新型配合物敏感载体PVC膜离子选择性电极的构建及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电位分析法是一种经典的电化学分析方法。而直接电位分析法是两大电位分析方法之一,又被称为离子选择性电极法。即利用离子选择性电极(又叫膜电极)把被测离子的活度或浓度表现为电极电位而实现分析测定。离子选择性电极是一类电化学传感器,又是一种指示电极,它所指示的电极电位值与相应离子活度的关系符合Nernst方程。其分析的实质是当电池体系接近于零电流条件时,测定指示电极的平衡电位,而求得待测离子的浓度。理想的离子选择性电极应该能够快速、稳定地响应被分析离子。与其它分析方法相比,它具有简单方便、成本低廉,分析速度快,测量范围广,灵敏度高等许多优点;是近年来迅速发展的一种快速分析方法。
     离子选择性电极法的研究核心是开发设计与合成对目标分析物具有特殊识别作用的配合物,并将其运用于电极的敏感载体。当将敏感载体固着在聚氯乙烯(PVC)基体时,电极的制备更简单,使用更方便,性能更优良。截止目前,许多电化学传感器工作者从电极载体入手,先后将各种具有特殊功能的新型配合物引入到PVC膜中,并己成功构建了多种阴、阳离子选择性PVC膜电极。如今,各种新型配合物的开发并应用于离子选择性电极载体,构建新的目标分析物测量体系正呈现活跃的态势。人们正试图寻求各种途径和方法来改善离子选择性PVC膜电极的性能,改进测量体系的功能和用途。
     本研究工作根据电极敏感载体的选择原则,合成了具有特殊结构和特殊性能并能与特定阴离子或阳离子选择性结合的金属酞菁衍生物及Schiff碱化合物,将这些配合物运用于PVC膜电极的敏感载体,成功制备出了几种阴离子和阳离子选择性PVC膜电极;并采用电化学方法和手段,对这些离子选择性电极进行各项性能表征,构建出了检测目标分析物的新的分析测试体系。全文包括正篇和副篇两部分:
     正篇:PVC膜阴离子选择性电极的构建及表征。
     (一)利用酞菁氧钛(Ⅳ)配合物(PcTiO)为载体成功制备了优先响应I~-的选择性PVC膜电极。通过改变增塑剂、载体含量、离子添加剂等使电极膜的电位响应性能得到优化。经测试含最佳膜组成的电极的基本电化学性能,发现电极对I~-呈现出优先的电位识别过程和良好的电位分析性能。其在1.0×10~(-1)-9.2×10~(-7) mol·L~(-1)范围内呈现出斜率为-58.9 mV·dec~(-1)的near-Nernstian线性响应,检测下限为8.5×10~(-7) mol·L~(-1);选择性序列为:I~->SCN~>NO_2~->Br~->ClO_4~->C_2O_4~(2-)>SO_3~(2-)>F~->NO_3~->Ac~->Cl~->SO_4~(2-)>H_2PO_4~-。目标电极对I~-呈现的高灵敏度和高选择性可能来源于载体中心金属Ti(Ⅳ)与I~-在轴向进行了可逆配位;而优先的电位响应是基于载体PcTiO携带溶液中的I~-有效通过PVC膜相而产生。
     (二)研究了酞菁锌(Ⅱ)(ZnPc)和酞菁锰(Ⅲ)(MnPc)为载体的PVC膜电极的电位响应。结果表明,基于ZnPc的膜电极对SCN~-呈现出斜率为-58.1 mV·dec~(-1)的near-Nernstian优先电位响应,其线性范围为1.0×10~(-1)-1.0×10~(-6)mol·L~(-1),检测下限为7.5×10~(-7) mol·L~(-1)。测试不含添加剂的电极B和含阳离子添加剂HTAB的电极G的电位响应特性,发现HTAB的加入虽然改善了电极的灵敏度、线性范围及检测下限,但其选择性却有所降低。电极B呈现的选择性序列为:SCN~->Sal~->I~->ClO_4~->Br~->Cl~->NO_3~->NO_2~->H_2PO_4~->SO_4~(2-)。ZnPc载体电极对SCN~-显示的优良电位响应可能来源于载体ZnPc中心金属Zn(Ⅱ)与溶液中的SCN~-进行了可逆配位。
     (三)研究了以2,9,16,23-四硝基酞菁铜(Ⅱ)(CuTNPc)和2,9,16,23-四胺基酞菁铜(Ⅱ)(CuTAPc)为载体的PVC膜电极的电位响应。结果表明,含推电子基团(NH_2)的CuTAPc为载体的电极对Sal~-呈现出斜率为-49.5 mV·dec~(-1)的sub-Nernstian响应;而含吸电子基团·(NO_2)的CuTNPc为载体的膜电极对Sal~-具有优先的选择性和良好的电位响应性能,这可能是由于吸电子基团NO_2的存在使得CuTNPc中心金属Cu(Ⅱ)附近呈现低电荷密度状态而有利于Sal~-与之配位。同时,阴离子添加剂NaTPB的加入显著改善了CuTNPc载体电极的电位响应性能和选择性;该电极的near-Nernstian斜率为-59.8 mV·dec~(-1),线性范围为1.0×10~(-1)-9.0×10~(-7) mol·L~(-1),检测下限为7.2×10~(-7) mol·L~(-1);呈现的选择性为:Sal~->SCN~->I~->ClO_4~->NO_3~->Br~->NO_2~->Benzoate>Cl~->OAc~->SO_4~(2-)>C_2O_4~(2-)>Lactate>Citrate。根据离子位点对电极选择性影响的理论模型,CuTNPc载体电极可能是基于电荷载体作用机理。
     (四)测试了基于酞菁铝(Ⅲ)(AlPc)为敏感载体的NO_2~-选择性PVC膜电极的电位响应。具有最佳膜组成含阳离子添加剂TOMAC的电极在1.0×10~(-1)-1.5×10~(-6) mol·L~(-1)约五个数量级范围呈现near-Nernstian线性响应,斜率为-58.3 mV·dec~(-1),检测下限为9.5×10~(-7) mol·L~(-1);该电极的选择性为:NO_2~->SCN~->Sal~->ClO_4~->I~->NO_3~->Cl~->OAc~->Br~->SO_4~(2-)>H_2PO_4~-。而阴离子添加剂NaTPB的加入却使得电极的电位响应显著恶化。
     (五)研究了以N,N'-双(邻羟基苯亚甲基)-1,2-双(p-氨基苯氧基)-乙烷(BBAP)合Cu(Ⅱ)、Mn(Ⅲ)和Zn(Ⅱ)(CuBBAP、MnBBAP和ZnBBAP)三种Schiff碱金属配合物为载体的PVC膜电极的电位响应。结果表明,具有平面型结构的CuBBAP为载体的电极对I~-具有优先电位选择性:I~->SCN~->ClO_4~->NO_2~>H_2PO_4~->NO_3~->SO_4~(2-)>Br~->Cl~-。具有最佳膜组成的电极在1.0×10~(-1)-8.2×10~(-7)mol·L~(-1)范围呈现斜率为-58.8 mV·dec~(-1)的near-Nernstian线性响应,检测下限为5.3×10~(-7) mol·L~(-1)。而具有三角双锥结构的MnBBAP和四面体结构的ZnBBAP为载体的电极均未显示出良好的I~-优先响应行为。表明载体空间化学环境的差异可能对三种载体电极的电位响应起着重要作用。
     副篇:PVC膜阳离子选择性电极的构建及表征。
     (一)探讨了基于简单Schiff碱N,N'-双(2-苯羟基)-1,3-二氨基丙烷(BHDP)、N,N'-双(2-苯羟基)-2,2-二甲基-1,3-二氨基丙烷(BHDDP)和N,N'-双(2-苯羟基)-1,4-二氨基丁烷(BHDB)为中性载体的PVC膜电极的电位响应。实验观察到基于BHDP和BHDB为载体的膜电极对Ag~-呈现出优先的选择性识别和稳定的near-Nernstian电位分析特性。各自的斜率为58.7和58.1mV·dec~(-1),线性范围近五个数量级,检测下限均为1.0μmol·L~(-1);呈现的选择性分别为:Ag~+>Cu~(2+)>Pb~(2+)>Co~(2+)>Hg~(2+)>Cr~(3+)>Al~(3+)>Mg~(2+)>K~+>Cd~(2+)>Zn~(2+)>Ba~(2+)>NH_4~+>Ca~(2+)>Mn~(2+)>Sr~(2+)>Bi~(3+)和Ag~+>Cu~(2+)>pb~(2+)>Mg~(2+)>Hg~(2+)>Cr~(3+)>Al~(3+)>K~+>Cd~(3+)>Zn~(2+)>Co~(2+)>Ba~(2+)>NH_4~+>Ca~(2+)>Mn~(2+)>Bi~(3+)>Sr~(2+)。而基于BHDDP为载体的电极却显示出低灵敏度的Ag~+响应特性,斜率为53.7 mV·dec~(-1)。这种差异可能与BHDP和BHDB具有与Ag~+匹配的空间构型有关。
     (二)探究了以含N和O受体原子的两种Schiff碱(LⅠ和LⅡ)为中性载体制备的PVC膜电极的电位响应。结果表明,LⅠ载体电极对Pb~(2+)仅呈现出斜率为34.1 mV·dec~(-1)的super-Nernstian电位响应。而基于LⅡ为载体的电极在Pb(NO_3)_2溶液和部分非水介质中均呈现出优先的Pb~(2+)选择性识别过程和明显的near-Nernstian线性响应;电极在1.0×10~(-1)-1.7×10~(-6)mol·L~(-1)浓度范围给出的斜率为29.5 mV·dec~(-1),检测下限为1.0μmol·L~(-1);其电位选择性序列为:pb~(2+)>Cd~(2+)>Mg~(2+)>Cr~(3+)>Al~(3+)>Hg~(2+)>Zn~(2+)>Co~(2+)>Ca~(3+)>Ba~(2+)>Cu~(2+)>NH_4~+>Ag~+>Bi~(3+)>K~+。
Potentiometry is a classical electrochemical analysis method. Direct potentiometry, one of the two potentiometry methods, is called ion-selective electrode (ISE) method, which carrys out the quantitative analysis by converting the live degree or concentration of ion into potential signal by using ion-selective electrode (i.e. membrane electrode). ISE is a sort of chemistry sensors also is a kind of indicator electrodes. The relationship between the potential value indicated by an ISE and the live degree of the corresponding ion is accordance with Nernst-equation. The essential of this method is to determine equilibrium potential indicated by the indicator electrode when the cell system is controlled under zero-current state, and further to calculate the concentration of the analyte ion according to Nernst-equation and the obtained potential value. A perfect ISE should be able to rapidly and steadily respond the analyte. Compared with other analysis methods, ISE method owns such many unique advantages as simple equipment, convenient operation, cheap cost, fast analysis, wide linear range, high sensitivity and etc. It's a fast analysis method developed rapidly in near years.
