F.;Beryl W.Dominy and Paul J.Feeney,Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv.Drug Deliver.Rev.1997,23,3-25.
    [208]Mullin,R.Recalibrating the clinic.High-tech tools and streamlined business processes are making their way to the far reaches of the drug development pipeline.Chem.Eng.News 2005,83,29-39.
    [209]Norinder,U.In silico modelling of ADMET-a mini review of work from 2000 to 2004.SAR QSAR Environ.Res.2005,16,1-11.
    [210]Martin,Y.C.A Bioavailability Score.J Med.Chem.2005,48,3164-3170.
    [211]Yoshida,F.;Topliss,J.G.QSAR Model for Drug Human Oral Bioavailabilityl.J.Med.Chem.2000,43,2575-2585.
    [212]Bleicher,K.H.;Bohm,H.J.;Muller,K.;Alanine,A.I.Hit and lead generation:beyond high-throughput screening.Nat.Rev.Drug Discov.2003,2,369-378.
    [213]Gershel 1,L.J.;Atkins,J.H.Abrief history of novel drug discovery technologies.Nat.Rev.Drug Discov.2003,2,321-327.
    [214]Shoichet,B.K.Virtual screening of chemical libraries.Nature 2004,432,862-865.
    [215]Stahura,F.L.;Bajorath,J.Virtual Screening Methods that Complement HTS Comb.Chem High Throughput Screening 2004,7,25 9-269.
    [216]Bajorath,J.Integration of virtual and high-throughput screening.Nat.Rev.Drug Discov.2002,1,882-894.
    [217]Pirard,B.Computational Methods for the Identification and Optimisation of High Quality Leads. Comb. Chem. High Throughput Screening 2004, 7, 271 -280. [218] Rusinko, Ⅲ A.; Young, S. S.; Drevvry D. H. Gerritz S.W., Optimization of Focused Chemical Libraries Using Recursive Partitioning. Comb. Chem. High Throughput Screening 2002,5,125-133.
    [219] Jorgensen, W. L. The Many Roles of Computation in Drug Discovery. Science 2004,303,1813-1818.
    [220] Li, J. Z.; Du, J.; Xi, L. L.; Liu, H. X.; Yao, X. J.; Liu, M. C. A new hybrid QSAR/docking approach for virtual screening and its application in screening potential Lck inhibitors. In Lanzhou, 2009; p 39.
    [221] Worth, A. P.; Bassan, A.; De Bruijn, J.; Saliner, A. Gallegos; Netzeva, T.; Patlewicz, G.;Pavan, M.; Tsakovska, I.; Eisenreich, S. The role of the European Chemicals Bureau in promoting the regulatory use of (Q)SAR methods. SAR QSAR Environ. Res. 2007, 18,111-125.
    [222] Maykel, C. M.; Humberto, G. D.; Guillerm(?)n, A. C. Lourdes, S.; Fernanda B.; Elena, R. D.;Gianni, P.; Eugenio, U. Computational chemistry development of a unified free energy Markov model for the distribution of 1300 chemicals to 38 different environmental or biological systems. J. Comput. Chem. 2007, 28, 1909-1923.
    [223] Gonzalez-Diaz, H.; Agüero, G.; Cabrera, M. A.; Molina, R.; Santana, L.; Uriarte, E.:Delogu, G.; Casta(?)edo, N. Unified Markov thermodynamics based on stochastic forms to classify drugs considering molecular structure, partition system, and biological species::distribution of the antimicrobial Gl on rat tissues. Bioorg. Med. Chem. Lett. 2005, 15,551-557.
    [224] Gonzalez-Diaz, H.; Prado-Prado, F. J.; Santana, L.; Uriarte, E. Unify QSAR approach to antimicrobials. Part 1: Predicting antifungal activity against different species. Bioorg. Med.Chem. 2006,14, 5973-5980.
    [225] Nicolaou, C. A., Brown, N.; Pattichis, C. S. Molecular optimization using computational multi-objective methods. Current Opinion in Drug Discovery and Development 2007, 10,316-324.
    [226] Yann C., S. P. Multiobjective Optimization: Principles and Case Studies. Springer-Verlag:Berlin, Germany, 2004.
    [227] Jones, G.; Willett, P.; Glen, R. C. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation./ Comput. Aided MoI. Des. 1995, 9, 532-549.
    [228] Handschuh, S.; Wagener, M.; Gasteiger, J. Superposition of Three-Dimensional Chemical Structures Allowing for Conformational Flexibility by a Hybrid Method. J. Chem. Inf.Comput. Sci. 1998, 38, 220-232.
    [229] Janson, S.; Merkle, D. In Hybrid Metaheuristics Second International Workshop HM.2005.
    [230] Zoete, V.; Grosdidier, A.; Michielin, O. High Performance Computing for the Life Sciences Symposium. Lausanne, Switzerland, 2005.
    [231] Brown, N.; McKay, B.; Gasteiger, J. A novel workflow for the inverse QSPR problem using multiobjective optimization. J. Comput. Aided Mol. Des. 2006,20, 333-341.
    [232] Nicolotti, O.; Gillet, V. J.; Fleming, P. J.; Green, D. V. S. Multiobjective Optimization in Quantitative Structure-Activity Relationships:  Deriving Accurate and Interpretable QSARs. J. Med. Chem. 2002,45, 5069-5080.
    [233] Stockfisch, T. P. Partially Unified Multiple Property Recursive Partitioning (PUMP-RP): A New Method for Predicting and Understanding Drug Selectivity. J. Chem. Inf. Comput. Sci.2003,43,1608-1613.
    [234] Rao, S. N.; Stockfisch, T. P. Partially Unified Multiple Property Recursive Partitioning (PUMP-RP) Analyses of Cyclooxygenase (COX) Inhibitors. J. Chem. Inf. Comput. Sci.2003,43,1614-1622.
    [235]Cruz-Monteagudo, M.; Borges, F.; Cordeiro, M. N. l. D. S.; Cagide Fajin, J. L.; Morell, C;Ruiz, R. M.; Can(?)fizares-Carmenate, Y.; Dominguez, E. R. Desirability-Based Methods of Multiobjective Optimization and Ranking for Global QSAR Studies. Filtering Safe and Potent Drug Candidates from Combinatorial Libraries. J. Comb. Chem. 2008,10, 897-913.
    [236]Cruz-Monteagudo, M.; Borges, F.; Cordeiro, M. N. D. S. Desirability-based multiobjective optimization for global QSAR studies: Application to the design of novel NSAIDs with improved analgesic, antiinflammatory, and ulcerogenic profiles. J. Comput. Chem. 2008,29,2445-2459.
    [237] Derringer, G.; Suich, R. Simultaneous optimization of several response variables. J. Qual.Technol. 1980,12,214-219.
    [238]Molecular Design Suite Developed by VLife Sciences Technologies Pvt.Ltd.VLifeMDS 3.0,Pune,lndia,2007
    [239]Ajmani,S.;Jadhav,K.;Kulkarni,S.A.Group-Based QSAR (G-QSAR):Mitigating Interpretation Challenges in QSAR.QSAR Comb.Sci.2009,28,36-51.
    [240]Du,Y.;Liang,Y.;Yun,D.Data Mining for Seeking an Accurate Quantitative Relationship between Molecular Structure and GC Retention Indices of Alkenes by Projection Pursuit.J.Chem.Inf.Comput.Sci.2002,42,1283-1292.
    [241]Hastie,T,T.R.;Friedman,J.The Elements of Statistical Learning:Data Mining,Inference,and Prediction.Springer:New York,USA,2001.
    [242]Liang,Y.Z.;Yuan,D.L.;Xu,Q.S.;Kvalheim,O.M.Modeling based on subspace orthogonal projections for QSAR and QSPR research.J.Chem.2008,22,23-35.
    [243]Zhu,H.;Tropsha,A.;Fourches,D.;Varnek,A.;Papa,E.;Gramatica,P.;O(?)(?)berg,T.;Dao,P.;Cherkasov,A.;Tetko,I.V.Combinatorial QSAR Modeling of Chemical Toxicants Tested against Tetrahymena pyriformis.J.Chem.Inf.Model.2008,48,766-784.
    [244]Tetko,I.V.;Sushko,I.;Pandey,A.K.;Zhu,H.;Tropsha,A.;Papa,E.;O(?)(?)berg,T.;Todeschini,R.;Fourches,D.;Vamek,A.Critical Assessment of QSAR Models of Environmental Toxicity against Tetrahymena pyriformis:Focusing on Applicability Domain and Overfitting by Variable Selection.J.Chem.Inf.Model 2008,48,1733-1746.
    [245]Devillers,J.Genetic algorithms in molecular modeling.Academic Press:London,1996.
    [246]Clark,D.E.Evolutionary algorithms in molecular design.Methods and Principles in Medicinal Chemistry.Wiley-VCH:Weinheim,Federal Republic of Germany,2000.
    [247]薛春霞.SVM在QSPR中的应用及基于配体的计算机辅助药物设计.Lanzhou University,Lanzhou,2005.
    [248]刘焕香.基于支持向量机方法的QSAR/QSPR在化学、生物及环境科学中的应用研究.Lanzhou University,Lanzhou,2005.
    [249]栾峰.支持向量机(SVM)和径向基神经网络(RBFNN)方法在化学、环境化学和药物化学中的应用研究.Lanzohu University,Lanzhou,2006.
    [250]赵春燕.QSAR研究在生命分析化学和环境化学中的应用.Lanzhou University,Lanzhou,2006.
    [251]马卫平.线性和非线性方法在QSAR/QSPR研究中的应用.Lanzhou University, Lanzhou,2007.
    [252]Suykens,J.A.K;Vandewalle,J.Least squares support vector machine classifiers.Neural Process.Lett.1999,9,293-300.
    [253]Viaene,S.;Baesens,B.;Van Gestel,T.;Suykens,J.A.K.;Van den Poel,D.;Vanthienen,J.;De Moor,B.;Dedene,G.Knowledge discovery in a direct marketing case using least squares support vector machines.Int.J.Intell.Syst.2001,16,1023-1036.
    [254]Chua,K.S.Efficient computations for large least square support vector machine classifiers.Pattern Recogn.Lett.2003,24,75-80.
    [255]Suykens,J.A.K.;Vandewalle,J.Chaos control using least-squares support vector machines.Int.J.Circ.Theor.Appl.1999,27,605-615.
    [256]Suykens,J.A.K.;Vandewalle,J.;De Moor,B.Optimal control using least-squares support vector machines.Neural Networks 2001,14,23-35.
    [257]Ozlem,T.;Keskin,M.E.Evaporation Estimation Using Gene Expression Programming.J.Appl.Sci.2005,5,508-512.
    [258]Si,H.Z.;Wang,T.;Zhang,K.J.;Hu,Z.D.;Fan,B.T.QSAR study of 1,4-dihydropyridine calcium channel antagonists based on gene expression programming.Bioorg.Med.Chem.2006,14,4834-4841.
    [259]Si,H.Z.;Zhang,K.J.;Hu,Z.D.;Fan,B.T.QSAR Model for Prediction Capacity Factor of Molecular Imprinting Polymer Based on Gene Expression Programming.QSAR Comb.Sci.2007,46,41-50.
    [260]司宏宗.基因表达式编程与支持向量机在疾病诊断和QSAR/QSPR中的应用研究.Lanzhou University,Lanzhou,2006.
    [261]http://www.gepsoft.com/gep soft.
    [1]Pardee,A.B.G1 events and regulation of cell proliferation.Science 1989,246,603-608.
    [2]Bramson,H.N.;Corona,J.;Davis,S.T.;Dickerson,S.H.;Edelstein,M.;Frye,S.V.;Gampe Jr.,R.T.;Harris,P.A.;Hassell,A.;Holmes,W.D.;Hunter,R.N.;Lackey,K.E.;Lovejoy,B.;Luzzio,M.J.;Montana,V.;Rocque,W.J.;Rusnak,D.;Shewchuk,L.;Veal,J.M.;Walker,D.H.;Kuyper,L.F.Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2):design,synthesis,enzymatic activities,and X-ray crystallographic analysis.J.Med Chem.2001,44,4339-4358.
    [3]Morgan,D.O.Cyclin-dependent kinases:engines,clocks,and microprocessors.Annu.Rev.Cell Dev.Biol.1997,13,261-291.
    [4]Gillet,C.E.;Barnes,D.M.Demystified cell cycle.J.Clin.Path.1998,51,310-316.
    [5]Gladden,A.B.;Diehl,J.A.Cell cycle progression without cyclin E/CDK2:breaking down the walls of dogma.Cancer Cell 2003,4,160-162.
    [6]Lowe,E.D.;Tews,I.;Cheng,K.Y.;Brown,N.R.;Gul,S.;Noble,M.E.M.;Gamblin,S.J.;Johnson,L.N.Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A.Biochemistry 2002,41,15625-15634.
    [7]Meijer,L.Leclerc,S.;Leost,M.Properties and potential applications of chemical inhibitors of cyclin-dependent kinases.Pharmacol.Ther.1999,82,279-284.
    [8]Garrett,M.D.;Fattaey,A.CDK inhibition and cancer therapy.Curr.Opin.Genet.Dev.1999, 9,104-111.
    [9] Webster, K. R. The therapeutic potential of targeting the cell cycle. Expert Opin. Invest.Drugs 1998,7, 865-887.