     The research key of ISE is to exploit, design and synthesize certain compound which can identify particularly a target analyte ion, and to use it as the sensing carrier of ISE. Immobiling the sensing carrier in polyvinyl chloride (PVC) matrix makes ISE be prepared easily, used conveniently and performed perfectly. Up to now, many sensor researchers started with electrode carrier, introduced successively novel compounds with especial function into PVC membranes and have constructed successfully many anion- and cation-selective PVC membrane electrode. At present, design and synthesis of many novel compounds, use them as the carriers of ISEs and establishing new measurement system for a target analyte are showing active situation. The researchers have been seeking all kinds of approaches and means to improve the potential response performance of ISE and the function and purpose of analysis system by ISE.
     In this work, according to the principle of selecting electrode carrier, metallophthalocyanine derivatives and Schiff bases with special structure and performance which can selectively interact with target anion or cation were synthesized and used as the sensing carriers of PVC membrane ISEs. As a result, certain anion- and cation-selective PVC membrane electrodes were fabricated successfully. Electrochemistry methods and means were used to characterize the potential performance of the resultant ISEs, and the new analysis system for a target analyte was established. The dissertation consists of primary section and secondary section:
     Primary section: Fabrication and characterization for PVC membrane anion ISEs.
     (一) An I~-selective PVC membrane electrode based on phthalocyaninatotitanium(Ⅳ) oxide (PcTiO) complex was prepared successfully. The potential response of the electrode was optimized by changing the nature of plasticizers, the concentration of carrier, and ion additives. The basic electrochemistry characteristics investigated for the optimized membrane suggested that the resulting electrode to I~- showed selectively identifying process and good potential analysis performance in a linear range of 1.0×10~(-1) - 9.2×10~(-7) mol·L~(-1) with a slope of -58.9 mV·dec~(-1) and a detection limit of 8.5×10~(-7) mol·L~(-1). The selectivity sequence was: I~->SCN~->NO_2~->Br~->ClO_4~->C_2O_4~(2-)>SO_3~(2-)>F~->NO_3~->Ac~->Cl~->SO_4~(2-)>H_2PO_4~-. The high sensitivity and selectivity showed by the proposed electrode to I~- may be originated from the reversible interaction between the central metal Ti(Ⅳ) and I~- at axial direction. And the preferential potential response might be resulted from the effective process of I~- crossing the PVC membrane taken by the carrier PcTiO.
     (二) The potential response of PVC membrane electrodes based on metallophthalocyanines of Zn(Ⅱ) and Mn(Ⅲ) (ZnPc and MnPc) as carriers was investigated. The observations suggested that the electrode based on ZnPc showed selective near-Nernstian potential response to SCN in a linear range of 1.0×10~(-1) - 1.0×10~(-6)mol·L~(-1) with a slope of -58.1 mV·dec~(-1) and a detection limit of 7.5×10~(-7) mol·L~(-1). The potential response difference between the electrode B without additive and the electrode G with cationic additive HTAB indicated that the presence of HTAB improved the senstivity, linear range and detection limit, but resulted in the decrease of the selectivity. The selectivity sequence for the electrode B was: SCN~->Sal~->I~->ClO_4~->Br~->Cl~->NO_3~->NO_2~->H_2PO_4~->SO_4~(2-). The good potential response showed by ZnPc-based electrode to SCN~- may be originated from the reversible interaction between central metal Zn(Ⅱ) and SCN~-.
     (三) The potential response of the PVC membrane electrodes baed on two metallophthalocyaninederivatives, 2,9,16,23-copper(Ⅱ)-tetra-nitro phthalocyanine (CuTNPc) and 2,9,16,23-copper (Ⅱ)-tetra-amino phthalocyanine (CuTAPc) as carriers were studied. The result obtained indicated that the electrode based on CuTAPc with electron-repulsive showed sub-Nernstian potential response of to Sal~- with a slope of -49.5 mV·dec~(-1). And the electrode incorporating CuTNPc with electron-withdrawing groups (NO_2) exhibited preferential selectivity and good potential response characteristics for Sal~- which may be suggested by that, in the presence of electron-withdrawing groups NO_2 in CuTNPc, the low electron density in the vicinity of central Cu(Ⅱ) atom was favorable for the coordination of Sal~-. The addition of anion additive NaTPB improved greatly the potential response characteristics and the selectivity. The resulting electrode gave a near-Nemstian solpe of -59.8 mV·dec~(-1) with a linear range of 1.0×10~(-1) - 9.0×10~(-7) mol·L~(-1) and a detection limit of 7.2×10~(-7) mol·L~(-1). Its selectivity sequence was: Sal~->SCN~->I~->ClO_4~->NO_3~->Br~->NO_2~->Benzoate>Cl~->OAc~->SO_4~(-2)>C_2O_4~(-2)>Lactate>Citrate, According to the theoretical models that predict the effects of ion sites on the selectivity, CuTNPc may act on the basis of a charged carrier mechanism.
     (四) The potential response of a PVC membrane NO_2~- -selective electrode based on a aluminum(Ⅲ)-phthalcyanine (AlPc) as sensing carrier was investigated. The observations indicated that the electrode with the optimized membrane containing cationic additive TOMAC exhibited near-Nernstian linear response in five orders of magnitude with a slope of -58.3 mV·dec~(-1) and a detection limit of 9.5×10~(-7) mol·L~(-1). The selectivity sequece obtained was: NO_2~->SCN~->Sal~->ClO_4~->I~->NO_3~->Cl~->OAc~->Br~->SO_4~(2-)>H_2PO_4~-. But the addition of anionic additive NaTPB intensively deteriorated the potential response of the electrode.
     (五) The potential response of the PVC membrane electrodes based on three Schiff base metal complexes Cu(Ⅱ), Mn(Ⅲ) and Zn(Ⅱ) of N,N'-bis(salicylidene)-1,2-bis(p-aminophenoxy)-ethane (BBAP) (CuBBAP, MnBBAP and ZnBBAP) as carriers was investigated. The observation indicated that the electrode based on CuBBAP with sequare-planar structure displayed a preferential selectivity to I~-: I~->SaN~->ClO_4~->NO_2~->H_2PO_4~->NO_3~->SO_4~(2-)>Br~->Cl~-. The electrode doped with the optimized membrane showed near-Nernstian linear response in a range of 1.0×10~(-1) -8.2×10~(-7)mol·L~(-1) with a slope of -58.8 mV·dec~(-1) and a detection limit of 5.3×10~(-7) mol·L~(-1). But the electrodes based on MnBBAP with trigonal-bipyramidal and ZnBBAP with tetrahedral structure exhibited no good response behavior to I~-. The potential response difference between them may imply that the steric chemical environment has an important influence on their performance.
     Secondary section: Fabrication and characterization for PVC membrane cation ISEs.
     (一) The potential response of the PVC membrane electrodes based on simple Schiff bases, N,N'-bis(2-hydroxybenzyl)-1,3-diaminopropane(BHDP), N,N'-bis(2-hydroxybenzyl)-2,2-dimethyl-1,3-diaminopropane(BHDDP), and N,N'-bis(2-hydroxybenzyl)-1,4-diaminobutane(BHDB), as neutral carriers was discussed. The experiments observed indicated that the resulting electrodes based on BHDP and BHDB showed preferential selectivity recognition and stable near-Nernstian characteristics toward Ag~+. The two electrodes gave respectively a slope of 58.7 and 58.1 mV·dec~(-1) in five orders of magnitude with a detection limit of 1.0 umol·L~(-1), and the selectivity sequence was: Ag~+>Cu~(2+)>Pb~(2+)>Co~(2+)>Hg~(2+)>Cr~(3+)>Al~(3+)>Mg~(2+)K~+>Cd~(2+)>Zn~(2+)>Ba~(2+)>NH_4~+>Ca~(2+)>Mn~(2+)>Sr~(2+)>Bi~(3+) and Ag~+>Cu~(2+)>Pb~(2+)>Mg~(2+)>Hg~(2+)>Cr~(3+)>Al~(3+)>K~+>Cd~(2+)>Zn~(2+)>Co~(2+)>Ba~(2+)>NH_4~+>Ca~(2+)>Mn~(2+)>Bi~(3+)>Sr~(2+), respectively. And relatively low sensitivity was observed for the electrode based on BHDDP with a slope of 53.7 mV·dec~(-1). The difference between the electrodes may be attributed to the steric structure of BHDP and BHDB suitable for Ag~+.
     (二) The potential response of the PVC membrane electrodes incorporating two Schiff bases(LⅠand LⅡ) with N and O donor atoms as neutral carriers was investigated. The observations indicated that super-Nernstian potential response of 34.1 mV·dec~(-1) slope for the electrode based on LⅠto Pb~(2+)was observed. But the resulting electrode based on LⅡshowed selective potential recognition and obvious near-Nernstian response to Pb~(2+) in Pb(NO_3)_2 solution or partially non-aqueous media, which gave a selectivity sequence of Pb~(2+)>Cd~(2+)>Mg~(2+)>Cr~(3+)>Al~(3+)>Hg~(2+)>Zn~(2+)>Co~(2+)>Ca~(2+)>Ba~(2+)>Cu~(2+)>NH_4~+>Ag~+>Bi~(3+)K~+ in a linear range of 1.0×10~(-1)- 1.7×10~(-6) mol·L~(-1) with a slope of 29.5 mV·dec~(-1) and a detection limit of 1.0μmol·L~(-1).
引文
[1] 曾泳淮,林树昌.分析化学(仪器分析部分).第二版.北京:高等教育出版社,2004,247-279.
    [2] 李启隆.电分析化学.北京:北京师范大学出版社.1997,33-51.
    [3] 武汉大学化学系.仪器分析.第一版.北京:高等教育出版社.2001,280-281.
    [4] 谢声洛.离子选择电极分析技术.第一版.北京:化学工业出版社,1985,3,2-96.
    [5] 黄德培,沈子琛,吴国梁等.离子选择性电极的原理及应用.第一版.北京:新时代出版社,1982,71-147.
    [6] 德斯特R A主编.殷晋尧、苏渝生等译.离子选择性电极.北京:科学出版社,1976,153-184.
    [7] 高小霞等.电分析化学导论.第一版.北京:科学出版社,1986,132-135.
    [8] Moody G J, Oke R B, Thomas J D R. A calcium-sensitive electrode based on a liquid ion exchanger in a poly(vinyl chloride) matrix. Analyst, 1970, 95(1136): 910-918.
    [9] Buck R P, Lindner E. Recommendations for nomenclature of ion-selective electrodes. IUPAC, Pure Appl Chem, 1994, 66(12): 2527-2536.
    [10] (?)tefanac Z, Simon W. Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem J, 1967,12(1): 125-132.
    [11] Pioda L A R, Stankova V, Simon W. Highly selective potassium ion responsive liquid- membrane electrode. Anal Lett, 1969, 2(12): 665-674.
    [12] 章咏华.离子选择电极.分析化学,1978,6(3):213-223.
    [13] 殷晋尧.离子选择电极与自动分析.分析化学,1979,7(1):57-66.
    [14] 高鸿,汪尔康,章咏华,高小霞,汪厚基,严辉宇.电分析化学三十年.分析化学,1979,7(5):329-335.
    [15] Buck R P. Ion selective electrodes, potentiometry, and potentiometric titrations. Anal Chem, 1972,44(5): 270-295.
    [16] Buck R P. Ion selective electrodes. Anal Chem, 1976,48(5): 23-39.
    [17] Fricke G H. Ion-selective electrodes. Anal Chem, 1980, 52(5): 259-275.
    [18] Meyerhoff M E, Fraticelli Y M. Ion-selective electrodes. Anal Chem, 1982, 54(5): 27-44.
    [19] Thomas J D R. Solvent polymeric membrane ion-selective electrodes. Anal Chim Acta. 1986, 180:289-297.
    [20] Solsky R L. Ion-selective electrodes. Anal Chem, 1990, 62(12): 21-33.
    [21] Janat J, Josowicz M, DeVaney D M. Chemical sensors. Anal Chem, 1994, 66(12): 207-228.
    [22] Bakker E, B(?)hlmann P, Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristic. Chem Rev, 1997, 97(8): 3083-3132.
    [23] B(?)hlmann P, Pretsch E, Bakker E. Carrier-based ion-selective electrodes and bulk optodes. 2. ionophores for potentiometric and optical sensors. Chem Rev, 1998,98(4): 1593-1688.
    [24] Shim J H, Jeong I S, Lee M H, Hong H P, On J H, Kim K S, Kim H S, Kim B H, Cha G S, Nam H. Ion-selective electrodes based on molecular tweezer-type neutral carriers. Talanta, 2004, 63(1): 61-71.
    [25] Bakker E, Biihlmann P, Pretsch E. The phase-boundary potential model. Talanta, 2004, 63(1): 3-20.
    [26] Bakker E, Qin Y. Electrochemical sensors. Anal Chem, 2006, 78(12): 3965-3984.
    [27] Marco R D, Clarke G, Pejcic B. Ion-selective electrode potentiometry in environmental analysis. Electroanalysis, 2007,19(19-20): 1987-2001.
    [28] PrivettB J, Shin J H, Schoenfisch M H. Electrochemical sensors. Anal Chem, 2008, 80(12): 4499-4517.
    [29] Sollner K, Shean G M. Liquid ion-exchange membranes of extreme selectivity and high permeability for anions. J Am Chem Soc, 1964, 86(9): 1901-1902.
    [30] Koryta J. Theory and applications of ion-selective electrodes part 4. Anal Chim Acta, 1982,139: 1-51.
    [31] Wotring V J, Johnson D M, Bachas L G Polymeric membrane anion-selective electrodes based on diquaternary ammonium salts, Anal Chem, 1990, 62(14): 1506-1510.
    [32] Pranitis D M, Telting-Diaz M, Meyerhoff M E, Schroeder R R. Potentiometric ion-, gas-, and bio-selective membrane electrodes. Crit Rev Anal Chem, 1992,23(3): 163-186.
    [33] Simon W, Pretsch E, Morf W E, Ammann D, Oesch U, Dinten O. Design and application of neutral carrier-based ion-selective electrodes. Plenary lecture. Analyst, 1984,109(3): 207- 209.
    [34] Choi K K, Fung K W. A salicylate ion-selective membrane electrode based on Aliquat 336s and the assay of acetylsalicylic acid. Anal Chim Acta, 1982,138: 385-390.
    [35] Mitsana-Papazoglou A, Diamandis E P, Hadjiioannou T P. Construction and analytical applications of an improved liquid-membrane electrode for salicylate, Anal Chim Acta, 1984, 159:393-396.
    [36] Schulthess P, Ammann D, Simon W, Caderas C, Step(?)nek R, Kr(?)utler B. A lipophilic derivative of Vitamin B_(12) as selective carrier for anions. Helv Chim Acta, 1984, 67(4): 1026-1032.
    [37] Schulthess P, Ammann D, Kraeutler B, Caderas C, Stepanek R, Simon W. Nitrite-selective liquid membrane electrode. Anal Chem, 1985,57(7): 1397-1401.
    [38] Step(?)nek R, Kr(?)utler B, Schulthess P, Lindemann B, Ammann D, Simon W. Aquocyano- cobalt(Ⅲ)-hepta(2-phenylethyl)-cobyrinate as a cationic carrier for nitrite-selective liquid- membrane electrodes. Anal Chim Acta, 1986,182: 83-90.
    [39] Morf W E, Huser M, Lindemann B, Schulthess P, Simon W. Selective transport membranes and their applicability for novel sensors. Helv Chim Acta, 1986, 69(6): 1333-1342.
    [40] Daunert S, Bachas L G. Anion-selective electrodes based on a hydrophobic Vitamin B_(12) derivative. Anal Chem, 1989, 61(5): 499-503.
    [41] Florido A, Daunert S, Bachas L G. Effect of proteins on the response of anion-selective electrodes based on Vitamin B_(12) derivatives. Electroanalysis, 1991, 3(3): 177-182.
    [42] Palet C, Munoz M, Daunert S, Bachas L G, Valiente M. Vitamin B12 derivatives as anion carriers in transport through supported liquid membranes and correlation with their behavior in ion-selective electrodes. Anal Chem, 1993, 65(11): 1533-1536.
    [43] Li J Z, Wu X C, Yuan R, Lin H G, Yu R Q. Cobalt phthalocyanine derivatives as neutral carriers for nitrite-sensitive poly(vinyl chloride) membrane electrodes. Analyst, 1994, 119(6): 1363-1366.
    [44] Li J Z, Pang X Y, Yu R Q. Substituted cobalt phthalocyanine complexes as carriers for nitrite-sensitive electrodes. Anal Chim Acta. 1994, 297(3): 437-442.
    [45] 李俊忠,胡敏,俞汝勤.脂溶性酞菁钴为载体的高选择性亚硝酸根PVC膜电极.化学学 报,1995,53(11):1118-1123.
    [46] Li J Z, Pang X Y, Gao D, Yu R Q. Salicylate-selective electrode based on lipophillic tin(Ⅳ) phthalocyanine. Talanta, 1995, 42(11): 1775-1781.
    [47] Amini M K, Shahrokhian S, Tangestaninejad S. Thiocyanate-selective electrodes based on nickel and iron phthalocyanines. Anal Chim Acta, 1999,402(1-2): 137-143.
    [48] Shahrokhian S, Taghani A, Hamzehloei A, Mousavi S R. Potentiometric membrane sensors based on zirconyl(Ⅳ) phthalocyanine for detection of sulfosalicylic acid. Talanta, 2004, 63(2): 371-376.
    [49] Shahrokhian S, Souri A. Metalophalocyanine complexes as ion-carriers in membrane- selective electrodes for detection of thiosalicylic acid. Anal Chim Acta, 2004,518(1-2): 101-108.
    [50] Arvand M, Pourhabib A, Shemshadi R, Giahi M. The potentiometric behavior of polymer-supported metallophthalocyanines used as anion-selective electrodes. Anal Bioanal Chem, 2007, 378(3): 1033-1039.
    [51] El-Nemma E E, Badawi N M, Hassan SSM. Cobalt phthalocyanine as a novel molecular recognition reagent for batch and flow injection potentiometric and spectrophotometric determination of anionic surfactants. Talanta, 2009, 78(3): 723-729.
    [52] Ammann D, Huser M, Kr(?)utler B, Rusterholz B, Schulthess P, Lindemann B, Haider E, Simon W. Anion selectivity of metalloporphyrins in membranes. Helv Chim Acta, 1986, 69(4): 849-854.
    [53] Hodin(?)r A, Jyo A. Thiocyanate solvent polymeric membrane ion-selective electrode based on cobalt(Ⅲ) α, β, γ, δ-tetraphenylporphyrin anion carrier. Chem Lett, 1988,17(6): 993-996.
    [54] Chaniotakis N A, Chasser A M, Meyerhoff M E, Groves J T. Influence of porphyrin structure on anion selectivities of manganese(Ⅲ) porphyrin based membrane electrodes. Anal Chem, 1988, 60(2): 185-188.
    [55] Hodinar A, Jyo A. Contribution of membrane components to the overall response of anion carrier based solvent polymeric membrane ion-selective electrodes. Anal Chem, 1989, 61(10): 1169-1171.
    [56] Chaniotakis N A, Park S B, Meyerhoff M E. Salicylate-selective membrane electrode based on tin(Ⅳ)-tetraphenylporphyrin. Anal Chem, 1989, 61(6): 566-70.
    [57] Kibbey C E, Park S B, DeAdwyler G, Meyerhoff M E. Further studies on the potentiometric salicylate response of polymeric membranes doped with tin(Ⅳ)-tetraphenylporphyrins. J Electroanal Chem, 1992, 335(1-2): 135-149
    [58] Bakker E, Malinowska E, Schiller R D, Meyerhoff M E. Anion-selective membrane electrodes based on metalloporphyrins: The influence of lipophilic anionic and cationic sites on potentiometric selectivity. Talanta, 1994,41(6): 881-890.
    [59] Gao D, Li J Z, Yu R Q, Zheng G D. Metalloporphyrin derivatives as neutral carriers for PVC membrane electrodes. Anal Chem, 1994, 66(14): 2245-2249.
    [60] Gao D, Gu J, Yu R Q, Zheng G D. Nitrite-sensitive liquid membrane electrodes based on metalloporphynn derivatives. Analyst, 1995, 120(2): 499-502.
    [61] Gupta V K, Jain A K, Singh L P, Khurana U, Kumar P. Molybdate sensor based on 5,10,15,20-tetraphenylporphyrinatocobalt complex in a PVC matrix. Anal Chim Acta, 1999, 379(1-2): 201-208.
    [62] Steinle E D, Schaller U, Meyerhoff M E. Response characteristics of anion-selective polymeric membrane electrodes based on gallium(Ⅲ), indium(Ⅲ) and thallium(Ⅲ) porphyrins. Anal Sci, 1998,14(1): 79-84.
    [63] Steinle E D, Amemiya S, B(?)hlmann P, Meyerhoff M E. Origin of non-Nernstian anion response slopes of metalloporphyrin-based liquid/polymer membrane electrodes. Anal Chem, 2000, 72(23): 5766-5773.
    [64] Malinowska E, Niedziolka J, Rozniecka E, Meyerhoff M E. Salicylate-selective membrane electrodes based on Sn(Ⅳ)- and O=Mo(Ⅴ)-porphyrins: Differences in response mechanism and analytical performance. J Electroanal Chem, 2001, 514(1): 109-117.
    [65] Malinowska E, G(?)rski (?), Meyerhoff M E. Zirconium(Ⅳ)-porphyrins as novel ionophores for fluoride-selective polymeric membrane electrodes. Anal Chim Acta, 2002,468(1): 133-141.
    [66] Khorasani J H, Amini M K, Motaghi H, Tangestaninejad S, Moghadam M. Manganese porphyrin derivatives as ionophores for thiocyanate-selective electrodes: The influence of porphyrin substituents and additives on the response properties. Sens Actu B, 2002, 87(3): 448-456.