    [10] Davis, S. T.; Benson, B. G; Bramson, H. N.; Chapman, D. E.; Dickerson, S. H.; Dold, K.M.; Eberwein, D. J.; Edelstein, M.; Frye, S. V.; Gampe Jr., R. T.; Griffin, R. J.; Harris, P. A.;Hassell, A. M.; Holmes, W. D.; Hunter, R. N.; Knick, V. B.; Lackey, K.; Lovejoy, B.; Luzzio,M. J.; Murray, D.; Parker, P.; Rocque, W. J.; Shewchuk, L.; Veal, J. M.; Walker, D. H.;Kuyper, L. F. Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors.Science 2001,291,134-137.
    [11] Barvian, M.; Boschelli, D. H.; Cossrow, J.; Dobrusin, E.; Fattaey, A.; Fritsch, A.; Fry, D.;Harvey, P.; Keller, P.; Garrett, M.; La, F.; Leopold, W.; McNamara, D.; Quin, M.;Trumpp-Kallmeyer, S.; Toogood, P.; Wu, Z. P.; Zhang, E. Pyrido [2,3-d] pyrimidin-7-one inhibitors of cyclindependent kinases. J. Med. Chem. 2000,43,4606-4616.
    [12] Gussio, R.; Zaharevitz, D. W.; McGrath, C. F.; Pattabiraman, N.; Kellogg, G E.; Schultz, C;Link, A.; Kunick, C; Leost, M.; Meijer, L.; Sausville, E. A. Structure-based design modifications of the paullone molecular scaffold for cyclin-dependent kinase inhibition.Anti-Cancer Drug Des. 2000,15, 53-66.
    [13] Gray, N. S.; Wodicka, L.; Thunnissen, A. M. W. H.; Norman, T. C; Kwon, S.; Espinoza, F.H.; Morgan, D. O.; Barnes, G; LeClerc, S.; Meijer, L.; Kim, S. H.; Lockhart, D. J.; Schultz,P. G Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 1998,281, 533-538.
    [14] Legraverand, M.; Ludwig, O.; Bisagni, E.; Leclerc, S.; Meijer, L. Synthesis of C2 alkynylated purines, a new family of potent inhibitors of cyclindependent kinases. Bioorg.Med. Chem. Lett. 1998, 8, 793-798.
    [15]Chen, Y. N. P.; Sharma, S. K.; Ramsey, T. M.; Jiang, L.; Martin, M. S.; Baker, K.; Adams, P.D.; Bair, K. W.; Kaelin, W. G; Selective killing of transformed cells by cyclin/cyclindependent kinase 2 antagonists. Proc. Natl. Acad. Sci. 1999,96,4325-4329.
    [16] Knockaert, M.; Greengard, P.; Meijer, L. Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci. 2002,23,417-425.
    [17] Dureja, H.; Madan, A. K. Topochemical for prediction of cyclin-dependent kinase 2 inhibitory activity of indole-2-ones.J. Mol. Model. 2005,11, 525-531.
    [18] Bhattacharjee, A. K.; Geyer, J. A.; Woodard, C. L.; Kathcart, A. K.; Nichols, D. A.; Prigge,S. T.; Li, Z. Y.; Mott, B. T.; Waters, N. C. A three-dimensional in silico pharmacophore model for inhibition of Plasmodium falciparum cyclin-dependent kinases and discovery of different classes of novel Pfmrk specific inhibitors. J. Med. Chem. 2004,47, 5418-5426.
    [19] Hecker, E. A.; Duraiswami, C; Andrea, T. A.; Diller, D. J. Use of catalyst pharmacophore models for screening of large combinatorial libraries. J. Chem. Inf. Comput. Sci. 2002, 42,1204-1211.
    [20] Deanda, F.; Stewart, E. L. Application of the PharmPrint methodology to two protein kinases. J. Chem. Inf. Comput. Sci. 2004,44,1803-1809.
    [21] Naumann, T.; Matter, H. Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: target family landscapes. J. Med.Chem. 2002, 45, 2366-2378.
    [22] Kunick, C.; Lauenroth, K.; Wieking, K.; Xie, X.; Schultz, C.; Gussio, R.; Zaharevitz, D.;Leost, M.; Meijer, L.; Weber, A.; J(?)rgensen, F. S.; Lemcke, T. Evaluation and comparison of 3D-QSAR CoMSIA models for CDK1, CDK5, and GSK-3 inhibition by paullones. J. Med.Chem. 2004,47, 22-36.
    [23] Nugiel, D. A.; Vidwans, A.; Etzkorn, A. M.; Rossi, K. A.; Benfield, P. A.; Burton, C. R.;Cox, S.; Doleniak, D.; Seitz, S. P. Synthesis and Evaluation of Indenopyrazoles as Cyclin-Dependent Kinase Inhibitors. 2. Probing the Indeno Ring Substituent Pattern. J. Med.Chem. 2002,45, 5224-5232.
    [24] Vulpetti, A.; Crivori, P.; Cameron, A.; Bertrand, J.; Brasca, M. G.; D'Alessio, R.; Pevarello,P. Structure-based approaches to improve selectivity: CDK2-GSK3 β binding site analysis. J.Chem. Inf. Model. 2005,45, 1282-1290.
    [25] Jorissen, R. N.; Gilson, M. K. Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model. 2005,45, 549-561.
    [26] ChemDraw, Cambriagesoft Corporation, USA, 1985-2003.
    [27] HyperChem 7.0, Hypercube. Inc., 2002.
    [28] Stewart, J. P. P. MOPAC 6.0, Quantum Chemistry Program Exchange, QCPE, No. 455.Indiana University, Bloomington, 1989.
    [29]Katritzky,A.R.;Lobanov,V.S.;Karelson,M.CODESSA:Training Manual,University of Florida,Gainesville,FL,.1995.
    [30]Kachigan,S.K.Statistical Analysis,Radius Press,New York,.1986.
    [31]Fisher,R.A.The use of multiple measurements in axonomic problems.Ann.Eugenic 1936,7,179-188.
    [32]Kenny,S.J.;Aubert,R.E.;Geiss,L.S.Diabetes in America,2nd ed.;Harris,M.,Ed.;NIH publication 1995 p47-67.
    [33]Patankar,S.J.;Jurs,P.C.Classification of Inhibitors of Protein Tyrosine Phosphatase 1B Using Molecular Structure Based Descriptors.J.Chem.Inf.Comput.Sci.2003,43,885-899.
    [34]Consoli,A.Role of liver in pathophysiology of NIDDM.Diabetes Care 1992,15,430-441.
    [35]Gerich,J.E.Role of liver and muscle in type Ⅱ diabetes.Horm.Metab.Res.1992,26,18-21.
    [36]Landau,B.R.;Wahren,J.;Chandramouli,V.;Schumann,W.C.;Ekberg,K.;Kalhan,S.C.Contributions of gluconeogenesis to glucose production in the fasted state.J.Clin.Invest.1996,98,378-385.
    [37]Prathipati,P.;Pandey,G.;Saxena,A.K.CoMFA and Docking Studies on Glycogen Phosphorylase a Inhibitors as Antidiabetic Agents.J.Chem.Inf.Model.2005,45,136-145.
    [38」 Martin,J.L.;Veluraja,K.;Johnson,L.N.;Fleet,G.W.J.;Ramsden,N.G.;Bruce,I.;Oikonomakos,N.G.;Papageorgiou,A.C.;Leonidas,D.D.;Tsitoura,H.S.Glucose analogue inhibitors of glycogen phosphorylase:the design of potential drugs for diabetes.Biochemistry 1991,30,10101-10116.
    [39]Watson,K.A.;Mitchell,E.P.;Johnson,L.N.;Son,J.C.;Bichard,C.J.F.;Orchard,M.G.;Fleet,G.W.J.;Oikonomakos,N.G.;Leonidas,D.D.;Kontou,M.;Papageorgiou,A.C.Design of inhibitors of glycogen phosphorylase:a study of alpha-and beta-C-glucosides and 1-thio-beta-D-glucose compounds.Biochemistry 1994.33,5745-5758.
    [40]Watson,K.A.;Mitchell,E.P.;Johnson,L.N.;Cruciani,G.;Son,J.C.;Bichard,C.J.F.;Fleet,G.W.J.;Oikonomakos,N.G.;Kontou,M.;Zographos,S.E.Glucose Analogue Inhibitors of Glycogen Phosphorylase:From Crystallographic Analysis to Drug Prediction Using GRID Force-Field and GOLPE Variable Selection.Acta Crystallogr.Sect.1995,D51,458-472.
    [41] Bichard, C. J. F.; Mitchell, E. P.; Wormald, M. R.; Watson, K. A.; Johnson, L. N.;Zographos, S. E.; Koutra, D. D.; Oikonomakos, N. G.; Fleet, G. W. J. Potent inhibition of glycogen phosphorylase by a spirohydantoin of glucopyranose: first pyranose analogues of hydantocidin.. Tetrahedron Lett. 1995,36,2145-2148.
    [42] Oikonomakos, N. G.; Kontou, M.; Zographos, S. E.; Watson, K. A.; Johnson, L. N.; Bichard,C. J. F.; Fleet, G. W. J.; Acharya, K. R. N-acetyl-beta-D-glucopyranosylamine: A potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose. Protein Sci. 1995,4,2469-2477.
    [43] Zographos, S. E.; Oikonomakos, N. G.; Tsitsanou, K. E.; Leonidas, D. D.; Chrysina, E. D.;Skamnaki, V. T.; Bischoff, H.; Goldman, S.; Schram, M.; Watson, K. A.; Johnson, L. N. The structure of glycogen phosphorylase b with an alkyldihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure 1997,5,1413-1425.
    [44] Gregoriou, M.; Noble, M. E. M.; Watson, K. A.; Garman, E. F.; Krulle, T. M.; Fuente, C.;Fleet, G. W. J.; Oikonomakos, N. G.; Johnson, L. N. The structure of a glycogen phosphorylase glucopyranose spirohydantoin complex at 1.8 A resolution and 100 K: The role of the water structure and its contribution to binding. Protein Sci. 1998,7, 915-927.
    [45] Oikonomakos, N. G.; Tsitsanou, K. E.; Zographos, S. E.; Skamnaki, V. T.; Goldmann, S.;Bischoff, H. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-l,4-dihydro-l-ethyl-2-methyl-pyridine-3,5,6-tricarboxylate. Protein Sci. 1999, 8,1930-1945.
    [46] Oikonomakos, N. G.; Skamnaki, V. T.; Tsitsanou, K. E.; Gavalas, N. G.; Johnson, L. N. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure 2000, 8, 575-984.
    [47] Klabunde, T.; Wendt, K. U.; Kadereit, D.; Brachvogel, V.; Burger, H. J.; Herling, A. W.;Oikonomakos, N. G.; Kosmopoulou, M. N.; Schmoll, D.; Sarubbi, E.; von Roedern, E.;Schonafinger, K.; Defossa, E. Acyl Ureas as Human Liver Glycogen Phosphorylase Inhibitors for the Treatment of Type 2 Diabetes. J. Med. Chem. 2005,48, 6178-6193.
    [48] Katritzky, A.R., Petrukhin, R., Jain, R., Karelson, M. QSPR analysis of Flash points. J.Chem. Inf. Model. 2001,41, 1521-1530.
    [49] Folkman, J. Anti-angiogenesis: New concept for therapy of solid tumors. Ann. Surg. 1972, 1972,409-416.
    [50] Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971, 285,1182-1186.
    [51] Gasparini, G. The rationale and future potential of angiogenesis inhibitors in neoplasia.Drugs 1999,58,17-38.
    [52] Brown, J. M.; Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998,58,1408-1416.
    [53] Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. cell 1996,86,353-364.
    [54] Liotta, L. A.; Steeg, P. S.; Stetler-Stevenson, W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991,64, 327-336.
    [55] De Vries, C.; Escobedo, J. A.; Ueno, H.; Houck, K.; Ferrara, N.; Williams, L. T. The fins-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992,25,989-991.
    [56] Shalaby, F.; Rossant, J.; Yamaguchl, T. P.; Gertsenstein, M.; Wu, X. F.; Breltman, M. L.;Schuh, A. C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice.Nature 1995,376, 62-66.
    [57] Kuo, G. H.; Wang, A.; Emanuel, S.; DeAngelis, A.; Zhang, R.; Connolly, P. J.; Murray, W.V.; Gruninger, R. H.; Sechler, J.; Fuentes-Pesquera, A.; Johnson, D.; Middleton, S. A.;Jolliffe, L.; Chen, X. Synthesis and Discovery of Pyrazine-Pyridine Biheteroaryl as a Novel Series of Potent Vascular Endothelial Growth Factor Receptor-2 Inhibitors. J. Med. Chem.2005,48,1886-1900.
    [58] Yang, J. C.; Haworth, L.; Sherry, R. M.; Hwu, P.; Schwartzentruber, D. J.; Topalian, S. L.;Steinberg, S. M.; Chen, H. X.; Rosenberg, S. A. A randomized trial of bevacizumab (anti-VEGF antibody) in metastatic renal cancer. N. Eng. J. Med. 2003,349,427-434.