    [67] Shahrokhian S, Hamzehloei A, Bagherzadeh M. Chromium(Ⅲ) porphyrin as a selective ionophore in a salicylate-selective membrane electrode. Anal Chem, 2002, 74(14): 3312- 3320.
    [68] Prasad R, Gupta V K, Kumar A. Metallo-tetraazaporphyrin based anion sensors: regulation of sensor characteristics through central metal ion coordination. Anal Chim Acta, 2004, 508(1): 61-70.
    [69] Mitchell-Koch J T, Pietrzak M, Malinowska E, Meyerhoff M E. Aluminum(Ⅲ) porphyrins as ionophores for fluoride selective polymeric membrane electrodes. Electroanalysis, 2006, 18(6): 551-557.
    [70] Pietrzak M, Meyerhoff M E, Malinowska E. Polymeric membrane electrodes with improved fluoride selectivity and lifttime based on Zr(Ⅳ)- and Al(Ⅲ)-tetraphenylporphyrin derivatives. Anal Chim Acta. 2007, 596(2): 201-209.
    [71] G(?)rski (?), Mroczkiewicz M, Pietrzak M, Malinowska E. Complexes of tetra-tert-butyl- tetraazaporphine with Al(Ⅲ)- and Zr(Ⅳ)- cations as fluoride selective ionophores. Anal Chim Acta, 2009, 633(2): 181-187.
    [72] Yuan R, Chai Y Q, Liu D, Gao D, Li J Z, Yu R Q. Schiff base complexes of cobalt(Ⅱ) as neutral carriers for highly selective iodide electrodes. Anal Chem, 1993, 65(19): 2572-2575.
    [73] 刘冬,袁若,陈文灿,柴雅琴,高德,李俊忠,俞汝勤.以钴Schiff碱配合物为载体的PVC膜碘离子选择性电极的研究.高等学校化学学报,1994,15(7):991-993.
    [74] 袁若,林守群,沈国励,田德余,俞汝勤.二(乙基黄原酸基化)金属配合物为中性载体高选择性碘离子电极的研究.化学学报,1996,54(5):516-520.
    [75] Ying M, Yuan R, Li Z Q, Song Y Q, Li W X, Lin H G, Shen G L, Ru R Q. Thiocyanate- selective electrode based on cobalt(Ⅱ) complexes of pyrazolone heterocyclic Schiff bases. Fresenius J Anal Chem, 1998, 361(5): 437-441.
    [76] Song Y Q, Yuan R, Ying M, Li Z Q, Chai Y Q, Cui H, Shen G L, Yu R Q. A highly selective iodide electrode based on the bis(benzoin)-semiethylenediamine complex of mercury(Ⅱ) as a carrier. Fresenius J Anal Chem, 1998, 360(1): 47-51.
    [77] Yuan R, Song Y Q, Chai Y Q, Xia S X, Zhong Q Y, Yi B, Ying M, Shen G L, Yu R Q. Design of Schiff base complexes of Co(Ⅱ) for the preparation of iodide-selective polymeric membrane electrodes. Talanta, 1999,48(3): 649-657.
    [78] Li Z Q, Liu G D, Duan L M, Shen G L, Yu R Q. Sulfate-selective PVC membrane electrodes based on a derivative of imidazole as a neutral carrier. Anal Chim Acta. 1999, 382(1-2): 165- 170.
    [79] 李志强,沈国励,俞汝勤.新型中性载体硫氰酸根离子选择电极研究.高等学校化学学报,2000,21(3):373-376.
    [80] Wroblewski W, Brzozka Z, Rudkevich D M, Reinhoudt D N. Nitrite-selective ISE based on uranyl salophen derivatives. Sens Actu B. 1996, 37(1): 151-155.
    [81] Shahrokhian S, Amini M K, Kia R, Tangestaninejad S. Salicylate- selective electrodes based on Al(Ⅲ) and Sn(Ⅳ) salophens. Anal Chem, 2000, 72(5): 956-962.
    [82] Shamsipur M, Yousefi M, Hosseini M, Ganjali M R, Sharghi H, Naeimi H. A Schiff base complex of Zn(Ⅱ) as a neutral carrier for highly selective PVC membrane sensors for the sulfate ion. Anal Chem, 2001, 73(13): 2869-2874.
    [83] Wr(?)blewski W, Wojciechowski K, Dybko A, Brz(?)zka Z, Egberink R J M, Snellink-Ru(?)l BHM, Reinhoudt D N. Durable phosphate-selective electrodes based on uranyl salophenes. Anal Chim Acta. 2001,432(1): 79-88.
    [84] G(?)rski (?), Saniewska A, Parzuchowski P, Meyerhoff M E, Malinowska E. Zirconium(Ⅳ)-salophens as fluoride-selective ionophores in polymeric membrane electrodes. Anal Chim Acta, 2005, 551(1-2): 37-44.
    [85] Mitchell-Koch J T, Malinowska E, Meyerhoff M E. Gallium(Ⅲ)-Schiff base complexes as novel ionophores for fluoride selective polymeric membrane electrodes. Electroanalysis, 2005, 17(15-16): 1347-1353.
    [86] Ganjali M R, Poursaberi T, Hosseini M, Salavati-Niasary M, Yousefi M, Shamsipur M. Highly selective iodide membrane electrode based on a cerium salen. Anal Sci, 2002,18(3): 289-292.
    [87] Ganjali M R, Norouzi P, Gohnohammadi M, Rezapour M, Salavati-Niasari M. Novel bromide PVC-based membrane sensor based on iron(Ⅲ)-salen. Electroanalysis, 2004,16(11): 910-914.
    [88] Ganjali M R, Norouzi P, Ghomi M, Salavati-Niasari M. Highly selective and sensitive monohydrogen phosphate membrane sensor based on molybdenum acetylacetonate. Anal Chim Acta, 2006, 567(2): 196-201.
    [89] Badr I H A. Potentiometric anion selectivity of polymer-membrane electrodes based on cobalt, chromium, and aluminum salens. Anal Chim Acta, 2006,570(2): 176-185.
    [90] Chandra S, R(?)i(?)ka A, (?)vec P, Lang H. Organotin compounds: An ionophore system for fluoride ion recognition. Anal Chim Acta, 2006, 577(1): 91-97.
    [91] Sadeghi S, Fathi F, Esmaeili A A, Naeimi H. Novel triiodide ion-selective polymeric membrane electrodes based on some transition metal-Schiff base complexes. Sens Actu B, 2006, 114(2): 928-935.
    [92] Ardakani M M, Jalayer M, Naeimi H, Heidarnezhad A, Zare H R. Highly selective oxalate-membrane electrode based on 2,2'-[l,4-butandiyle bis(nitrilo propylidine)]bis-1-1-naphtholato copper(Ⅱ). Biosens Bioelectron, 2006,21(7): 1156-1162.
    [93] Singh A K, Mehtab S. Polymeric membrane sensors based on Cd(Ⅱ) Schiff base complexes for selective iodide determination in enviromental and medicinal samples. Talanta, 2008, 74(4): 806-814.
    [94] Kim J, Kang D M, Shin S C, Choi M Y, Kim J, Lee S S, Ki J S. Functional polyterthiophene-appended uranyl-salophen complex: Electropolymerization and ion-selective response for monohydrogen phosphate. Anal Chim Acta, 2008, 614(1): 85-92.
    [95] 柴雅琴,孙至勇,袁若,甘贤雪,许文菊,徐岚.苯甲醛缩氨基脲铜(Ⅱ)配合物为载体的高选择性硫氰酸根离子电极的研究.化学学报,2003,61(9):1511-1515.
    [96] Chai Y Q, Jiang F, Yuan R, Xu L, Xu W J. A highly selective salicylate electrode based on Schiff base complexes of cobalt(Ⅲ). Anal Lett, 2003,36(11): 2379-2392.
    [97] Dai J Y, Chai Y Q, Yuan R, Zhong X, Liu Y, Tang D P. Bis-dimethylaminobenzaldehyde Schiff-base cobalt(Ⅱ) complex as a neutral carrier for a highly selective iodide electrode. Anal Sci.2004, 20(10): 1661-1665.
    [98] Sun Z Y, Yuan R, Chai Y Q, Xu L, Gan X X. Study of a bis-furaldehyde Schiff base copper(Ⅱ) complex as carrier for preparation of highly selective thiocyanate electrodes. Anal Bioanal Chem. 2004,378(2): 490-494.
    [99] Dai J Y, Chai Y Q, Yuan R, Zhang Y S, Liu Y, Zhong X, Tang D P. Thiocyanate-selective PVC membrane electrode based on tricoordinate Schiff base copper(Ⅱ) complex. Chem Lett. 2005, 34(1): 62-63.
    [100] Xu L, Yuan R, Fu Y Z, Chai Y Q. Potentiometric membrane electrode for salicylate based on an organotin complex with a salicylal Schiff base of amino acid. Anal Sci, 2005, 21(3): 287-292.
    [101] Luo E P, Chai Y Q, Yuan R. Unsymmetrical tetradentate Schiff bases copper(Ⅱ) complex as neutral carrier for thiocyanate-selective electrode. Anal Lett. 2007,40(2): 369-386.
    [102] Wu X, Chai Y Q, Yuan R, Ye G R, Zhou W. Highly selective thiocyanate electrode based on bis-bebzion Schiff base binuclear copper(Ⅱ) complex as neutral carrier. Anal Lett, 2008,41(5): 890-901.
    [103] 徐刚,袁若,柴雅琴.异双席夫碱合钴(Ⅱ)配合物中性载体碘离子电极的研究.分析化学,2008,36(8):1101-1104.
    [104] Visser H C, Rudkevich D M, Verboom W, Jong F de, Reinhoudt D N. Anion carrier mediated membrane transport of phosphate: Selectivity of H_2PO_4~- over Cl~-. J Am Chem Soc, 1994, 116(25): 11554-11555.
    [105] Wr(?)blewski W, Malinowska E, Brz(?)zka Z. Anion selectivities of membranes based on Hg~Ⅱ complexes of calix[4]arene derivatives. Electroanalysis, 1996, 8(1): 75-78.
    [106] Wr(?)blewski W, Brz(?)zka Z. Switching of ion selectivity of membranes by lipophilic ionic sites. Anal Chun Acta, 1996, 326(1-3): 163-168.
    [107] Lee H K, Oh H, Nam C K, Jeon S. Urea-functionalized calix[4]arenes as carriers for carbonate-selective electrodes. Sens Actu B, 2005,106(1): 207-211.
    [108] Gupta V K, Ludwig R, Agarwal S. Anion recognition through modified calixarenes: a highly selective sensor for monohydrogen phosphate. Anal Chim Acta, 2005, 538(1-2): 213-218.
    [109] Erden S, Demirel A, Memon S, Yilmaz M, Canel E, Kilic E. Using of hydrogen ion-selective poly(vinyl chloride) membrane electrode based on calix[4]arene as thiocyanate ion-selective electrode. Sens Actu B, 2006,113(1): 290-296.
    [110] Kivlehan F, Mace W J, Moynihan H A, Arrigan D W M. Potentiometric evaluation of calix[4] arene anion receptors in membrane electrodes: Phosphate detection. Anal Chim Acta. 2007, 585(1): 154-160.
    [111] Shishkanova T V, S(?)kora D, Sessler J L, Kr(?)l V. Potentiometric response and mechanism of anionic recognition of heterocalixarene-based ion selective electrodes. Anal Chim Acta, 2007, 587(2): 247-253.
    [112] Ert(?)r(?)n H. E K, Yilmaz M, Kilic E. Construction of an anion-selective electrode: Dichromate-selective electrode. Sens Actu B, 2007,127(2): 497-504.
    [113] Umezawa Y, Kataoka M, Takami W, Kimura E, Koike T, Nada H. Potentiometric adenosine- triphosphate polyanion sensor using a lipophilic macrocyclic polyamine liquid membrane.Anal Chem, 1988, 60(21): 2392-2396.
    [114]Kataoka M, Naganawa R, Odashima K, Umezawa Y, Kimura E, Koike T.Potentiometric liquid membrane sensors that discriminate linear homologs and geometrical/positional isomers of dicarboxylates.Anal Lett, 1989,22(5): 1089-1105.
    [115]Odashima K, Sugawara M, Umezawa Y.Biomembrane mimetic sensing chemistry.Trends in Anal Chem, 1991,10(7): 207-215.
    [116]Tohda K, Tange M, Odashima K, Umezawa Y, Furuta H, Sessler J L.Liquid membrane electrode for guanosine nucleotides using a cytosine-pendant triamine host as the sensory element.Anal Chem, 1992, 64(8): 960-964.
    [117]Naganawa, Radecka H, Kataoka M, Tohda K, Odashima K, Umezawa Y, Kimura E, Koike T.Potentiometric discrimination between planar and octahedral anionic metal cyano complexes by liquid membrane electrodes based on lipophilic macrocyclic dioxopolyamines.Electroanalysis, 1993, 5(9-10): 731-738.
    [118]Furuta H, Magda D, Sessler J L.Molecular recognition via base pairing: Amine-containing, cytosine-based ditopic receptors that complex guanosine monophosphate.J Am Chem Soc,1991,113(3): 978-985.
    [119]Carey C M, Riggan W B.Cyclic polyamine ionophore for use in a dibasic phosphate-selective electrode.Anal Chem, 1994, 66(21): 3587-3591.
    [120]Hutchins R S, Molina P, Alajarin M, Vidal A, Bachas L G Use of a guanidinium ionophore in a hydrogen sulfite-selective electrode.Anal Chem, 1994, 66(19): 3188-3192.
    [121]Hutchins R S, Bansal P, Molina P, Alajarin M, Vidal A, Bachas L G.Salicylate-selective electrode based on a biomimetic guanidinium ionophore.Anal Chem, 1997, 69(7): 1273-1278.
    [122]Fibbioli M, Berger M, Schmidtchen F P, Pretsch E.Polymeric membrane electrodes for monohydrogen phosphate and sulfate.Anal Chem, 2000, 72(1): 156-160.
    [123]Segui M J, Lizondo-Sabater J, Martinez-Manez R, Sancenon F, Soto J.Linear polyammes as carriers in thiocyanate-selective membrane electrodes.Talanta, 2006, 68(4): 1182-1189.
    [124]Koseoglu S S, Lai C Z, Ferguson C, Buhlmann P.Response mechanism of ion-selective electrodes based on a guanidine ionophore: An apparently 'two-thirds Nernstian' response slope.Electroanalysis, 2008,20(3): 331-339.
    [125]Wuthier U, Pham H V, Zuend R, Welti D, Funck R J J, Bezegh A, Ammann D, Pretsch E,Simon W.Tin organic compounds as neutral carriers for anion selective electrodes.Anal Chem,1984, 56(3): 535-538.
    [126]Glazier S A, Arnold M A.Phosphate-selective polymer membrane electrode.Anal Chem, 1988, 60(22): 2540-2542.
    [127]Glazier S A, Arnold M A.Selectivity of membrane electrodes based on derivatives of dibenzyltin dichloride.Anal Chem, 1991, 63(8): 754-759.
    [128]Chaniotakis N A, Jurkschat K, Riihlemann A.Potentiometric phosphate selective electrode based on a multidendate-tin(IV) carrier.Anal Chim Acta, 1993, 282(2): 345-352.
    [129]Liu D, Chen W C, Shen G L, Yu R Q.Polymeric membrane salicylate-sensitive electrodes based on organotin(IV) carboxylates.Analyst, 1996, 121(10): 1495-1499.
    [130]Li Z Q, Yuan R, Ying M, Song Y Q, Shen G L, Yu R Q.Pentacoordinate organotin complexes as neutral carriers for salicylate-selective PVC membrane electrodes.Talanta, 1998, 46(5): 943-950.
    [131] 刘冬,陈文灿,何德良,沈国励,俞汝勤.以双核有机锡化合物为载体的PVC膜磷酸根离子敏感电极.高等学校化学学报,1996,17(10):1528-1531.
    [132] Liu D, Chen W C, Yang R H, Shen G L,Yu R Q. Polymeric membrane phosphate sensitive electrode based on binuclear organotin compound. Anal Chim Acta, 1997, 338(3): 209-214.
    [133] 李志强,宋小平,袁若,应敏,沈国励,俞汝勤.有机锡化合物为中性载体的高选择性硫氰酸根离子电极.高等学校化学学报,1999,20(1):47-49.
    [134] Xu L, Yuan R, Chai Y Q, Fu Y Z. Novel membrane potentiometric thiocyanate sensor based on tribenzyltin(Ⅳ) dithiocarbamate. Electroanalysis, 2005,17(11): 1003-1007.
    [135] Pranitis D M, Meyerhoff M E. Sulfite-sensitive solvent/polymeric-membrane electrode based on bis(diethyldithiocarbamato)mercury(Ⅱ). Anal Chim Acta, 1989,217,123-133.
    [136] Rothmaier M, Schaller U, Morf W E, Pretsch E. Response mechanism of anion-selective electrodes based on mercury organic compounds as ionophores. Anal Chim Acta, 1996, 327(1): 17-28.
    [137] Song Y Q, Yuan R, Ying M, Li Z Q, Chai Y Q, Cui H, Shen G L, Yu R Q. A highly selective iodide electrode based on the bis(benzoin)-semiethylenediamine complex of mercury(Ⅱ) as a carrier. Fresenius J Anal Chem, 1998, 360(1): 47-51.
    [138] Chai Y Q, Yuan R, Xu L, Xu W J, Dai J Y, Jiang F. A highly sensitive PVC membrane iodide electrode based on complexes of mercury(Ⅱ) as neutral carrier. Anal Bioanal Chem. 2004, 380(2): 333-338.
    [139] Chandra S, R(?)i(?)ka A, (?)vec P, Lang H. Organotin compounds: An ionophore system for fluoride ion recognition. Anal Chim Acta, 2006, 577(1): 91-97.
    [140] Hisamoto H, Siswanta D, Nishihara H, Suzuki K. Anion selective polymeric membrane electrodes based on metallocenes. Anal Chim Acta, 1995, 304(2): 171-176.
    [141] Liu W, Li X, Song M P, Wu Y J. A novel dibasic phosphate-selective electrode based on ferrocene-bearing macrocyclic amide compound. Sens Actu B, 2007,126(2): 609-615.
    [142] Amarani F Z E, Sastre A, Aguilar M, Beyer L, Florido A. Iodide-selective electrodes based on the silver(Ⅰ) complex of a novel N-thiocarbamoylimine-dithioether derivative. Anal Chim Acta, 1996, 329(3): 247-252.
    [143] Badr I H A, Meyerhoff M E, Hassan S S M. Potentiometric anion selectivity of polymer membranes doped with palladium organophosphine complex. Anal Chem, 1995, 67(15): 2613-2618.
    [144] S(?)nchez-Pedre(?)o C, Ortu(?)o J A, Mart(?)nez D. Anion selective polymeric membrane electrodes based on cyclopalladated amine complexes. Talanta, 1998,47(2): 305-310.
    [145] Li Z Q, Yuan R, Ying M, Song Y Q, Shen G L, Yu R Q. Iodide-selective PVC membrane electrodes based on five transitional metal chelates of bis-furfural-semi-o-tolidine. Anal Lett, 1997, 30(8): 1455-1464.
    [146] Ying M, Yuan R, Zhang X M, Song Y Q, Li Z Q, Shen G L, Ru R Q. Highly selective iodide poly(vinyl chloride) membrane electrode based on a nickel(Ⅱ) tetraazaannulene. Analyst, 1997, 122(10): 1143-1146.
    [147] Ying M, Yuan R, Li Z Q, Song Y Q, Shen G L, Ru R Q. Salicylate-sensitive membrane electrode based on copper(Ⅱ) tetraaza[14]annulene macrocyclic complex. Anal Lett, 1998, 31(12): 1965-1977.
    [148] Abbaspour A, Kamyabi M A, Esmaeilbeig A R, Kia R, Thiocyanate-selective electrode based on unsymmetrical benzoN4 nickel(Ⅱ) macrocyclic complexes. Talanta, 2002, 57(5): 859-867.
    [149] Ganjali M R, kiani-Anbouhi R, Pourjavid M R, Salavati-Niasari M. Bis (trans-cinnam aldehyde) ethylene diimine dibromonickel(Ⅱ) complex as a neutral carrier for salicylate-selective liquid membrane and coated graphite sensors. Talanta, 2003, 61(3): 277-284.
    [150] 柴雅琴,许文菊,袁若.二氮杂四烯基金属配合物中性载体高选择性水杨酸根离子电极的研究.化学学报,2002,60(12):2192-2196.
    [151] Yuan R, Wang X L, Xu L, Chai Y Q, Sun Z Y, Huang X Q, Li Q F, Zhao Q, Zhou L. Highly selective thiocyanate electrode based on bis-bebzoin-sernitriethylenetetraarnine binuclear copper(Ⅱ) complex as neutral carrier. Electrochem Commun. 2003,5(8): 717-721.
    [152] 归国风,柴雅琴,袁若,孙爱丽,王福昌.新型双核铜金属配合物为中性载体的硫氰酸根离子高选择性电极的研究.化学学报,2006,64(21):2185-2189.
    [153] Dai J Y, Yuan R, Chai Y Q, An L X, ZhongX, Liu Y, Tang D P. Highly thiocyanate-selective PVC membrane electrode based on lipophilic ferrocene derivative. Electroanalysis, 2005, 17(20): 1865-1869.
    [154] Hattori H, Hoshino M, Yuchi A. Evalution of zirconium(Ⅳ) complex with N-dodecy liminodiacetate as an ionophore for ion-selective electrodes. Anal Sci, 2001, 17(10): 1217-1219.