    [59]Prewett, M.; Huber, J.; Li, Y.; Santiago, A.; O'Connor, W.; King, K..; Overholser, J.; Hooper,A.; Pytowski, B.; Witte, L.; Bohlen, P.; Hicklin, D. J. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis. Cancer Res.1999,59,5209-5218.
    [60] Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S. D.; Ho, L.; Russell, M.; Boland, P.; Leidich, R.; Hylton, D.; Burova, E.; Ioffe, E.; Huang, T.; Radziejewski, C; Baily, K.; Fandl,J. P.; Daly, T.; Wiegand, S. J.; Yancopoulos, G. D.; Rudge, J. S.; VEGFTrap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. 2002,99, 11393-11398.
    [61] Borzilleri, M.; Zheng, X. P.; Qian, L. G; Ellis, C; Cai, Z. W.; Wautlet, B. S.; Mortillo, S.;Jeyaseelan, R.; Kukral, Sr., D.W.; Fura, A.; Kamath, A.; Vyas, V.; Tokarski, J. S.; Barrish, J.C; Hunt, J. T.; Lombardo, L. J.; Fargnoli, J.; Bhide, R. S. Design, Synthesis, and Evaluation of Orally Active 4-(2,4-Difluoro-5-(methoxycarbamoyl)phenylamino) pyrrolo[2,1-f][1,2,4]triazines as Dual Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1 Inhibitors. J. Med. Chem. 2005,48, 3991-4008.
    [62] Thompson, A. M.; Delaney, A. M.; Hamby, J. M.; Schroeder, M. C.; Spoon, T. A.; Crean, S.M.; Showalter, H. D. H.; Denny, W. A. Synthesis and Structure-Activity Relationships of Soluble 7-Substituted 3-(3,5-Diraethoxyphenyl)-l,6-naphthyridin-2-amines and Related Ureas as Dual Inhibitors of the Fibroblast Growth Factor Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinases. J. Med. Chem. 2005, 48,4628-4653.
    [63]Scott, R. W.; Neville, S. N.; Urbina, A.; Camp, D.; Stankovic, N. Development of a Scalable Synthesis to VEGFR Inhibitor AG-28262. Org. Process Res. Dev. 2006,10, 296-303.
    [64] Wissner, A.; Floyd, M. B.; Johnson, B. D.; Fraser, H.; Ingalls, C.; Nittoli, T.; Dushin, R. G.;Discafani, C.; Nilakantan, R.; Marini, J.; Ravi, M.; Cheung, K.; Tan, X.; Musto, S.; Annable,T.; Siegel, M. M.; Loganzo, F. 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones as Covalent-Binding, Irreversible Inhibitors of the Kinase Domain of Vascular Endothelial Growth Factor Receptor-2. J. Med. Chem. 2005,48, 7560-7581.
    [65] Kabbinavar, F.; Hurwitz, H. I.; Fehrenbacher, L.; Meropol, N. J.; Novotny, W. F.;Lieberman, G; Griffing, S.; Bergsland, E. Phase II, randomized trial comparing bevacizumah plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 2003,21, 60-65.
    [66]Kuo, G. H.; Prouty, C.; Wang, A.; Emanuel, S.; DeAngelis, A.; Zhang, Y.; Song, F.; Beall, L.;Connolly, P. J.; Karnachi, P.; Chen, X.; Gruninger, R. H.; Sechler, J.; Fuentes-Pesquera, A.;Middleton, S. A.; Jolliffe, L.; Murray, W. V. Synthesis and Structure-Activity Relationships of Pyrazine-Pyridine Biheteroaryls as Novel, Potent, and Selective Vascular Endothelial Growth Factor Receptor-2 Inhibitors.J.Med.Chem.2005,48,4892-4909.
    [67]Pelckmans,K.;Suykens,J.A.K.;Van Gestel,T.;De Brabanter,D.;Lukas,L.;Hamers,B.;De Moor,B.;Vandewalle,J.LS-SVMlab:a Matlab/C Toolbox for Least Squares Support Vector Machines,Internal Report 02-44,ESATSISTA,K.U.Leuven:Leuven.2002.
    [68]Schwartz,M.W.;Woods,S.C.;Porte,D.;Jr.,Seeley,R.J.;Baskin,D.G.Central nervous system control of food intake.Nature 2000,404,661-671.
    [69]Saito,Y.;Nothacker,H.P.;Civelli,O.Melanin-concentrating hormone receptor:an orphan receptor fits the key.Trends Endocrinol.Metab.2000,11,299-303.
    [70]Qu,D.;Ludwig,D.S.;Gammeltoft,S.;Piper,M.;Pelleymounter,M.A.;Cullen,M.J.;Mathes,W.F.;Przypek,J.;Kanarek,R.;Maratos-Flier,E.A role for melanin-concentrating hormone in the central regulation of feeding behavior.Nature 1996,243-247.
    [71]Della-Zuana,O.;Presse,F.;Ortola,C.;Duhault,J.;Nahon,J.L.;Levens,N.Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats.Int.J.Obes.Relat.Metab.Disord.2002,26,1289-1295.
    [72]Hervieu,G.Melanin-concentrating hormone functions in the nervous system:food intake and stress.Expert Opin.Ther.Targets 2003,7,495-511.
    [73]Tavares,F.X.;Al-Barazanji,K.A.;Bigham,E.C.;Bishop,M.J.;Britt,C.S.;Carlton,D.L.;Feldman,P.L.;Goetz,A.S.;Grizzle,M.K.;Guo,Y.C.;Handlon,A.L.;Hertzog,D.L.;Ignar,D.M.;Lang,D.G.;Ott,R.J.;Peat,A.J.;Zhou,H.Q.Potent,Selective,and Orally Efficacious Antagonists of Melanin-Concentrating Hormone Receptor 1.J.Med.Chem.2006,49,7095-7107.
    [74]Tavares,F.X.;Al-Barazanji,K.A.;Bishop,M.J.;Britt,C.S.;Carlton,D.L.;Cooper,J.P.;Feldman,P.L.;Garrido,D.M.;Goetz,A.S.;Grizzle,M.K.;Hertzog,D.L.;Ignar,D.M.;Lang,D.G.;McIntyre,M.S.;Ott,R.J.;Peat,A.J.;Zhou,H.Q.6-(4-Ch lorophenyl)-3-substituted-thieno[3,2-d]pyrimidin-4(3H)-one-Based Melanin-Concentrating Hormone Receptor 1 Antagonist.J.Med.Chem.2006,49,7108-7118.
    [75]Talete srl.DRAGON for Windows (Software for molecular Descripto Calculation),5.4 2006.
    [76]Todeschini,R.;Consonni,V.Hanbook of Molecular Descriptors.Wiley-VCH:Germany,2000.
    [77]Gasteiger,J.;Zupan,J.Neural Networks in Chemistry.Angew.Chem.Int.Edit.in English 1993,32,503-527.
    [78]Rogers,D.;Hopfinger,A.J.Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Structure-Property Relationship.J.Chem.Inf.Comput.Sci.1994,34,854.
    [79]Todeschini,R.;Maiocchi,A.;Consonni,V.The K correlation Index:Theory Development and its Application in Chemometrics.Chemom.Int.Lab.Syst.1999,46,13-29.
    [80]Zupan,J.;Novi(?),M.;Ruis(?)nchez,I.Kohonen and counterpropagation artificial neural networks in analytical chemistry.Chemom.Int.Lab.Syst.1997,38,1-23.
    [81]Atkinson,A.C.Plots,Transformations and Regression:An Introduction to Graphical Methods of Diagnostic Regression Analysis.Clarendon Press:Oxford,1985.
    [82]Ferreira,C.Gene Expression Programming,Mathematical Modeling by an Artificial Intelligence.1st ed.Springer-Verlag,Germany:2002.
    [83]Suykens,J.A.K.;Vandewalle,J.;De Moor,B.Optimal control using least-squares support vector machines.Neural Networks 2001,14,23-35.
    [84]http://www.gepsoft.com/gepsoft.
    [1] Rogers D., H. A. J., Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Structure-Property Relationship. J. Chem. Inf. Comput.Sci. 1994,34, 854.
    [2] Leardi, R. B., R.; Terrile, M., Genetic algorithms as a strategy for feature selection. J.Chemom. 1992,6,267-281.
    [3] Gramatica, P.; Pilutti, P.; Papa, E., Validated QSAR Prediction of OH Tropospheric Degradation of VOCs: Splitting into Training/Test Sets and Consensus Modeling. J. Chem.Inf. Comput. Sci.2004,44, 1794-1802.
    [4] Gramatica, P.; Giani, E.; Papa, E., Statistical external validation and consensus modeling: A QSPR case study for Koc prediction. J. Mol. Graphics Model.2007,25, 755-766.
    [5] Sutherland, J. J.; Weaver, D. F., Development of Quantitative Structure-Activity Relationships and Classification Models for Anticonvulsant Activity of Hydantoin Analogues.J. Chem. Inf. Comput. Sci. 2003,43, 1028-1036.
    [6] Hewitt, M.; Cronin, M. T. D.; Madden, J. C.; Rowe, P. H.; Johnson, C.; Obi, A.; Enoch, S. J.,Consensus QSAR Models: Do the Benefits Outweigh the Complexity? J. Chem. Inf. Model.2007, 47, 1460-1468.
    [7] Votano, J. R.; Parham, M.; Hall, L. H.; Kier, L. B.; Oloff, S.; Tropsha, A.; Xie, Q.; Tong, W.,Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 2004,19,365-377.
    [8] Asikainen, A. H.; Ruuskanen, J.; Tuppurainen, K. A., Consensus kNN QSAR: A Versatile Method for Predicting the Estrogenic Activity of Organic Compounds In Silico. A Comparative Study with Five Estrogen Receptors and a Large, Diverse Set of Ligands.Environ. Sci. Technol. 2004,38, 6724-6729.
    [9] Asikainen, A. H. R., J.; Tuppurainen, K. A., Performance of (consensus) kNN QSAR for predicting estrogenic activity in a large diverse set of organic compounds SAR QSAR Environ.Res. 2004,15, 19-32.
    [10] Li, Y.; Shao, X.; Cai, W., A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 2007, 72, 217-222.
    [11]Horvath, D.; Bonachera, F.; Solov'ev, V.; Gaudin, C.; Varnek, A., Stochastic versus Stepwise Strategies for Quantitative Structure-Activity Relationship Generation How Much Effort May the Mining for Successful QSAR Models Take? J. Chem. Inf. Model. 2007, 47, 927-939.
    [12] Katritzky, A. R.; Kuanar, M.; Slavov, S.; Dobchev, D. A.; Fara, D. C.; Karelson, M.; Acree,J. W. E.; Solov'ev, V. P.; Varnek, A., Correlation of blood-brain penetration using structural descriptors. Bioorg. Med. Chem. 2006, 14, .4888-4917.
    [13] Wang, J.; Krudy, G.; Xie, X.-Q.; Wu, C.; Holland, G., Genetic Algorithm-Optimized QSPR Models for Bioavailability, Protein Binding, and Urinary Excretion. J. Chem. Inf. Model.2006,46,2674-2683.
    [14] Yap, C. W.; Li, Z. R.; Chen, Y. Z., Quantitative structure-pharmacokinetic relationships for drug clearance by using statistical learning methods. J. Mol. Graphics Model. 2006, 24,383-395.
    [15] Su, Z.; Hong, H.; Perkins, R.; Shao, X.; Cai, W.; Tong, W., Consensus analysis of multiple classifiers using non-repetitive variables: Diagnostic application to microarray gene expression data. Comput. Biol. Chem. 2007,31, 48-56.
    [16] Todeschini, R.; Consonni, V.; Pavan, M., A distance measure between models: a tool for similarity/diversity analysis of model populations. Chemometr. Intell. Lab.Syst. 2004, 70,55-61.
    [17] Kolattukudy, P. E. P., A. J.; Kim, Y. S., Malonyl-CoA decarboxylase from avian,mammalian, and microbial sources. Methods Enzymol 1981, 71, 150-163.
    [18]Cheng, J. F.; Chen, M.; Wallace, D.; Tith, S.; Haramura, M.; Liu, B.; Mak, C. C.; Arrhenius,T.; Reily, S.; Brown, S.; Thorn, V.; Harmon, C; Barr, R.; Dyck, J. R. B.; Lopaschuk, G. D.;Nadzan, A. M. Synthesis and Structure-Activity Relationship of Small- Molecular Malonyl Coenzyme A Decarboxylase Inhibitors. J Med Chem 2006,49, 1517-1525.
    [19] Zammit, V. A., The malonyl-CoA-long-chain acyl-CoA axis in the maintenance of mammalian cell function. Biochem. J. 1999, 343, 505-515.
    [20] McGarry, J.D.; Brown, N.F. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. Eur. J. Biochem. 1997, 244, 1-14.
    [21] McGarry, J. D.; Mills, S. E.; Long, C. S.; Foster, D. W. Observations on the affinity for carnitine, and malonyl-CoA sensitivity, of carnitine palmitoyltransferase Ⅰ in animal and human tissues.Demonstration of the presence of malonyl-CoA in non-hepatic tissues of the rat.Biochem.J.1983,214,21-28.
    [22]McGarry,J.D.;Leatherman,G.F.;Foster,D.W.Carnitine palmitoyltransferase I.The site of inhibition of hepatic fatty acid oxidation by malonyl-CoA.J.Biol.Chem.1978,253,4128-4136.