    [155] Ardakani M M, Ensafi A A, Niasari M S, Chahooki S M. Selective thiocyanate poly(vinyl chloride) membrane based on a l,8-dibenzyl-l,3,6,8,10,13-hexaazacyclotetradecane-Ni(Ⅱ) perchlorate. Anal Chim Acta, 2002,462(1): 25-30.
    [156] Shamsipur M, Ershad S, Samadi N, Rezvani A R, Haddadzadeh H. The first use of a Rh(Ⅲ) complex as a novel ionophore for thiocyanate-selective polymeric membrane electrodes. Talanta, 2005, 65(4): 991-997.
    [157] Singh A K, Singh U P, Mehtab S, Aggarwal V. Thiocyanate selective sensor based on tripodal zinc complex for direct determination of thiocyanate in biological samples. Sens Actu B, 2007, 125(2): 453-461.
    [158] Arvand M, Zanjanchi M A, Heydari L. Novel thiocyanate-selective membrane sensor based on crown ether-cetyltrimethyl ammonium thiocyanate ion-pair as a suitable ionophore. Sens Actu B, 2007,122(1): 301-308.
    [159] Zanjanchi M A, Arvand M, Akbari M, Tabatabaeian K, Zaraei G. Perchlorate-selective polymeric membrane electrode based on a cobaloxime as a suitable carrier. Sens Actu B, 2006, 113(1): 304-309.
    [160] Soleymanpour A, Asl E H, Nabavizadeh S M. Perchlorate selective membrane electrodes based on synthesized platinum(Ⅱ) complexes for low-level concentration measurements. Sens Actu B, 2007, 120(2): 447-454.
    [161] Ganjali M R, Norouzi P, Faridbod F, Yousefi M, Naji L, Salavati-Niasari M. Perchlorate-selective membrane sensors based on two nickel-hexaazamacrocycle complexes. Sens Actu B, 2007,120(2): 494-499.
    [162] Rezaei B, Meghdadi S, Nafisi V. Fast response and selective perchlorate polymeric membrane electrode based on bis(dibenzoylmethanato) nickel(Ⅱ) complex as a neutral carrier. Sens Actu B,2007, 121(2): 600-605.
    [163] Andredakis G E, Moschou E A, Matthaiou K, Froudakis G E, Chaniotakis N A. Theoretical and experimental studies of metallated phenanthroline derivatives as carriers for the optimization of the nitrate sensor. Anal Chim Acta, 2001,439(2): 273-280.
    [164] P(?)rez-Olmos R, Rios A, Fern(?)ndez J R, Lapa R A S, Lima J L F C. Construction and evaluation of ion selective electrodes for nitrate with a summing operational amplifier. Application to tobacco analysis. Talanta, 2001, 53(1): 741-748.
    [165] Ortu(?)o J A, Exp(?)sito R, S(?)nchez-Pedre(?)o C, Mar(?)a I A, Espinosa A. A nitrate-selective electrode based on a tris(2-aminoethyl)amine triamide derivative receptor. Anal Chim Acta, 2004, 525(2): 231-237.
    [166] Ardakani M M, Salavati-Niasari M, Jamshidpoor M. Selective nitrate poly(vinylchloride) membrane electrode based on bis(2-hydroxyacetophenone)ethylenediimine vanadyl(Ⅳ). Sens Actu B, 2004,101(3): 302-307.
    [167] Gonz(?)lez-Bellavista A, Macan(?)s J, Mu(?)oz M, Fabregas E. Sulfonated poly(ether ether ketone), an ion conducting polymer, as alternative polymeric membrane for the construction of anion-selective electrodes. Sens Actu B, 2007,125(1): 100-105.
    [168] Watts A S, Gavalas V G, Cammers A, Andrada P S, Alajar(?)n M, Bachas L G. Nitrate-selective electrode based on a cyclic bis-thiourea ionophore. Sens Actu B, 2007, 121(1): 200-207.
    [169] Singh A K, Mehtab S, Saxena P. A bromide selective polymeric membrane electrode based on Zn(Ⅱ) macrocyclic complex. Talanta, 2006, 69(5): 1143-1148.
    [170] Singh A K, Aggarwal V, Singh U P, Mehtab S. Nickel pyrazolyl borate complexes: Synthesis, structure and analytical application in biological and environmental samples as anion selective sensors. Talanta, 2008, 77(2): 718-726.
    [171] Gupta V K, Goyal R N, Sharma R A. Anion recognition using newly synthesized hydrogen bonding disubstituted phenylhydrazone-based receptors: Poly(vinyl chloride)-based sensor for acetate. Talanta, 2008, 76(4): 859-864.
    [172] Wang J G, Wang L L, Han Y H, Jia J B, Jiang L L, Yang W W, Sun Q H, Lv H. PVC membrane electrode based on triheptyl dodecyl ammonium iodide for the selective determination of molybdate(Ⅵ). Anal Chim Acta. 2007, 589(1): 33-38.
    [173] Hassan S S M, Attawiya A M Y. A novel uranyl membrane sensor with potentiometnc anionic response. Talanta, 2006, 70(4): 883-889.
    [174] Gholivand M B, Mohammadi M, Khodadadian M, Rofouei M K. Novel platinum(Ⅱ) selective membrane electrode based on 1,3-bis(2-cyanobenzene)triazene. Talanta, 2009, 78(3): 922- 928.
    [175] (?)tefanace Z, Simon W. Ion specific electrochemical behavior of macrotetrolides in membranes. Microchem J, 1967, 12(1): 125-132.
    [176] Pioda L A R, Stankova V, Simon W. Highly selective potassium ion responsive liquid-membrane electrode. Anal Letters, 1969, 2(12): 665-674.
    [177] Agtarap A, Chamberlin J W, Pinkerton M, Steinrauf, L K. Structure of monensic acid, a new biologically active compound. J Am Chem Soc, 1967, 89(22): 5737-5739.
    [178] Jenny H B, Riess C, Ammann D, Magyar B, Asper R, Simon W. Determination of K~+ in diluted and undiluted urine with ion-selective electrodes. Microchem Acta, 1980, 74(3-4): 309-315.
    [179] Wieland Th, L(?)ben G, Ottenheym H, Faesel J, Vries J X, Konz W, Prox A, Schmicl J. Antamanid, seine entdeckung, isolierung, strukturaufkl(?)rung und synthese. Angew Chem, 1968, 80(6): 209-213.
    [180] Hamill R L, Higgens C E, Boaz H E, Gorman M. The structure op beauvericin, a new depsipeptide antibiotic toxic to artemia salina. Tetrahedron Lett, 1969,10(49): 4255-4258.
    [181] Gachon P, Kergomard A, Veschambre H, Esteve C, Staron T. Grisorixin, a new antibiotic related to nigericin. J Chem Soc D: Chem Commun, 1970, (21): 1421-1422.
    [182] Alleaume M, Hickel D. The crystal structure of grisorixin silver salt. J Chem Soc D: Chem Commun, 1970, (21): 1422-1423.
    [183] Childs R F, Taguchi V. The photoisomerization of some tropylium cations and protonated tropone. J Chem Soc D: Chem Commun, 1970, (11): 695-696.
    [184] Kitazawa S, Kimura K, Yano H, Shono T. Lithium-selective polymeric membrane electrodes based on dodecylmethyl-14-crown-4. Analyst, 1985,110(3): 295-299.
    [185] Tuladhar S M, William G, D'Silva C. Comparative studies on 1,3-xylyl and 2-bromo-1,3- xylyl crown ethers as ion-selective electrode. Anal Chem, 1991, 63(22): 2282-2285.
    [186] Suzuki K, Yamada H, Sato K, Watanabe K, Hisamoto H, Tobe Y, Kobiro K. Design and synthesis of highly selective ionophores for lithium ion based on 14-crown-4 derivatives for an ion-selective electrode. Anal Chem, 1993, 65(22): 3404-3410.
    [187] Suzuki K, Watanabe K, Matsumoto Y, Kobayashi M, Sato S, Siswanta D, Hisamoto H. Design and synthesis of calcium and magnesium ionophores based on double-armed diazacrown ether compounds and their application to an ion sensing component for an ion-selective electrode. Anal Chem, 1995, 67(2): 324-334.
    [188] Suzuki K, Sato S, Hisamoto H, Siswanta D, Hayashi K, Kasahara N, Watanabe K, Yamamoto N, Sasakura H. Design and synthesis of sodium ion-selective ionophores based on 16-crown-5 derivatives for an ion-selective electrode. Anal Chem, 1996, 68(1): 208-215.
    [189] Ohki A, Lu J P, Bartsch R A. Effect of side-arm variation in dibenzo-16-crown-5 compounds on the potentiometric selectivity for sodium ion. Anal Chem, 1994, 66(5): 651-654.
    [190] Ohki A, Lu J P, Huang X W, Bartsch R A. Alkali metal, alkaline earth metal, and ammonium ion selectivities of dibenzo-16-crown-5 compounds with functional side arms in ion-selective electrodes. Anal Chem, 1994, 66(23): 4332-4336.
    [191] Ohki A, Lu J P, Hallman J L, Huang X W, Bartsch R A. Sodium ion-selective electrodes based on dibenzo-16-crown-5 compounds with pendent ester groups. Anal Chem, 1995, 67(14): 2405-2408.
    [192] Ohki A, Iwaki K, Naka K, Maeda S, Collier J J, Jang Y, Hwang H S, Bartsch R A. Comparison of dibenzo-16-crown-5 compounds with pendent amide groups as sodium ionophores in ion-selective electrodes and in solvent extraction. Electroanalysis, 1996, 8(7): 615-618.
    [193] Ganjali M R, Moghimi A, Shamsipur M. Beryllium-selective membrane electrode based on benzo- 9-crown-3. Anal Chem, 1998, 70(24): 5259-5263.
    [194] Ganjali M R, Daftari A, Faal-Rastegar M, Moghimi A. Novel potentiometric sensor for monitoring of beryllium based on naphto-9-crown-3. Anal Sci, 2003, 19(3): 353-356.
    [195] Lai M T, Shih J S. Mercury(Ⅱ) and silver(Ⅰ) ion-selective electrodes based on dithia crown ethers. Analyst, 1986, 111(8): 891-895.
    [196] Kamata S, Yamasaki K, Higo M, Bhale A, Fukunaga Y. Copper(Ⅱ)-selective electrodes based on macrocyclic polythiaethers. Analyst, 1988,113(1): 45-47.
    [197] Brzozka Z. Comparative study of the selectivities of membranes based on cyclic- and open- chain thioethers. Analyst, 1989, 114(11): 1431-1433.
    [198] Oue M, Akama K, Kimura K, Tanaka M, Shono T. Lipophilic thiacrown ether derivatives as neutral silver-ion selective carriers. J Chem Soc, Perkin Trans 1,1989, (9): 1675-1678.
    [199] Casab(?) J, Mestres L, Escriche L, Teixidor F, P(?)rez-Jim(?)nez C. Silver(Ⅰ) ion-selective electrodes based on polythiamacrocycles. J Chem Soc, Dalton Trans, 1991, (8): 1969-1971.
    [200] Casab(?) J, Flor T, Romero M I, Teixidor F, P(?)rez-Jim(?)nez C. Silver-selective membrane electrodes using acyclic dithia benzene derivative neutral carriers. Comparison with related macrocyclic compounds. Anal Chim Acta. 1994, 294(2): 207-213.
    [201] Siswanta D, Nagatsuka K,Yamada H, Kumakura K, Hisamoto H, Shichi Y, Toshima K, Suzuki K. Structural ion selectivity of thia crown ether compounds with a bulky block subunit and their application as an ion-sensing component for an ion-selective electrode. Anal Chem, 1996, 68(23): 4166-4172.
    [202] Shampiur M, Javanbakht M, Ganjali M R, Mousavi M F, Lippolis V, Garau A. Mixed azathioether crowns containing a 1,10-phenanthroline sub-unit as neutral ionophores for silver ion. Electroanalysis, 2002,14(24): 1691-1698.
    [203] Fakhari A R, Ganjali M R, Shamsipur M. PVC-based hexathia-18-crown-6-tetraone sensor for mercury(Ⅱ) ion. Anal Chem, 1997,69(18): 3693-3696.
    [204] Shamsipur M, Javanbakht M, Mousavi M F, Ganjali M R, Lippolis V, Garau A, Tei L. Copper(Ⅱ)-selective membrane electrodes based on some recently synthesized mixed aza- thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta, 2001, 55(6): 1047-1054.
    [205] Shamsipur M, Mashhadizadeh M H. Cadmium ion-selective electrode based on tetrathia-12- crown-4. Talanta, 2001, 53(5): 1065-1071.
    [206] Mousavi M F, Alizadeh N, Shamsipur M, Zohari N. A new PVC-based l,10-dibenzyl-1,10-diaza-18-crown-6 selective electrode for detecting nickel(Ⅱ) ion. Sens Actu B, 2000, 66(1-3): 98-100.
    [207] Mousavi M F, Sahari S, Alizadeh N, Shamsipur M. Lead ion-selective membrane electrode based on 1,10-dibenzyl-1,10-diaza-18-crown-6. Anal Chim Acta, 2000,414(1-2): 189-194.
    [208] Alizadeh N, Moemeni A, Shamsipur M. Poly(vinyl chloride)-membrane ion-selective bulk optode based on 1,10-dibenzyl-1,10-diaza-18-crown-6 and 1-(2-pyridylazo)-2-naphthol for Cu~(2+) and Pb~(2+) ions. Anal Chim Acta, 2002,464(2): 187-196.
    [209] Su C C, Chang M C, Liu L K. New Ag~+- and Pb~(2+)-selective electrodes with lariat crown ethers as ionophores. Anal Chim Acta, 2001,432(2): 261-267.
    [210] Mahajan R K, Kumar M, Sharma V (nee Bhalla), Kaur I. Cesium ion selective electrode based on calix[4]crown ether-ester. Talanta, 2002, 58(3): 445-450.
    [211] Kim S, Kim H, Noh K H, Lee S H, Kim S K, Kim J S. Potassium ion-selective membrane electrodes based on 1,3-altemate calix[4]crown-5-azacrown-5. Talanta, 2003, 61(5): 709-716.
    [212] Kumar A, Mittal S K. PVC based dibenzo-18-crown-6 electrode for Ca(Ⅱ) ions. Sens Actu B, 2004, 99(2-3): 340-343.
    [213] Gupta V K, Jain S, Chandra S. Chemical sensor for lanthanum(Ⅲ) determination using azacrown as ionophore in poly(vinyl chloride) matrix. Anal Chim Acta, 2003,486(2): 199-207.
    [214] Mittal S K, Kumar S K A, Sharma H K. PVC-based dicyclohexano-18-crown-6 sensor for La(Ⅲ) ions. Talanta, 2004, 62(4): 801-805.
    [215] Ganjali M R, Rahimi-Nasrabadi M, Maddah B, Moghimi A, Faal-Rastegar M, Borhany S, Namazian M. Sub-micro level monitoring of beryllium ions with a novel beryllium sensor based on 2,6-diphenyl-4-benzo-9-crown-3-pyridine. Talanta, 2004, 63(4): 899-906.
    [216] Chandra S, Buschbeck R, Lang H. A 15-crown-5-functionalized carbosilane dendrimer as ionophore for ammonium selective electrodes. Talanta, 2006,70(5): 1087-1093.
    [217] Chandra S, Lang H. A new sodium ion selective electrode based on a novel silacrown ether. Sens Actu B, 2006,114(2): 849-854.
    [218] Moriuchi-Kawakami T, Yokou T, Tsujioka H, Aoki R, Fujimori K, Shibutani Y. Structural investigation on ion-selective ionophore properties of armed 12-oxacrown-3 derivatives. Anal Chim Acta, 2006,562(1): 59-65.
    [219] Gupta V K, Goyal R N, Agarwal S, Kumar P, Bachheti N. Nickel(Ⅱ)-selective sensor based on dibenzo-18-crown-6 in PVC matrix. Talanta, 2007, 71(2): 795-800.
    [220] Wakida S I, Sato N, Saito K. Copper(Ⅱ)-selective electrodes based on a novel charged carrier and preliminary application of field-effect transistor type checker. Sens Actu B, 2008, 130(1): 187-192.
    [221] Gupta V K, Pal M K, Singh A K. Comparative study of Ag(Ⅰ) selective poly(vinyl chloride) membrane sensors based on newly developed Schiff-base lariat ethers derived from 4,13- diaza-18-crown-6. Anal Chim Acta, 2009, 631(2): 161-169.
    [222] Diamond D, Svehla G, Seward E M, McKervey M A. A sodium ion-selective electrode based on methyl p-t-butylcalix[4]aryl acetate as the ionophore. Anal Chim Acta, 1988, 204: 223-231.
    [223] Cunningham K, Svehla G, Harris S J, McKervey M A. Sodium-selective membrane electrode based on p-tert-butylcalix[4]arene methoxyethylester. Analyst, 1993,118(4): 341-345.
    [224] O'Connor K M, Cherry M, Svehla G, Harris S J, McKervey M A. Symmetrical, unsymmetrical and bridged calix[4]arene derivatives as neutral carrier ionophores in poly (vinyl chloride) membrane sodium selective electrodes. Talanta, 1994,41(7): 1207-1217.
    [225] O'Connor K M, Svehla G, Harris S J, McKervey M A. Calixarene-based potentiometric ion-selective electrodes for silver. Talanta, 1992, 39(11): 1549-1554.
    [226] O'Connor K M, Hender son W, O'Neill E, Arrigan D W M, Harris S J, McKervey M A, Svehla G. Calix[4]arenes in the partial cone conformation as ionophores in silver ion- selective electrodes. Electroanalysis, 1997,9(4): 311-315.
    [227] Malinowska E, Brz(?)zka Z, Kasiura K, Egberink R J M, Reinhoudt D N. Silver selective electrodes based on thioether functionalized calix[4]arenes as ionophores. Anal Chim Acta, 1994, 298(2): 245-251.
    [228] Malinowska E, Brz(?)zka Z, Kasiura K, Egberink R J M, Reinhoudt D N. Lead selective electrodes based on thioamide functionalized calix[4]arenes as ionophores. Anal Chim Acta, 1994,298(2): 253-258.
    [229] Giannetto M, Mori G, Notti A, Pappalardo S, Parisi M F. Discrimination between butylammonium isomers by calix[5]arene-based ISEs. Anal Chem, 1998, 70(21): 4631-4635.
    [230] Chen L X, Zeng X S, Ju H F, He X W, Zhang Z Z. Calixarenederivatives as the sensory molecules for silver ion-selective electrode. Microchem J, 2000, 65(2): 129-135.
    [231] Liu Y, Zhao B T, Chen L X, He X W. Liquid membrane transport and silver selective electrode based on novel bis(3-pyridinecarboxylate) calix[4]arene as ionophore. Microchem J, 2000, 65(1): 75-79.
    [232] Chen L X, Ju H F, Zeng X S, He X W, Zhang Z Z. Silver ion-selective electrodes based on novel containing benzothiazolyl calix[4]arene. Anal Chim Acta, 2001, 437(2): 191-197.
    [233] Chen L X, Ju H F, Zeng X S, He X W, Zhang Z Z. Cesium selective electrodes based on novel double flexible spacers bridged biscalix[4]arenes. Anal Chim Acta, 2001,447(1-2): 41-46.
    [234] Lu J Q, Chen R, He X W. A lead ion-selective electrode based on a calixarene carboxyphenyl azo derivative. J Electroanal Chem, 2002, 528(1-2): 33-38.
    [235] Lu J Q, Tong X Q, He X W. A mercury ion-selective electrode based on a calixarene derivative containing the thiazole azo group. J Electroanal Chem, 2003,540(2): 111-117.
    [236] Chen L X, Zhang J J, Zhao W F, He X W, Liu Y. Double-armed calix[4]arene amide derivatives as ionophores for lead ion-selective electrodes. J Electroanal Chem, 2006, 589(1): 106-111.
    [237] Oh H, Choi E M, Jeong H, Nam K C, Jeon S. Poly(vinyl chloride) membrane cesium ion-selective electrodes based on lipophilic calix[6]arene tetraester derivatives. Talanta, 2000, 53(3): 535-542.
    [238] Kim Y D, Jeong H, Kang S O, Nam K C, Jeon S. Polymeric membrane sodium ion-selective electrodes based on calix[4]arene trimesters. Bull Korean Chem Soc, 2001,22(4): 405-408.
    [239] Katsu T, Ido K, Takaishi K, Yokosu H. Thallium(Ⅰ)-selective membrane electrodes based on calix[6]arene or calix[5]arene derivatives. Sens Actu B, 2002, 87(2): 331-335.
    [240] Ceresa A, Radu A, Peper S, Bakker E, Pretsch E. Rational design of potentiometric trace level ion sensors. A Ag~+-selective electrode with a 100 ppt detection limit. Anal Chem, 2002, 74(16): 4027-4036.
    [241] Duncan D M, Cockayne J S. Application of calixarene ionophores in PVC based ISEs for uranium detection. Sens Actu B, 2001, 73(2-3): 228-235.
    [242] Moghimi M, Bagherinia M A, Arvand M, Zanjanchi M A. Polymeric membrane sensor for potentiometric determination of vanadyl ions. Anal Chim Acta, 2004,527(2): 169-175.
    [243] Gupta V K, Mangla R, Agarwal S. Pb(Ⅱ) selective potentiometric sensor based on 4-tert-butylcalix[4]arene in PVC matrix. Electroanalysis, 2002,14(15-16): 1127-1132.
    [244] Gupta V K, Goyal R N, Khayat M A, Kumar P, Bachheti N. A new Zn(Ⅱ)-selective potentiometric sensor based on 4-tert-butylcalix[4]arene in PVC matrix. Talanta, 2006, 69(5): 1149-1155.