    [23]Chien,D.;Dean,D.;Saha,A.K.;Flatt,J.P.;Ruderman,N.B.Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo.Am.J.Physiol.Endocrinol.Metab.2000,279,E259-265.
    [24]Randle,P.J.Garland,P.B.;Hales,C.N.;Newsholme,E.A.The Glucose-Fatty Acid Cycle.Its Role in Insulin Sensitivity and the Metabolic Disturbances of Diabetes Mellitus.Lancet.1963,1,785-789.
    [25]Randle,P.J.Regulatory Interactions between Lipids and Carbohydrates:The Glucose Fatty Acid Cycle after 35 Years.Diabetes Metab.Rev.1998,14,263-283.
    [26]Lopaschuk,G.D.Metabolic Abnormalities in the Diabetic Heart.Heart Failure Rev.2002,7,149-159.
    [27]Carley,A.N.;Severson,D.L.Fatty Acid Metabolism Is Enhanced in Type 2 Diabetic Hearts.Biochim.Biophys.Acta 2005,1734,112-126.
    [28]I Iearse,D.Metabolic Approaches to Ischemic Heart Disease and Its Management.Science Press Ltd.:New York,1998.
    [29]Lopaschuk,G.D.;Rebeyka,I.M.;Allard,M.F.Metabolic Modulation:A Means To Mend a Broken Heart.Circulation 2002,105,140-142.
    [30]Lopaschuk,G.D.Targets for Modulation of Fatty Acid Oxidation in the Heart.Curr.Opin.Invest.Drugs 2004,5,290-294.
    [31]Pauly,D.F.;Pepine,C.J.Ischemic Heart Disease:Metabolic Approaches to Management.Clin.Cardiol.2004,27,439-441.
    [32]Grynberg,A.Effectors of Fatty Acid Oxidation Reduction:Promising New Anti-Ischaemic Agents.Curr.Pharm.Des.2005,11,489-509.
    [33]Stanley,W.C.Partial fatty acid oxidation inhibitors for stable angina.Expert Opin.Investig.Drugs 2002,11,615-629.
    [34]Clifford,D.L.;Folmes,G.D.Lopaschuk Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Cardiovasc. Res. 2007,73,278-287.
    [35] Cheng, J. F.; Chen, M.; Wallace, D.; Tith, S.; Haramura, M.; Liu, B.; Mak, C. C; Arrhenius,T.; Reily, S.; Brown, S.; Thorn, V.; Harmon, C; Barr, R.; Dyck, J. R. B.; Lopaschuk, G. D.;Nadzan, A. M. Synthesis and Structure-Activity Relationship of Small-Molecule Malonyl Coenzyme A Decarboxylase Inhibitors.J. Med. Chem. 2006,49, 1517-1525.
    [36] Cheng, J. F.; Chen, M; Liu, B.; Hou, Z.; Arrhenius, T.; Nadzan, A. M. Design and synthesis of heterocyclic malonyl-CoA decarboxylase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16,695-700.
    [37] Cheng, J. F.; Huang, Y. J.; Penuliar, R.; Nishimoto, M.; Liu, L.; Arrhenius, T.; Yang, G.;O'Leary, E.; Barbosa, M.; Barr, R.; Dyck, J. R. B.; Lopaschuk, G. D.; Nadzan, A. M.Discovery of Potent and Orally Available Malonyl-CoA Decarboxylase Inhibitors as Cardioprotective Agents. J. Med. Chem. 2006,49, 4055-4058.
    [38] Cheng, J. F.; Mark, C. C.; Huang, Y. J.; Penuliar, R.; Nishimoto, M.; Zhang, L.; Chen, M.;Wallace, D.; Arrhenius, T.; Chu, D.; Yang, G.; Barbosa, M.; Barr, R.; Dyck, J. R. B.;Lopaschuk, G. D.; Nadzan, A. M. Heteroaryl substituted bis-trifluoromethyl carbinols as malonyl-CoA decarboxylase inhibitors. Bioorg. Med. Chem. Lett. 2006, 16, 3484-3488.
    [39] Wallace, D. M.; Haramura, M.; Cheng, J. F.; Arrhenius, T.; Nadzan, A. M. Novel trifluoroacetophenone derivatives as malonyl-CoA decarboxylase inhibitors. Bioorg. Med.Chem. Lett. 2007, 17, 1127-1130.
    [40] Lopaschuk, G. D.; Stanley, W. C. Malonyl-CoA Decarboxylase Inhibition as a Novel Approach to Treat Ischemic Heart Disease. Cardiovasc. Drugs Ther. 2006,20, 433-439.
    [41] ChemDraw, Cambriagesoft Corporation, USA, , 1985-2003.
    [42] HyperChem 7.0, Hypercube. Inc.,. 2002.
    [43] Talete srl. DRAGON for Windows (Software for molecular Descripto Calculation), 5.4 2006.
    [44] Todeschini, R.; Consonni, V. Hanbook of Molecular Descriptors. Wiley-VCH: Germany,2000.
    [45] Todeschini R., Maiocchi A., Consonni V. The K correlation Index : Theory Development and its Application in Chemometrics. Chemom. Int. Lab. Syst. 1999,46, 13-29.
    [46] Zupan, J.; Novic, M.; Ruisanchez, I. Kohonen and Counter propagation Artificial Neural Networks in Analytical Chemistry.Chemom.Int.Lab.Syst.1997,38,1-23.
    [47]Ren,Y.Y.Application of QSPR/QSAR Studies in Medicinal Chemistry,Analytical Chemistry and Environmental Science.Lanzhou University,Lanzhou,2007.
    [48]http://www.oecd.org/dataoecd/33/37/37849783,.pdf
    [49]Atkinson,A.C.plots,transformations and regression.Clarendon Press:Oxford,1985.
    [50]Mead,A.Review of the development of multidimensional scaling methods.The Statistician 1992,121,315-324.
    [51]Li,J.Z.;Lei,B.L.;Liu,H.X.;Li,S.Y.;Yao,X.J.;Liu,M.C.;Gramatica,P.QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling.J.Comput.Chem.2008,29,2636-2647.
    [52]Consonni,V.;Tdeschini,R.;Pavan M.;Gramatica,P.;Structure/Response Correlations and Similarity/Diversity Analysis by GETAWAY Descriptors.2.Application of the Novel 3D Molecular Descriptors to QSAR/QSPR Studies.J.Chem.Inf.Comput.Sci.2002,42,693-705.
    [53]Todeschini R.,G.P.,The WHIM theory:New 3D molecular descriptors for QSAR in environmental modelling.SAR QSAR Environ.Res.1997,7,89-115.
    [54]Atkinson,A.C.,Plots,Transformations and Regression:An Introduction to Graphical Methods of Diagnostic Regression Analysis.Clarendoli Press:Oxford,1985.
    [55]Hemmateenejad,B.;Javadnia,K.;Elyasi,M.Quantitative structure-retention relationship for the Kovats retention indices of a large set of terpenes:A combined data splitting-feature selection strategy.Anal.Chim.Acta 2007,592,72-81.
    [56]Hemmateenejad,B.Optimal QSAR analysis of the carcinogenic activity of drugs by correlation ranking and genetic algorithm-based PCR.J.Chemometr 2004,18,475-485.
    [57]Alexander,G.;Alexander,T.Beware of q2! J.Mol.Graphics Modell.2002,20,269-276.
    [58]Molina,T.J.;Kishihara,K.;Siderovskid,D.P.;van Ewijk,W.;Narendran,A.;Timms,E.;Wakeham,A.;Paige,C.J.;Hartmann,K.U.;Veillette,A.;Davidson,D.;Mak,T.W.Profound block in thymocyte development in mice lacking p56~(Lck).Nature 1992,357,161-164.
    [59]Wen,T.;Zhang,L.;Sam,K.P.K.;Thierry,J.M.;Richard,G.M.;Tak,W.M.Allo-skin graft rejection,tumor rejection and natural killer activity in mice lacking p56~(Lck).Eur.J.Immunol. 1995,25,3155-3159.
    [60]Levin,S.D.;Anderson,S.J.;Forbush,K.A.;Perlmutter,R.M.A dominant-negative transgene defines a role for p56~(Lck) in thymopoiesis.EMBO J.1993,12,1671-1680.
    [61]Kamens,J.S.;Ratnofsky,S.E.;Hirst,G.C.Lck inhibitors as a therapeutic approach to autoimmune disease and transplant rejection.Curr.Opin.In Vest.Drugs 2001,2,1213-1219.
    [62]Dowden,J.;Ward,S.G.Inhibitors of p56Lck:assessing their potential as tools for manipulating T-lymphocyte activation.Expert Opin.Ther:2001,11,295-306.
    [63]Boschelli,D.H.;Boschelli,F.Small molecule inhibitors of Src family kinases.Drugs Future 2000,25,717-736.
    [64]Susa,M.;Teti,A.Tyrosine kinase src inhibitors:potential therapeutic applications.Drug News Perspect.2000,13,169-175.
    [65]Yu,C.L.;Jove,R.;Burakoff,S.J.Constititive activation of the Janus kinase-STAT pathway in T lymphoma overexpressing the Lck protein tyrosine kinase.J.Immunol.1997,159,5206-5210.
    [66]Majolini,M.B.;Boncristiano,M;Baldari,C.T.Dysregulation of the protein tyrosine kinase LCK in lymphoproliferative disorders and in other neoplasias.Leuk.Lymphoma 1999,35,245-254.
    [67]Majolini,M.B.;D'Elios,M.M.,Galieni,P.;Boncristiano,M.;Lauria,F.;Del Prete,G.;Telford,J.L.;Baldari,C.T.Expression of the T-Cell-Specific Tyrosine Kinase Lck in Normal B-1 Cells and in Chronic Lymphocytic Leukemia B Cells.Blood 1998,91,3390-3396.
    [68]Von Knethen,A.;Abts,H.;Kube,D.;Diehl,V.;Tesch,H.Expression of p56~(Lck) in B-cell neoplasias.Leuk.Lymphoma 1997,26,551-562.
    [69]Nakamura,K.;Chijiiwa,Y.;Nawata,H.Augmented expression of LCK message directed from the downstream promoter in human colorectal cancer specimens.Eur.J.Cancer 1996,32,1401-1407.
    [70]McCracken,S.;Kim,C.S.;Xu,Y.;Minden,M.;Miyamoto,N.G.An alternative pathway for expression of p56~(Lck) from type 1 promoter transcripts in colon carcinoma.Oncogene 1997,15,2929-2937.
    [71]Veillette,A.;Foss,F.M.;Sausville,E.A.;Bolen,J.B.;Rosen,N.Expression of the 1ck tyrosine kinase gene in human colon carcinoma and other non-lymphoid human tumor cell lines.Oncogene Res.1987,1,357-374.
    [72]Krystal,G.W.;DeBerry,C.S.;Linnekin,D.;Litz,J.Lck Associates with and Is Activated by Kit in a Small Cell Lung Cancer Cell Line:Inhibition of SCF-mediated Growth by the Src Family Kinase Inhibitor PP1.Cancer Res.1998,58,4660-4666.
    [73]Das,J.;Chen,P.;Norris,D.;Padmanabha,R.;Lin,J.;Moquin,R.V.;Shen,Z.;Cook,L.S.;Doweyko,A.M.;Pitt,S.;Pang,S.;Shen,D.R.;Fang,Q.;de Fex,H.F.;McIntyre,K.W.;Shuster,D.J.;Gillooly,K.M.;Behnia,K.;Schieven,G.L.;Wityak,J.;Barrish,J.C.2-Aminothiazole as a Novel Kinase Inhibitor Template.Structure-Activity Relationship Studies toward the Discovery of N-(2-Chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (Dasatinib,BMS-354825) as a Potent pan-Src Kinase Inhibitor.J.Med.Chem.2006,49,6819-6832.
    [74]Chen,P.;Norris,D.;Das,J.;Spergel,S.H.;Wityak,J.;Leith,L.;Zhao,R.;Chen,B.-C.;Pitt,S.;Pang,S.;Shen,D.R.;Zhang,R.;De Fex,H.F.;Doweyko,A.M.;McIntyre,K.W.;Shuster,D.J.;Behnia,K.;Schieven,G.L.;Barrish,J.C.Discovery of novel 2-(aminoheteroaryl)-thiazole-5-carboxamides as potent and orally active Src-family kinase p56~(Lck) inhibitors.Bioorg.Med.Chem.Lett.2004,14,6061-6066.
    [75]Wityak,J.;Das,J.;Moquin,R.V.;Shen,Z.;Lin,J.;Chen,P.;Doweyko,A.M.;Pitt,S.;Pang,S.;Shen,D.R.;Fang,Q.,de Fex,H.F.;Schieveli,G.L.;Kanner,S.B.;Barrish,J.C.Discovery and initial SAR of 2-amino-5-carboxamidothiazoles as inhibitors of the Src-family kinase p56~(Lck).Bioorg.Med.Chem.Lett.2003,13,4007-4010.
    [76]Das,J.;Moquin,R.V.;Lin,J.;Liu,C.;Doweyko,A.M.;DeFex,H.F.;Fang,Q.;Pang,S.;Pitt,S.;Shen,D.R.;Schieven,G.L.;Barrish,J.C.;Wityak,J.Discovery of 2-amino-heteroaryl-benzothiazole-6-anilides as potent p56~(Lck) inhibitors.Bioorg.Med.Chem.Lett.2003,13,2587-2590.
    [77]Das,J.;Lin,J.;Moquin,R.V.;Shen,Z.;Spergel,S.H.;Wityak,J.;Doweyko,A.M.;DeFex,H.F.;Fang,Q.;Pang,S.;Pitt,S.;Shen,D.R.;Schieven,G.L.;Barrish,J.C.Molecular design,synthesis,and structure-Activity relationships leading to the potent and selective p56~(Lck) inhibitor BMS-243117.Bioorg.Med.Chem.Lett.2003,13,2145-2149.
    [78]Chen,P.;Doweyko,A.M.;Norris,D.;Gu,H.H.;Spergel,S.H.;Das,J.;Moquin,R.V.;Lin,J.;Wityak,J.;Iwanowicz,E.J.;McIntyre,K.W.;Shuster,D.J.;Behnia,K.;Chong,S.;de Fex,H.;Pang,S.;Pitt,S.;Shen,D.R.;Thrall,S.;Stanley,P.;Kocy,O.R.;Witmer,M.R.;Kanner,S.B.;Schieven,G.L.;Barrish,J.C.Imidazoquinoxaline Src-Family Kinase p56~(Lck) Inhibitors:SAR,QSAR,and the Discovery of (S)-N-(2-Chloro-6-methylphenyl)-2-(3-methyl-1-piperazinyl)imidazo-[1,5-a]pyrido[3,2-e]pyrazin-6-amine (BMS-279700) as a Potent and Orally Active Inhibitor with Excellent in Vivo Anti inflammatory Activity.J.Med.Chem.2004,47,4517-4529.
    [79]Chen,P.;Iwanowicz,E.J.;Norris,D.;Gu,H.H.;Lin,J.;Moquin,R.V.;Das,J.;Wityak,J.;Spergel,S.H.;de Fex,H.;Pang,S.;Pitt,S.;Shen,D.R.;Schieven,G.L.;Barrish,J.C.Synthesis and SAR of novel imidazoquinoxaline-Based Lck inhibitors:improvement of cell potency.Bioorg.Med.Chem.Lett.2002,12,3153-3156.
    [80]Chen,P.;Norris,D.;Iwanowicz,E.J.;Spergel,S.H.;Lin,J.;Gu,H.H.;Shen,Z.;Wityak,J.;Lin,T.-A.;Pang,S.;De Fex,H.F.;Pitt,S.;Shen,D.R.;Doweyko,A.M.;Bassolino,D.A.;Roberge,J.Y.;Poss,M.A.;Chen,B.-C.;Schieven,G.L.;Barrish,J.C.Discovery and initial SAR of imidazoquinoxalines as inhibitors of the Src-family kinase p56~(Lck).Bioorg.Med.Chem.Lett.2002,12,1361-1364.
    [81]Li,J.Z.;Lei,B.L.;Xi L.L.;Liu,H.X.;Yao X.J.;Liu,M.C.;Gramatica,P.Low-energy conformation selection in QSAR modeling,part 1:The influence of original optimization methods.J.Comput.Chem.submitted 2009.
    [82]Harary,F.,Graph Theory.Addison-Wesley,Reading (MA),:1969.
    [83]Galvez,J.;Garcia,R.;Salabert,M.T.;Soler,R.,Charge Indexes.New Topological Descriptors.J.Chem.Inf.Comput.Sci.1994,34,520-525.
    [1]Guha,R.;Dutta,D.;Jurs,P.C.Chen,T.Local Lazy Regression:Making Use of the Neighborhood to Improve QSAR Predictions.J.Chem.Inf.Model.2006,46,1836-1847.
    [2]Aha,D.W.Lazy Learning.Artif Intell.Rev.1997,11,7-10.
    [3]Armengol,E.;Plaza,E.Relational Case-Based Reasoning for Carcinogenic Activity Prediction.Artif.Intell.Rev.2003,20,121-141.
    [4]Armengol,E.;Plaza,E.Discovery of Toxicological Patterns with Lazy Learning.Knowl.-Based Intell.Inf.Eng.Syst.,Pt 2,Proc.2003,2774,919-926.
    [5]Atkeson,C.G.;Moore,A.W.;Schaal,S.Locally Weighted Learning.Artif.Intell.Rev.1997,11,11-73.
    [6]Birattari,M.;Bontempi,G.;Bersini,H.Lazy learning for modeling and control design.Int.J.Control 1999,72,643-658.
    [7]Corani,G.Air quality prediction in Milan:feed-forward neural networks,pruned neural networks and lazy learning.Ecol.Model.2005,185,513-529.
    [8]Kipouros,K.;Kachrimanis,K.;Nikolakakis,I.;Malamataris,S.Quantitative analysis of less soluble form Ⅳ in commercial carbamazepine (form Ⅲ) by diffuse reflectance fourier transform spectroscopy (DRIFTS) and lazy learning algorithm.Anal.Chim.Acta 2005,550,191-198.
    [9]Kipouros,K.;Kachrimanis,K.;Nikolakakis,I.Tserki,V.Malamataris,S.Simultaneous Quantification of Carbamazepine Crystal Forms in Ternary Mixtures (Ⅰ,Ⅲ,and Ⅳ) by Diffuse Reflectance FTIR Spectroscopy (DRIFTS) and Multivariate Calibration.J.Pharm.Sci.2006,95,2419-2431.
    [10]Zhang,M.L.;Zhou,Z.H.ML-KNN:Alazy learning approach to multi-label learning.Pattern Recogn.2007,40,2038-2048.
    [11]Zhang,S.X.;Golbraikh,A.;Oloff,S.;Kohn,H.;Tropsha,A.A Novel Automated Lazy Learning QSAR (ALL-QSAR) Approach:Method Development,Applications,and Virtual Screening of Chemical Databases Using Validated ALL-QSAR Models.J.Chem.Inf.Model.2006,46,1984-1995.
    [12]Wettschereck,D.;Aha,D.W.;Mohri,T.A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms.Artif.Intell.Rev.1997,11,273-314.
    [13]Bajorath,J.METHODS IN MOLECULAR BIOLOGY-Chemoinformatics.Concepts,Methods,and Tools for Drug Discovery.Humana Press:Vol.275.
    [14]Basak,S.C.;Bertelsen,S.;Grunwald,G.D.,Use of graph theoretic parameters in risk assessment of chemicals.Toxicol.Lett.1995,79,239-250.
    [15]Martin,Y.C.;Kofron,J.L.;Traphagen,L.M.Do Structurally Similar Molecules Have Similar Biological Activity? J.Med.Chem.2002,45,4350-4358.
    [16]http://ecb.jrc.ec.europa.eu/qsar/background/index.php?c=CAT.Read across.
    [17]Gramatica,P.Principles of QSAR models validation:internal and external.QSAR Comb.Sci.2007,26,694-701.
    [18]Alexander,G.;Alexander,T.Beware of q2! J.Mol.Graph.Model.2002,20,269-276.
    [19]Tropsha,A.;Gramatica,P.;Gombar,V.K.The Importance of Being Earnest:Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models.QSAR Comb Sci 2003,22,69-77.
    [20]http://www.who.int/mediacentre/factsheets/fs311/en/
    [21]http://www.iaso.org/.
    [22]Bray,G.A.;Tartaglia,L.A.Medicinal strategies in the treatment obesity.Nature 2000,404,672-677.
    [23]Fern(?)ndez-L(?)pez,J.A.;Remesar,X.;Foz,M.;Alemany,M.Pharmacological approaches for the treatment of obesity.Drugs 2002,62,915-944.
    [24]DeFronzo,R.A.;Ferrannini,E.;Keen,H.;Zimmet,P.International Textbook of Diabetes Mellitus,3rd ed.John Wiley & Sons:Chichester,U.K.,2004;Vol.673-690.
    [25]Schwartz,M.W.;Woods,S.C.;Porte,D.;Jr.,Seeley,R.J.;Baskin,D.G.Central nervous system control of food intake.Nature 2000,404,661-671.
    [26]Dhillo,W.S.;Bloom,S.R.Hypothalamic peptides as drug targets for obesity.Curr.Opin.Pharmacol.2001,1,651-655.
    [27]Largent,B.L.;Robichaud,A.J.;Miller,K.J.Promise and Progress of Central G-Protein Coupled Receptor Modulators 1 for Obesity Treatments.Ann.Rep.Med.Chem.2002,37,1-10.
    [28]Saito,Y.;Nothacker,H.P.;Civelli,O.Melanin-concentrating hormone receptor:an orphan receptor fits the key.Trends Endocrinol.Metab.2000,11,299-303.
    [29]Qu,D.;Ludwig,D.S.;Gammeltoft,S.;Piper,M.;Pelleymounter,M.A.;Cullen,M.J.;Mathes,W.F.;Przypek,J.;Kanarek,R.;Maratos-Flier,E.A role for melanin-concentrating hormone in the central regulation of feeding behavior.Nature 1996,243-247.
    [30]Della-Zuana,O.;Presse,F.;Ortola,C.;Duhault,J.;Nahon,J.L.;Levens,N.Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats.Int.J.Obes.Relat.Metab.Disord.2002,26,1289-1295.
    [31]Hervieu,G.Melanin-concentrating hormone functions in the nervous system:food intake and stress.Expert Opin.Ther.Targets 2003,7,495-511.
    [32]Tan,C.P.;Sano,H.;Iwaasa,H.;Pan,J.;Sailer,A.W.;Hreniuk,D.L.;Feighner,S.D.;Palyha,G.C.;Pong,S.S.;Figueroa,D.J.;Austin,C.P.;Jiang,M.M.;Yu,H.;Ito,H.;Ito,J.;Ito,M.;Guan,X.M.;MacNeil,D.J.;Kanatani,A.;Van der Ploeg,L.H.;Howard,A.D.Melanin-concentrating hormone receptor subtypes 1 and 2:Speciesspecific gene expression.Genomics 2002,79,785-792.
    [33]Ludwig,D.S.;Mountjoy,K.G.;Tatro,J.B.;Gillette,J.A.;Frederich,R.C.;Flier,J.S.;Maratos-Flier,E.Melanin-concentrating hormone:a functional melanocortin antagonist in the hypothalamus.Am.J.Physiol.1998,274,627-633.
    [34]Marsh,D.J.;Weingarth,D.T.;Novi,D.E.;Chen,H.Y.;Trumbauer,M.E.;Chen,A.S.;Guan,X.M.;Jiang,M.M.;Feng,Y.;Camacho,R.E.;Shen,Z.;Frazier,E.G.;Yu,H.;Metzger,J.M.;Kuca,S.J.;Shearman,L.P.;Gopal-Truter,S.;MacNeil,D.J.;Strack,A.M.;MacIntyre,D.E.;Van der Ploeg,L.H.T.;Qian,S.Melanin-concentrating hormone 1 receptor-deficient mice are lean,hyperactive,and hyperphagic and have altered metabolism.Proc.Natl.Acad.Sci.2002,99,3240-3245.
    [35] Takekawa, S.; Asami, A.; Ishihara, Y.; Terauchi, J.; Kato, K.; Shimomura, Y.; Mori, M.;Murakoshi, H.; Kato, K.; Suzuki, N.; Nishimura, 0.; Fujino, M. T-226296: a novel, orally active and selective melanin-concentrating hormone receptor antagonist. Eur. J. Pharmacol.2002,438, 129-135.
    [36] Chambers, J.; Ames, R. S.; Bergsma, D.; Muir, A.; Fitzgerald, L. R.; Hervieu, G.; Dytko, G.M.; Foley, J. J.; Martins, J.; Liu, W. S.; Park, J.; Ellis, C.; Ganguly, S.; Konchar, S.; Cluderay,J.; Leslie, R.; Wilson, S.; Sarau, H. M. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature 1999,400, 261-265.
    [37] Saito, Y; Nothacker, H. P.; Wang, Z.; Lin, S. H. S.; Leslie, F.; Civelli, O. Molecular characterization of the melanin-concentrating-hormone receptor. Nature 1999,400, 265-269.
    [38] Dyck, B.; Markison, S.; Zhao, L.; Tamiya, J.; Grey, J.; Rowbottom, M. W.; Zhang, M. Z.;Vickers, T.; Sorensen, K.; Norton, C; Wen, J.; Heise, C. E.; Saunders, J.; Conlon, P.; Madan,A.; Schwarz, D.; Goodfellow, V. S. A Thienopyridazinone-Based Melanin-Concentrating Hormone Receptor 1 Antagonist with Potent in Vivo Anorectic Properties. J. Med. Chem.2006,49, 3753-3756.
    [39] Ulven, T.; Frimurer, T. M.; Receveur, J. M.; Little, P. B.; Rist, (?). N(?)rregaard, P. K.;Hogberg, T. 6-Acylamino-2-aminoquinolines as Potent Melanin-Concentrating Hormone 1 Receptor Antagonists. Identification, Structure-Activity Relationship, and Investigation of Binding Mode. J. Med. Chem. 2005,48, 5684-5697.
    [40] McBriar, M. D.; Guzik, H.; Xu, R.; Paruchova, J.; Li, S. J.; Palani, A.; Clader, J. W;Greenlee, W. J.; Hawes, B. E.; Kowalski, T. J.; O'Neill, K.; Spar, B.; Weig, B. Discovery of Bicycloalkyl Urea Melanin Concentrating Hormone Receptor Antagonists: Orally Efficacious Antiobesity Therapeutics. J. Med. Chem. 2005,48, 2274-2277.
    [41] Kym, P. R.; Iyengar, R.; Souers, A. J.; Lynch, J. K.; Judd, A. S.; Gao, J.; Freeman, J.;Mulhern, M.; Zhao, G.; Vasudevan, A.; Wodka, D.; Blackburn, C.; Brown, J.; Che, J. L.;Cullis, C.; Lai, S. J.; LaMarche, M. J.; Marsilje, T.; Roses, J.; Sells, T.; Geddes, B.; Govek, E.;Patane, M.; Fry, D.; Dayton, B. D.; Brodjian, S.; Falls, D.; Brune, M.; Bush, E.; Shapiro, R.;Knourek-Segel, V.; Fey, T.; McDowell, C; Reinhart, G. A.; Preusser, L. C.; Marsh, K.;Hernandez, L.; Sham, H. L.; Collins, C.A. Discovery and Characterization of Aminopiperidinecoumarin Melanin Concentrating Hormone Receptor 1 Antagonists. J. Med. Chem. 2005,48,5888-5891.
    [42]Souers, A. J.; Gao, J.; Brune, M.; Bush, E.; Wodka, D.; Vasudevan, A.; Judd, A.S.; Mulhern,M.; Brodjian, S.; Dayton, B.; Shapiro, R.; Hernandez, L. E.; Marsh, K. C.; Sham, H. L.;Collins, C. A.; Kym, P. R. Identification of 2-(4-BenzyloxyphenyI)-N-[l-(2-pyrrolidin-l-yl-ethyI)-lH-indazoI-6-yI]acetamide, an Orally Efficacious Melanin-Concentrating Hormone Receptor 1 Antagonist for the Treatment of Obesity. J. Med.Chem. 2005,48, 1318-1321.
    [43] Lynch, J. K.; Freeman, J. C.; Judd, A. S.; Iyengar, R.; Mulhern, M.; Zhao, G.; Napier, J. J.;Wodka, D.; Brodjian, S.; Dayton, B. D.; Falls, D.; Ogiela, C.; Reilly, R. M.; Campbell, T. J.;Polakowski, J. S.; Hernandez, L.; Marsh, K. C.; Shapiro, R.; Knourek-Segel, V.; Droz, B.;Bush, E.; Brune, M.; Preusser, L. C.; Fryer, R. M.; Reinhart, G. A.; Houseman, K.; Diaz, G.;Mikhail, A.; Limberis, J. T.; Sham, H. L.; Collins, C. A.; Kym, P. R. Optimization of Chromone-2-carboxamide Melanin Concentrating Hormone Receptor 1 Antagonists:Assessment of Potency, Efficacy, and Cardiovascular Safety. J. Med. Chem. 2006, 49,6569-6584.
    [44] Clark, D. E.; Higgs, C.; Wren, S. P.; Dyke, H. J.; Wong, M.; Norman, D.; Lockey, P. M.;Roach, A. G. A Virtual Screening Approach to Finding Novel and Potent Antagonists at the Melanin-Concentrating Hormone 1 Receptor. J. Med. Chem. 2C04,47, 3962-3971.
    [45]Palani, A.; Shapiro, S.; McBriar, M. D.; Clader, J. W.; Greenlee, W. J.; Spar, B.; Kowalski, T.J.; Farley, C.; Cook, J.; van Heek, M.; Weig, B.; O'Neill, K.; Graziano, M.; Hawes, B. Biaryl Ureas as Potent and Orally Efficacious Melanin Concentrating Hormone Receptor 1 Antagonists for the Treatment of Obesity. J. Med. Chem. 2005,48, 4746-4749.
    [46]McBriar, M. D.; Guzik, H.; Shapiro, S.; Paruchova, J.; Xu, R.; Palani, A.; Clader, J. W.; Cox,K.; Greenlee, W. J.; Hawes, B. E.; Kowalski, T. J.; O'Neill, K.; Spar, B. D.; Weig, B.; Weston,D. J.; Farley, C.; Cook, J. Discovery of Orally Efficacious Melanin-Concentrating Hormone Receptor-1 Antagonists as Antiobesity Agents. Synthesis, SAR, and Biological Evaluation of Bicyclo[3.1.0]hexyl Ureas. J. Med. Chem. 2006,49, 2294-2310.
    [47]Tavares, F.X.; Al-Barazanji, K. A.; Bigham, E. C.; Bishop, M. J.; Britt, C. S.; Carlton, D. L.;Feldman, P. L.; Goetz, A. S.; Grizzle, M. K.; Guo, Y. C.; Handlon, A. L.; Hertzog, D. L.; Ignar,D. M.; Lang, D. G.; Ott, R. J.; Peat, A. J.; Zhou, H. Q. Potent, Selective, and Orally Efficacious Antagonists of Melanin-Concentrating Hormone Receptor 1.J.Med.Chem.2006,49,7095-7107.
    [48]Tavares,F.X.;Al-Barazanji,K.A.;Bishop,M.J.;Britt,C.S.;Carlton,D.L.;Cooper,J.P.;Feldman,P.L.;Garrido,D.M.;Goetz,A.S.;Grizzle,M.K.;Hertzog,D.L.;Ignar,D.M.;Lang,D.G.;McIntyre,M.S.;Ott,R.J.;Peat,A.J.;Zhou,H.Q.6-(4-Chlorophenyl)-3-substituted-thieno[3,2-d]pyrimidin-4(3H)-one-Based Melanin-Concentrating Hormone Receptor 1 Antagonist.J.Med.Chem.2006,49,7108-7118.
    [49]Talete srl.DRAGON for Windows (Software for molecular Descripto Calculation),5.4 2006.
    [50]Todeschini,R.;Consonni,V.Hanbook of Molecular Descriptors.Wiley-VCH:Germany,2000.
    [51]Zupan,J.;Novi(?),M.;Ruis(?)nchez,I.Kohonen and counterpropagation artificial neural networks in analytical chemistry.Chemom.Int.Lab.Syst.1997,38,1-23.
    [52]Gasteiger,J.;Zupan,J.Neural Networks in Chemistry.Angew.Chem.Int.Edit in English 1993,32,503-527.
    [53]Rogers,D.;Hopfinger,A.J.Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Structure-Property Relationship.J.Chem.Inf.Comput.Sci.1994,34 854-866.
    [54]Leardi,R.;Boggia,R.;Terrile,M.Genetic algorithms as a strategy for feature selection.J.Chemom.1992,6,267-281.
    [55]Birattari,M.;Bontempi,G.The lazy learning toolbox,for use with matlab.available at http://iridia.ulb.ac.be/~lazy/,1.1;1999.
    [56]Atkinson,A.C.plots,transformations and regression.Clarendon Press:Oxford,1985.
    [1]Pardee,A.B.G1 events and regulation of cell proliferation.Science 1989,246,603-608.
    [2]Bramson,H.N.;Corona,J.;Davis,S.T.;Dickerson,S.H.;Edelstein,M.;Frye,S.V.;Gampe Jr., R. T.; Harris, P. A.; Hassell, A.; Holmes, W. D.; Hunter, R. N.; Lackey, K. E.; Lovejoy, B.;Luzzio, M. J.; Montana, V.; Rocque, W. J.; Rusnak, D.; Shewchuk, L.; Veal, J. M; Walker, D.H.; Kuyper, L. F. Oxindole-based inhibitors of cyclin-dependent kinase 2 (CDK2): design,synthesis, enzymatic activities, and X-ray crystallographic analysis. J. Med. Chem. 2001, 44,4339-4358.
    [3] Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev.CellDev. Biol. 1997,13, 261-291.
    [4] Gillet, C. E.; Barnes, D. M. Demystified cell cycle.J. Clin. Path. 1998, 51,310-316.
    [5] Gladden, A. B.; Diehl, J. A. Cell cycle progression without cyclin E/CDK2: breaking down the walls of dogma. Cancer Cell 2003,4, 160-162.
    [6] Lowe, E. D.; Tews, I.; Cheng, K. Y.; Brown, N. R.; Gul, S.; Noble, M. E. M.; Gamblin, S. J.;Johnson, L. N. Specificity determinants of recruitment peptides bound to phospho-CDK2/cyclin A. Biochemistry 2002,41, 15625-15634.
    [7] Meijer, L. Leclerc, S.; Leost, M. Properties and potential applications of chemical inhibitors of cyclin-dependent kinases. Pharmacol. Ther. 1999, 82, 279-284.
    [8] Garrett, M. D.; Fattaey, A. CDK inhibition and cancer therapy. Curr. Opin. Genet. Dev. 1999,9, 104-111.
    [9] Webster, K. R. The therapeutic potential of targeting the cell cycle. Expert Opin. Invest.Drugs 1998, 7, 865-887.
    [10] Davis, S. T.; Benson, B. G.; Bramson, H. N.; Chapman, D. E.; Dickerson, S. H.; Dold, K.M.; Eberwein, D. J.; Edelstein, M.; Frye, S. V.; Gampe Jr., R. T.; Griffin, R. J.; Harris, P. A.;Hassell, A. M.; Holmes, W. D.; Hunter, R. N.; Knick, V. B.; Lackey, K.; Lovejoy, B.; Luzzio,M. J.; Murray, D.; Parker, P.; Rocque, W. J.; Shewchuk, L.; Veal, J. M.; Walker, D. H.;Kuyper, L. F. Prevention of chemotherapy-induced alopecia in rats by CDK inhibitors.Science 2001,291, 134-137.
    [11] Barvian, M.; Boschelli, D. H.; Cossrow, J.; Dobrusin, E.; Fattaey, A.; Fritsch, A.; Fry, D.;Harvey, P.; Keller, P.; Garrett, M.; La, F.; Leopold, W.; McNamara, D.; Quin, M.;Trumpp-Kallmeyer, S.; Toogood, P.; Wu, Z. P.; Zhang, E. Pyrido [2,3-d] pyrimidin-7-one inhibitors of cyclindependent kinases. J. Med. Chem. 2000,43,4606-4616.
    [12]Gussio, R.; Zaharevitz, D. W; McGrath, C. F.; Pattabiraman, N.; Kellogg, G. E.; Schultz, C.; Link, A.; Kunick, C.; Leost, M.; Meijer, L.; Sausville, E. A. Structure-based design modifications of the paullone molecular scaffold for cyclin-dependent kinase inhibition.Anti-Cancer Drug Des. 2000, 15, 53-66.
    [13] Gray, N. S.; Wodicka, L.; Thunnissen, A. M. W. H.; Norman, T. C.; Kwon, S.; Espinoza, F.H.; Morgan, D. O.; Barnes, G.; LeClerc, S.; Meijer, L.; Kim, S. H.; Lockhart, D. J.; Schultz, P.G. Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors.Science 1998,281,533-538.
    [14] Legraverand, M.; Ludwig, O.; Bisagni, E.; Leclerc, S.; Meijer, L. Synthesis of C2 alkynylated purines, a new family of potent inhibitors of cyclindependent kinases. Bioorg.Med. Chem. Lett. 1998,8, 793-798.
    [15]Chen, Y. N. P.; Sharma, S. K.; Ramsey, T. M.; Jiang, L.; Martin, M. S.; Baker, K.; Adams, P.D.; Bair, K. W.; Kaelin, W. G.; Selective killing of transformed cells by cyclin/cyclindependent kinase 2 antagonists. Proc. Natl. Acad. Sci. 1999,96, 4325-329.
    [16] Knockaert, M.; Greengard, P.; Meijer, L. Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol Sci. 2002, 23, 417-425.
    [17] Dureja, H.; Madan, A. K. Topochemical for prediction of cyclin-dependent kinase 2 inhibitory activity of indole-2-ones. J. Mol. Model. 2005, 11, 525-531.
    [18] Bhattacharjee, A. K.; Geyer, J. A.; Woodard, C. L.; Kathcart, A. K.; Nichols, D. A.; Prigge,S. T.; Li, Z. Y.; Mott, B. T.; Waters, N. C. A three-dimensional in silico pharmacophore model for inhibition of Plasmodium falciparum cyclin-dependent kinases and discovery of different classes of novel Pfmrk specific inhibitors. J. Med. Chem. 2004,47, 5418-5426.
    [19] Hecker, E. A.; Duraiswami, C.; Andrea, T. A.; Diller, D. J. Use of catalyst pharmacophore models for screening of large combinatorial libraries. J. Chem. Inf. Comput. Sci. 2002, 42,1204-1211.
    [20] Deanda, F.; Stewart, E. L. Application of the PharmPrint methodology to two protein kinases. J. Chem. Inf. Comput. Sci. 2004,44, 1803-1809.
    [21] Naumann, T.; Matter, H. Structural classification of protein kinases using 3D molecular interaction field analysis of their ligand binding sites: target family landscapes. J. Med. Chem.2002, 45, 2366-2378.
    [22] Kunick, C.; Lauenroth, K.; Wieking, K.; Xie, X.; Schultz, C.; Gussio, R.; Zaharevitz, D.; Leost,M.;Meijer,L.;Weber,A.;Jorgensen,F.S.;Lemcke,T.Evaluation and comparison of 3D-QSAR CoMSIA models for CDK1,CDK5,and GSK-3 inhibition by paullones.J.Med.Chem.2004,47,22-36.
    [23]Nugiel,D.A.;Vidwans,A.;Etzkorn,A.M.;Rossi,K.A.;Benfield,P.A.;Burton,C.R.;Cox,S.;Doleniak,D.;Seitz,S.P.Synthesis and Evaluation of Indenopyrazoles as Cyclin-Dependent Kinase Inhibitors.2.Probing the Indeno Ring Substituent Pattern.J.Med.Chem.2002,45,5224-5232.
    [24]Vulpetti,A.;Crivori,P.;Cameron,A.;Bertrand,J.;Brasca,M.G.;D'Alessio,R.;Pevarello,P.Structure-based approaches to improve selectivity:CDK2-GSK3βbinding site analysis.J.Chem.Inf.Model.2005,45,1282-1290.
    [25]Jorissen,R.N.;Gilson,M.K.Virtual screening of molecular databases using a support vector machine.J.Chem.Inf.Model.2005,45,549-561.
    [26]ChemDraw,Cambriagesoft Corporation,USA,1985-2003.
    [27]HyperChem 7.0,Hypercube.Inc.,2002.
    [28]Stewart,J.P.P.MOPAC 6.0,Quantum Chemistry Program Exchange,QCPE,No.455.Indiana University,Bloomington,1989.
    [29]Katritzky,A.R.;Lobanov,V.S.;Karelson,M.CODESSA:Training Manual,University of Florida,Gainesville,FL,.1995.
    [30]Kachigan,S.K.Statistical Analysis,Radius Press,New York,.1986.
    [31]Fisher,R.A.The use of multiple measurements in axonomic problems.Ann.Eugenic 1936,7,179-188.
    [32]Kenny,S.J.;Aubert,R.E.;Geiss,L.S.Diabetes in America,2nd ed.;Harris,M.,Ed.;NIH publication 1995 p47-67.
    [33]Patankar,S.J.;Jurs,P.C.Classification of Inhibitors of Protein Tyrosine Phosphatase 1B Using Molecular Structure Based Descriptors.J.Chem.Inf.Comput.Sci.2003,43,885-899.
    [34]Consoli,A.Role of liver in pathophysiology of NIDDM.Diabetes Care 1992,15,430-441.
    [35]Gerich,J.E.Role of liver and muscle in type II diabetes.Horm.Metab.Res.1992,26,18-21.
    [36]Landau,B.R.;Wahren,J.;Chandramouli,V.;Schumann,W.C.;Ekberg,K.;Kalhan,S.C.Contributions of gluconeogenesis to glucose production in the fasted state.J.Clin.Invest. 1996,98, 378-385.
    [37] Prathipati, P.; Pandey, G.; Saxena, A. K. CoMFA and Docking Studies on Glycogen Phosphorylase a Inhibitors as Antidiabetic Agents. J. Chem. Inf. Model. 2005,45, 136-145.
    [38] Martin, J. L.; Veluraja, K.; Johnson, L. N.; Fleet, G. W. J.; Ramsden, N. G.; Bruce, I.;Oikonomakos, N. G.; Papageorgiou, A. C.; Leonidas, D. D.; Tsitoura, H. S. Glucose analogue inhibitors of glycogen phosphorylase: the design of potential drugs for diabetes. Biochemistry 1991,30,10101-10116.
    [39] Watson, K. A.; Mitchell, E. P.; Johnson, L. N.; Son, J. C; Bichard, C. J. F.; Orchard, M. G.;Fleet, G. W. J.; Oikonomakos, N. G.; Leonidas, D. D.; Kontou, M.; Papageorgiou, A. C.Design of inhibitors of glycogen phosphorylase: a study of alpha- and beta-C-glucosides and 1-thio-beta-D-glucose compounds. Biochemistry 1994, 33, 5745-5758.
    [40] Watson, K. A.; Mitchell, E. P.; Johnson, L. N.; Cruciani, G.; Son, J. C; Bichard, C. J. F.;Fleet, G. W. J.; Oikonomakos, N. G.; Kontou, M.; Zographos, S. E. Glucose Analogue Inhibitors of Glycogen Phosphorylase: From Crystallographic Analysis to Drug Prediction Using GRID Force-Field and GOLPE Variable Selection. Acta Crystallogr. Sect. 1995, D51,458-472.
    [41] Bichard, C. J. F.; Mitchell, E. P.; Wormald, M. R.; Watson, K. A.; Johnson, L. N.;Zographos, S. E.; Koutra, D. D.; Oikonomakos, N. G.; Fleet, G. W. J. Potent inhibition of glycogen phosphorylase by a spirohydantoin of glucopyranose: first pyranose analogues of hydantocidin.. Tetrahedron Lett. 1995, 36, 2145-2148.
    [42] Oikonomakos, N. G.; Kontou, M.; Zographos, S. E.; Watson, K. A.; Johnson, L. N.; Bichard,C. J. F.; Fleet, G. W. J.; Acharya, K. R. N-acetyl-beta-D-glucopyranosylamine: A potent T-state inhibitor of glycogen phosphorylase. A comparison with alpha-D-glucose. Protein Sci.1995,4, 2469-2477.
    [43] Zographos, S. E.; Oikonomakos, N. G.; Tsitsanou, K. E.; Leonidas, D. D.; Chrysina, E. D.;Skamnaki, V. T.; Bischoff, H.; Goldman, S.; Schram, M.; Watson, K. A.; Johnson, L. N. The structure of glycogen phosphorylase b with an alkyldihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure 1997, 5, 1413-1425.
    [44] Gregoriou, M.; Noble, M. E. M.; Watson, K. A.; Garman, E. F.; Krulle, T. M.; Fuente, C.;Fleet, G. W. J.; Oikonomakos, N. G.; Johnson, L. N. The structure of a glycogen phosphorylase glucopyranose spirohydantoin complex at 1.8 A resolution and 100 K: The role of the water structure and its contribution to binding. Protein Sci. 1998, 7, 915-927.
    [45] Oikonomakos, N. G.; Tsitsanou, K. E.; Zographos, S. E.; Skamnaki, V. T.; Goldmann, S.;Bischoff, H. Allosteric inhibition of glycogen phosphorylase a by the potential antidiabetic drug 3-isopropyl 4-(2-chlorophenyl)-1,4-dihydro-1 -ethyl-2-methyl-pyridine-3,5,6-tricarboxylate. . Protein Sci.1999,8,1930-1945.
    [46] Oikonomakos, N. G.; Skamnaki, V. T.; Tsitsanou, K. E.; Gavalas, N. G.; Johnson, L. N. A new allosteric site in glycogen phosphorylase b as a target for drug interactions. Structure 2000, 8, 575-984.
    [47] Klabunde, T.; Wendt, K. U.; Kadereit, D.; Brachvogel, V.; Burger, H. J.; Herling, A. W.;Oikonomakos, N. G.; Kosmopoulou, M. N.; Schmoll, D.; Sarubbi, E.; von Roedern, E.;Schonafinger, K.; Defossa, E. Acyl Ureas as Human Liver Glycogen Phosphorylase Inhibitors for the Treatment of Type 2 Diabetes. J. Med. Chem. 2005,48, 6178-6193.
    [48] Katritzky, A.R., Petrukhin, R., Jain, R., Karelson, M. QSPR analysis of Flash points. J.Chem. Inf. Model. 2001,41, 1521-1530.
    [49] Folkman, J. Anti-angiogenesis: New concept for therapy of solid tumors. Ann. Surg. 1972,1972,409-416.
    [50] Folkman, J. Tumor angiogenesis: Therapeutic implications. N. Engl. J. Med. 1971, 285,1182-1186.
    [51] Gasparini, G. The rationale and future potential of angiogenesis inhibitors in neoplasia. Drugs 1999, 58, 17-38.
    [52] Brown, J. M.; Giaccia, A. J. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58, 1408-1416.
    [53] Hanahan, D.; Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. cell 1996, 86, 353-364.
    [54] Liotta, L. A.; Steeg, P. S.; Stetler-Stevenson, W. G. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991, 64, 327-336.
    [55] De Vries, C.; Escobedo, J. A.; Ueno, H.; Houck, K.; Ferrara, N.; Williams, L. T. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992, 25, 989-991.
    [56] Shalaby, F.; Rossant, J.; Yamaguchl, T. P.; Gertsenstein, M.; Wu, X. R; Breltman, M. L.;Schuh, A. C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice.Nature 1995,376, 62-66.
    [57] Kuo, G. H.; Wang, A.; Emanuel, S.; DeAngelis, A.; Zhang, R.; Connolly, P. J.; Murray, W.V.; Gruninger, R. H.; Sechler, J.; Fuentes-Pesquera, A.; Johnson, D.; Middleton, S. A.; Jolliffe,L.; Chen, X. Synthesis and Discover)' of Pyrazine-Pyridine Biheteroaryl as a Novel Series of Potent Vascular Endothelial Growth Factor Receptor-2 Inhibitors. J. Med. Chem. 2005, 48,1886-1900.
    [58] Yang, J. C.; Haworth, L.; Sherry, R. M.; Hwu, P.; Schwartzentruber, D. J.; Topalian, S. L.;Steinberg, S. M.; Chen, H. X.; Rosenberg, S. A. A randomized trial of bevacizumab (anti-VEGF antibody) in metastatic renal cancer. N. Eng. J. Med. 2003, 349, 427-434.
    [59]Prewett, M; Huber, J.; Li, Y.; Santiago, A.; O'Connor, W.; King, K.; Overholser, J.; Hooper,A.; Pytowski, B.; Witte, L.; Bohlen, P.; Hicklin, D. J. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis. Cancer Res.1999,59,5209-5218.
    [60] Holash, J.; Davis, S.; Papadopoulos, N.; Croll, S. D.; Ho, L.; Russell, M.; Boland, P.;Leidich, R.; Hylton, D.; Burova, E.; Ioffe, E.; Huang, T.; Radziejewski, C.; Baily, K.; Fandl, J.P.; Daly, T.; Wiegand, S. J.; Yancopoulos, G. D.; Rudge, J. S.; VEGFTrap: A VEGF blocker with potent antitumor effects. Proc. Natl. Acad. Sci. 2002, 99, 11393-11398.
    [61] Borzilleri, M.; Zheng, X. P.; Qian, L. G.; Ellis, C.; Cai, Z. W.; Wautlet, B. S.; Mortillo, S.;Jeyaseelan, R.; Kukral, Sr., D.W.; Fura, A.; Kamath, A.; Vyas, V.; Tokarski, J. S.; Barrish, J.C.; Hunt, J. T.; Lombardo, L. J.; Fargnoli, J.; Bhide, R. S. Design, Synthesis, and Evaluation of Orally Active 4-(2,4-Difluoro-5-(methoxycarbarnoyl)phenylamino) pyrrolo[2,1-f][1,2,4]triazines as Dual Vascular Endothelial Growth Factor Receptor-2 and Fibroblast Growth Factor Receptor-1 Inhibitors. J. Med. Chem. 2005,48, 3991-4008.
    [62] Thompson, A. M.; Delaney, A. M.; Hamby, J. M.; Schroeder, M. C.; Spoon, T. A.; Crean, S.M.; Showalter, H. D. H.; Denny, W. A. Synthesis and Structure-Activity Relationships of Soluble 7-Substituted 3-(3,5-DimethoxyphenyI)-1,6-naphthyridin-2-amines and Related Ureas as Dual Inhibitors of the Fibroblast Growth Factor Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinases. J. Med. Chem. 2005,48, 4628-4653.
    [63]Scott, R. W.; Neville, S. N.; Urbina, A.; Camp, D.; Stankovic, N. Development of a Scalable Synthesis to VEGFR Inhibitor AG-28262. Org. Process Res. Dev. 2006, 10, 296-303.
    [64] Wissner, A.; Floyd, M. B.; Johnson, B. D.; Fraser, H.; Ingalls, C.; Nittoli, T.; Dushin, R. G.;Discafani, C.; Nilakantan, R.; Marini, J.; Ravi, M.; Cheung, K.; Tan, X.; Musto, S.; Annable,T.; Siegel, M. M.; Loganzo, F. 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones as Covalent-Binding, Irreversible Inhibitors of the Kinase Domain of Vascular Endothelial Growth Factor Receptor-2. J. Med. Chem. 2005,48, 7560-7581.
    [65] Kabbinavar, F.; Hurwitz, H. I.; Fehrenbacher, L.; Meropol, N. J.; Novotny, W. F.;Lieberman, G.; Griffing, S.; Bergsland, E. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 2003,21, 60-65.
    [66]Kuo, G. H.; Prouty, C.; Wang, A.; Emanuel, S.; DeAngelis, A.; Zhang, Y.; Song, F.; Beall, L.;Connolly, P. J.; Karnachi, P.; Chen, X.; Gruninger, R. H.; Sechler, J.; Fuentes-Pesquera, A.;Middleton, S. A.; Jolliffe, L.; Murray, W. V. Synthesis and Structure-Activity Relationships of Pyrazine-Pyridine Biheteroaryls as Novel, Potent, and Selective Vascular Endothelial Growth Factor Receptor-2 Inhibitors. J. Med. Chem. 2005,48, 4892-4909.
    [67] Pelckmans, K.; Suykens, J. A. K.; Van Gestel, T.; De Brabanter, D.; Lukas, L.; Hamers, B.;De Moor, B.; Vandewalle, J. LS-SVMlab: a Matlab/C Toolbox for Least Squares Support Vector Machines, Internal Report 02-44, ESATSISTA, K.U. Leuven: Leuven. 2002.
    [68] Schwartz, M. W.; Woods, S. C.; Porte, D.; Jr., Seeley, R. J.; Baskin, D. G. Central nervous system control of food intake. Nature 2000,404, 661-671.
    [69] Saito, Y; Nothacker, H. P.; Civelli, O. Melanin-concentrating hormone receptor: an orphan receptor fits the key. Trends Endocrinol. Metab. 2000, 11, 299-303.
    [70] Qu, D.; Ludwig, D. S.; Gammeltoft, S.; Piper, M.; Pelleymounter, M. A.; Cullen, M. J.;Mathes, W. F.; Przypek, J.; Kanarek, R.; Maratos-Flier, E. A role for melanin-concentrating hormone in the central regulation of feeding behavior. Nature 1996, 243-247.
    [71] Della-Zuana, O.; Presse, F.; Ortola, C.; Duhault, J.; Nahon, J. L.; Levens, N. Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1289-1295.
    [72]Hervieu,G.Melanin-concentrating hormone functions in the nervous system:food intake and stress.Expert Opin.Ther:Targets 2003,7,495-511.
    [73]Tavares,F.X.;Al-Barazanji,K.A.;Bigham,E.C.;Bishop,M.J.;Britt,C.S.;Carlton,D.L.;Feldman,P.L.;Goetz,A.S.;Grizzle,M.K.;Guo,Y.C.;Handlon,A.L.;Hertzog,D.L.;Ignar,D.M.;Lang,D.G.;Ott,R.J.;Peat,A.J.;Zhou,H.Q.Potent,Selective,and Orally Efficacious Antagonists of Melanin-Concentrating Hormone Receptor 1.J.Med.Cliem.2006,49,7095-7107.
    [74]Tavares,F.X.;Al-Barazanji,K.A.;Bishop,M.J.;Britt,C.S.;Carlton,D.L.;Cooper,J.P.;Feldman,P.L.;Garrido,D.M.;Goetz,A.S.;Grizzle,M.K.;Hertzog,D.L.;Ignar,D.M.;Lang,D.G.;McIntyre,M.S.;Ott,R.J.;Peat,A.J.;Zhou,H.Q.6-(4-Chlorophenyl)-3-substituted-thieno[3,2-d]pyrimidin-4(3H)-one-Based Melanin-Concentrating Hormone Receptor 1 Antagonist.J.Med.Chem.2006,49,7108-7118.
    [75]Talete srl.DRAGON for Windows (Software for molecular Descripto Calculation),5.4 2006.
    [76]Todeschini,R.;Consonni,V.Hanbook of Molecular Descriptors.Wiley-VCH:Germany,2000.
    [77]Gasteiger,J.;Zupan,J.Neural Networks in Chemistry.Angew.Chem.Int.Edit.in English 1993,32,503-527.
    [78]Rogers,D.;Hopfinger,A.J.Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Structure-Property Relationship.J.Chem.Inf.Comput.Sci.1994,34,854.
    [79]Todeschini,R.;Maiocchi,A.;Consonni,V.The K correlation Index:Theory Development and its Application in Chemometrics.Chemom.Int.Lab.Syst.1999,46,13-29.
    [80]Zupan,J.;Novi(?),M.;Ruis(?)nchez,I.Kohonen and counterpropagation artificial neural networks in analytical chemistry.Chemom.Int.Lab.Syst.1997,38,1-23.
    [81]Atkinson,A.C.Plots,Transformations and Regression:An Introduction to Graphical Methods of Diagnostic Regression Analysis.Clarendon Press:Oxford,1985.
    [82]Ferreira,C.Gene Expression Programming,Mathematical Modeling by an Artificial Intelligence.1st ed.Springer-Verlag,Germany:2002.
    [83]Suykens,J.A.K.;Vandewalle,J.;De Moor,B.Optimal control using least-squares support vector machines.Neural Networks 2001,14,23-35.
    [84]http://www.gepsoft.com/gepsoft.
    [1]Jorgensen,W.L.The Many Roles of Computation in Drug Discovery.Science 2004,303,1813-1818.
    [2]Stahura,F.L.;Bajorath,J.New methodologies for ligand-based virtual screening.Curr.Pharm.Des.2005,11,1189-1202.
    [3]Perez-Nueno,V.I.;Ritchie,D.W.;Rabal,O.;Pascual,R.;Borrell,J.I.;Teixido,J.Comparison of Ligand-Based and Receptor-Based Virtual Screening of HIV Entry Inhibitors for the CXCR4 and CCR5 Receptors Using 3D Ligand Shape Matching and Ligand-Receptor Docking.J.Chem.Inf.Model.2008,48,509-533.
    [4]Lyne,P.D.Structure-based virtual screening:an overview.Drug Discov.Today 2002,20, 1047-1055.
    [5] Cherkasov, A.; Ban, F. Q.; Li, Y.; Fallahi, M.; Hammond, G. L. Progressive Docking: A Hybrid QSAR/Docking Approach for Accelerating In Silico High Throughput Screening. J.Med. Chem. 2006,49, 7466-7478.
    [6] Glick, M.; Jenkins, J. L.; Nettles, J. H.; Hitchings, H.; Davies, J. W. Enrichment of High-Throughput Screening Data with Increasing Levels of Noise Using Support Vector Machines, Recursive Partitioning, and Laplacian-Modified Naive Bayesian Classifiers. J.Chem. Inf. Model. 2006,46, 193-200.
    [7] Shen, M.; Beguin, C.; Golbraikh, A.; Stables, J. P.; Kohn, H.; Tropsha, A. Application of Predictive QSAR Models to Database Mining: Identification and Experimental Validation of Novel Anticonvulsant Compounds. J. Med. Chem. 2004,47, 2356-2364.
    [8] Oloff, S.; Mailman, R. B.; Tropsha, A. Application of Validated QSAR Models of Dl Dopaminergic Antagonists for Database Mining. J. Med. Chem. 2005, 48, 7322-7332.
    [9] Medina-Francoa, J. L.; Golbraikhb, A.; Olofrb, S.; Castilloa, R.; Tropsha, A. Quantitative structure-activity relationship analysis of pyridinone HIV-1 reverse transcriptase inhibitors using the k nearest neighbor method and QSAR-based database mining. J. Comput. Aided Mol. Des. 2005, 19, 229-242.
    [10] Zhang, S. X.; Wei, L. Y.; Bastow, K.; Zheng, W. F.; Brossi, A.; Lee, K. H.; Tropsha, A.Antitumor Agents 252. Application of validated QSAR models to database mining: discovery of novel tylophorine derivatives as potential anticancer agents. J. Comput. Aided Mol. Des.2007,21,97-112.
    [11] Han, L. Y.; Ma, X. H.; Lin, H. H.; Jia, J.; Zhu, F.; Xue, Y.; Li, Z. R.; Cao, Z. W.; Ji, Z. L.;Chen, Y. Z. A support vector machines approach for virtual screening of active compounds of single and multiple mechanisms from large libraries at an improved hit-rate and enrichment factor. J. Mol. Graph. Model. 2008, 26, 1276-1286.
    [12] Afantitisa, A.; Melagrakia, G.; Sarimveisa, H.; Koutentisc, P. A.; Markopoulosd, J.;Igglessi-Markopoulou, O. Investigation of substituent effect of l-(3,3-diphenylpropyl)-piperidinyl phenylacetamides on CCR5 binding affinity using QSAR and virtual screening techniques. J. Comput. Aided Mol. Des. 2006,20, 83-95.
    [13]Chen, P.; Doweyko, A. M.; Norris, D.; Gu, H. H.; Spergel, S. H.; Das, J.; Moquin, R. V; Lin, J.;Wityak,J.;Iwanowicz,E.J.;McIntyre,K.W.;Shuster,D.J.;Behnia,K.;Chong,S.;de Fex,H.;Pang,S.;Pitt,S.;Shen,D.R.;Thrall,S.;Stanley,P.;Kocy,O.R.;Witmer,M.R.;Kanner,S.B.;Schieven,G.L.;Barrish,J.C.Imidazoquinoxaline Src-Family Kinase p56Lck Inhibitors: ;SAR,QSAR,and the Discovery of (S)-N-(2-Chloro-6-methylphenyl)-2-(3-methyl-1-piperazinyl)imidazo-[1,5-a]pyrido[3,2-e]pyrazin-6-amine (BMS-279700) as a Potent and Orally Active Inhibitor with Excellent in Vivo Anti inflammatory Activity.J.Med.Chem.2004,47,4517-4529.
    [14]Das,J.;Chen,P.;Norris,D.;Padmanabha,R.;Lin,J.;Moquin,R.V.;Shen,Z.;Cook,L.S.;Doweyko,A.M.;Pitt,S.;Pang,S.;Shen,D.R.;Fang,Q.;de Fex,H.F.;McIntyre,K.W.;Shuster,D.J.;Gillooly,K.M.;Behnia,K.;Schieven,G.L.;Wityak,J.;Barrish,J.C.2-Aminothiazole as a Novel Kinase Inhibitor Template.Structure-Activity Relationship Studies toward the Discovery of N-(2-Chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (Dasatinib,BMS-354825) as a Potent pan-Src Kinase Inhibitor.J.Med.Chem.2006,49,6819-6832.
    [15]Das,J.;Lin,J.;Moquin,R.V.;Shen,Z.;Spergel,S.H.;Wityak,J.;Doweyko,A.M.;DeFex,H.F.;Fang,Q.;Pang,S.;Pitt,S.;Shen,D.R.;Schieven,G.L.;Barrish,J.C.Molecular design,synthesis,and structure-Activity relationships leading to the potent and selective p561ck inhibitor BMS-2431 i 7.Bioorg.Med.Chem.Lett.2003,13,2145-2149.
    [16]Das,J.;Moquin,R.V.;Lin,J.;Liu,C.;Doweyko,A.M.;DeFex,H.F.;Fang,Q.;Pang,S.;Pitt,S.;Shen,D.R.;Schieven,G.L.;Barrish,J.C.;Wityak,J.Discovery of 2-amino-heteroary l-benzothiazole-6-anilides as potent p561ck inhibitors.Bioorg.Med.Chem.Lett.2003,13,2587-2590.
    [17]Wityak,J.;Das,J.;Moquin,R.V.;Shen,Z.;Lin,J.;Chen,P.;Doweyko,A.M.;Pitt,S.;Pang,S.;Shen,D.R.;Fang,Q.;de Fex,H.F.;Schieven,G.L.;Kanner,S.B.;Barrish,J.C.Discovery and initial SAR of 2-amino-5-carboxamidothiazoles as inhibitors of the Src-family kinase p56Lck.Bioorg.Med.Chem.Lett.2003,13,4007-4010.
    [18]http://modem.ucsd.edu/adme.
    [19]Talete srl,T.DRAGON for Windows (Software for molecular Descriptor Calculation),5.4 2006.
    [20]Zupan,J.,Novic,M.;Ruisanchez,I.,Kohonen and Counter propagation Artificial Neural Networks in Analytical Chemistry. Chemom. Int. Lab. Syst. 1997,38,1-23.
    [21] Wold, S.; Eriksson, L. Statistical validation of QSAR results, in: H. van de Waterbeemd (Ed.), Chemometrics Methods in Molecular Design. VCH, Weinheim: 1995; 309-318.
    [22] Wold, S.; Sjostrom, M.; Ericksson, L. Partial least squares projections to latent structures (PLS) in chemistry. In Encyclopedia of computational chemistry, von Rague Schleyer, P. (ed.),John Wiley & Sons, Chichester: 1998; Vol. 3, 2006-2021.
    [23] Yasri, A.; Hartsough, D. Toward an Optimal Procedure for Variable Selection and QSAR Model Building. J. Chem. Inf. Comput. Sci. 2001,41,1218-1227.
    [24] Todeschini, R.; Consonni, V; Pavan, M. A distance measure between models: a tool for similarity/diversity analysis of model populations. Chemom. Int. Lab. Syst. 2004, 70, 55-61.
    [25] Mead, A. Review of the development of multidimensional scaling methods. The Statistician 1992,121,315-324.
    [26] Gramatica, P.; Giani, E.; Papa, E. Statistical external validation and consensus modeling: A QSPR case study for Koc prediction. J. Mol. Graph. Model. 2007,25, 755-766.
    [27] Li, J. Z.; Lei, B. L.; Liu, H. X.; Li, S. Y.; Yao, X. J.; Liu, M. C; Gramatica, P. QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling. J. Comput. Chem. 2008,29, 2636-2647.
    [28] Atkinson, A. C. Plots, Transformations and Regression: An Introduction to Graphical Methods of Diagnostic Regression Analysis. Clarendon Press, Oxford (UK): 1985.
    [29] SYBYL, Version 6.9, Tripos Associates Inc.,. Stlouis 2003.
    [30] http://www.rcsb.org/. In.
    [31] Delano, W. L., The PyMOL Molecular Graphics System, on World Wide Web.http://www.pymol.org. 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700