    [245] Liu X J, Peng B, Liu F, Qin Y. Potentiometric liquid membrane pH sensors based on calix[4]-aza-crowns. Sens Actu B, 2007,125(2): 656-663.
    [246] Ngeontae W, Janrungroatsakul W, Morakot N, Aeungmaitrepirom W, Tuntulani T. New silver selective electrode fabricated from benzothiazole calix[4]arene: Speciation analysis of silver nanoparticles. Sens Actu B, 2008,134(2): 377-385.
    [247] Mahajan R K, Kaur R, Bhalla V, Kumar M, Hattori T, Miyano S. Mercury(Ⅱ) sensors based on calix[4]arene derivatives as receptor molecules. Sens Actu B, 2008,130(1): 290-294.
    [248] Oliveira I A M de, Risco D, Vocanson F, Crespo E, Teixidor F, Zine N, Bausells J, Samitier J, Errachid A. Sodium ion sensitive microelectrode based on a p-tert-butylcalix[4]arene ethyl ester. Sens Actu B, 2008,130(1): 295-299.
    [249] Kumar P, Shim Y B. A novel cobalt(Ⅱ)-selective potentiometric sensor based on p-(4-n-butylphenylazo)calix[4]arene. Talanta, 2009, 77(3): 1057-1062.
    [250] Alizadeh N, Ershad S, Naeimi H, Sharghi H, Shamsipur M. Copper(Ⅱ)-selective membrane electrode based on a recently synthesized naphthol-derivative Schiff's base. Anal Bioanal Chem, 1999, 365(6): 511-515.
    [251] Poursaberi T, Hajiagha-Babaei L, Yousefi M, Rouhani S, Shamsipur M, Kargar-Razi M, Moghimi A, Aghabozorg H, Ganjali M R. The synthesis of a new thiophene-derivative Schiffs base and its use in preparation of copper-ion selective electrodes. Electroanalysis, 2001, 13(18): 1513-1517.
    [252] Sadeghi S, Eslahi M, Naseri M A, Naeimi H, Sharghi H, Shameli A. Copper ion selective membrane electrodes based on some Schiff base derivatives. Electroanalysis, 2003, 15(15-16): 1327-1333.
    [253] Fakhari A R, Raji T A, Naeimi H. Copper-selective PVC membrane electrodes based on salens as carriers. Sens Actu B, 2005,104(2): 317-323.
    [254] Oshima S, Hirayama N, Kubono K, Kokusen H, Honjo T. Structural control of Schiff base ligands for selective extraction of copper(Ⅱ). Anal Sci, 2002,18(12): 1351-1355.
    [255] Mashhadizadeh M H, Sheikhshoaie I. Co~(2+)-selective membrane electrode based on the Schiff base NADS. Anal Bioanal Chem, 2003, 375(5): 708-712.
    [256] Mashhadizadeh M H, Sheikhshoaie I, Saeid-Nia S. Nickel(Ⅱ)-selective membrane potentiometric sensor using a recently synthesized Schiff base as neutral carrier. Sens Actu B, 2003, 94(3): 241-246.
    [257] Mashhadizadeh M H, Sheikhshoaie I, Saeid-Nia S. Asymmetrical Schiff bases as carriers in PVC membrane electrodes for cadmium(Ⅱ) ions. Electroanalysis, 2005,17(8): 648-654.
    [258] Mashhadizadeh M H, Taheri E P, Sheikhshoaie I. A novel Mn~(2+) PVC membrane electrode based on a recently synthesized Schiff base. Talanta, 2007, 72(3): 1088-1092.
    [259] Ganjali M R, Emami M, Rezapour M, Shamsipur M, Maddah B, Salavati-Niasari M, Hosseini M, Talebpoui Z. Novel gadolinium poly(vinyl chloride) membrane sensor based on a new S-N Schiff's base. Anal Chim Acta, 2003,495(1-2): 51-59.
    [260] Ganjali M R, Daftari A, Nourozi P, Salavati-Niasari M. Novel Y(Ⅲ) PVC-based membrane microelectrode based on a new S-N Schiffs base. Anal Lett, 2003, 36(8): 1511-1522.
    [261] Ganjali M R, Ravanshad J, Hosseini M, Salavati-Niasari M, Pourjavid M R, Baezzat M R. Novel Dy(Ⅲ) sensor based on a new bis-pyrrolidene Schiff's base. Electroanalysis, 2004,16(21): 1771-1776.
    [262] Ganjali M R, Qomi M, Daftari A, Norouzi P, Salavati-Niasari M, Rabbani M. Novel lanthanum(Ⅲ) membrane sensor based on a new N-S Schiff's base. Sens Actu B, 2004, 98(1): 92-96.
    [263] Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Sarvari M H. Highly selective chromium(Ⅲ) PVC-membrane electrodes based on some recently synthesized Schiffs bases. Electroanalysis, 2005, 17(9): 776-782.
    [264] Ganjali M R, Norouzi P, Akbari-Adergani B. Thulium(Ⅲ) ions monitoring by a novel thulium(Ⅲ) microelectrode based on a S-N Schiff base. Electroanalysis, 2007, 19(11): 1145-1151.
    [265] Ganjali M R, Norouzi P, Daftari A, Faridbod F, Salavati-Niasari M. Fabrication of a highly selective Eu(Ⅲ) membrane sensor based on a new S-N hexadentates Schiff's base. Sens Actu B, 2007, 120(2): 673-678.
    [266] Zamani H A, Ganjali M R, Salavati-Niasari M. Fabrication of an iron(Ⅲ)-selective PVC membrane sensor based on a bis-bidentate Schiff base ionophore. Tran Metal Chem, 2008, 33(8): 995-1001.
    [267] Jeong T, Lee H K, Jeong D C, Jeon S. A lead(Ⅱ)-selective PVC membrane based on a Schiff base complex of N,N'-bis(salicylidene)-2,6-pyridinediamine. Talanta, 2005, 65(2): 543-548.
    [268] Gupta V K, Singh A K, Gupta B. Schiff bases as cadmium(Ⅱ) selective ionophores in polymeric membrane electrodes. Anal Chim Acta, 2007,583(2): 340-348.
    [269] Singh A K, Gupta V K, Gupta B. Chromium(Ⅲ) selective membrane sensors based on Schiff bases as chelating ionophores. Anal Chim Acta, 2007, 585(1): 171-178.
    [270] Gupta V K, Singh A K, Pal M K. Ni(Ⅱ) selective sensors based on Schiff bases membranes in poly(vinyl chloride). Anal Chim Acta, 2008, 624(2): 223-231.
    [271] Gupta V K, Singh A K, Pal M K. Comparative study of Ag(Ⅰ) selective poly(vinyl chloride) membrane sensors based on newly developed Schiff-base lariat ethers derived from 4,13-diaza-18-crown-6. Anal Chim Acta, 2009, 631(2): 161-169.
    [272] Gupta V K, Khayat M A, Singh A K, Pal M K. Nano level detection of Cd(Ⅱ) using poly(vinyl chloride) based membranes of Schiff bases. Anal Chim Acta, 2009, 634(1): 36-43.
    [273] Gupta V K, Goyal R N, Sharma R A. Comparative studies of ONNO-based ligands as ionophores for palladium ion-selective membrane sensors. Talanta, 2009,78(2): 484-490.
    [274] Szczepaniak W, Ren K. A thallium(Ⅰ)-selective electrode based on a liquid ion-exchanger containing O,O'-didecyldithiophosphoric acid. Anal Chim Acta, 1976, 82(1): 37-44.
    [275] Szczepaniak W, Oleksy J. Liquid-state mercury(Ⅱ) ion-selective electrode based on N-(O,O- diisopropylthiophosphoryl)thiobenzamide. Anal Chim Acta, 1986,189: 237-243.
    [276] Didina S E, Mitnik L L, Koshmina N V, Grekovich A L, Mikhelson K N. Lead-selective electrodes based on liquid ion-exchangers. Sens Actu B, 1994,19(1-3): 396-399.
    [277] Schulthess P, Shijo Y, Pham H V, Pretsch E, Ammann D, Simon W. A hydrogen ion-selective liquid-membrane electrode based on tri-n-dodecylamine as neutral carrier. Anal Chim Acta, 1981,131:111-116.
    [278] Ammann D, Lanter F, Steiner R A, Schulthess P, Shijo Y, Simon W. Neutral carrier based hydrogen ion selective microelectrode for extra- and intracellular studies. Anal Chem, 1981, 53(14): 2267-2269.
    [279] Oesch U, Brozozka Z, Xu A P, Rusterholz B, Suter G, Pham H V, Welti D, Ammann D, Pretsch E, Simon W. Design of neutral hydrogen ion carriers for solvent polymeric membrane electrodes of selected pH range. Anal Chem, 1986, 58(11): 2285-2289.
    [280] Wu H L, Yu R Q. A PVC membrane pH-sensitive electrode based on methyl dioctadecylamine as neutral carrier. Talanta, 1987, 34(6): 577-579.
    [281] 袁若,吴海龙,俞汝勤.新型含氮化合物作中性载体pH选择电极研究.中国科学,1992,22(5):455-462.
    [282] Liu D, Yuan R, Chen W C, Yu R Q. A neutral carrier membrane calcium-sensitive electrode with wide working pH range. Anal Lett, 1994,27(9): 1637-1646.
    [283] 柴雅琴,袁若,沈国励,俞汝勤.四苯硼酸钾衍生物为载体的锂离子选择性电极.分析化学,1996,24(8):937-939.
    [284] Liu D, Liu J H, Tian D Y, Hong W L, Zhou X M, Yu J C. Polymeric membrane silver-ion selective electrodes based on bis(dialkyldithiophosphates). Anal Chim Acta, 2000, 416(2): 139-144.
    [285] Xu D F, Katsu T. O,O,O-trialkyl phosphorothioates as simple and effective ionophores for silver ion-selective membrane electrodes. Anal Chim Acta, 2001,443(2): 235-240.
    [286] Qin Y, Peper S, Bakker E. Plasticizer-free polymer membrane ion-selective electrodes containing a methacrylic copolymer matrix. Electroanalysis, 2002, 14(19-20): 1375-1381.
    [287] S hamsipur M, Yousefi M, Ganjali M R. PVC-based 1,3,5-trithiane sensor for cerium(Ⅲ) ions. Anal Chem, 2000, 72 (11): 2391-2394.
    [288] Abbaspour A, Kamyabi M A. Copper(Ⅱ)-selective electrode based on dithioacetal. Anal Chim Acta, 2002,455(2): 225-231.
    [289] Gholivand M B, Sharifpour F. Chromium(Ⅲ) ion selective electrode based on glyoxal bis(2-hydroxyanil). Talanta, 2003,60(4): 707-713.
    [290] Gaber A A A. New thallium(Ⅰ) ion selective electrode based on indeno pyran compound. Sens Actu B, 2003,96(3): 615-620.
    [291] Mahajan R K, Kaur I, Lobana T S. A mercury(Ⅱ) ion-selective electrode based on neutral salicylaldehyde thiosemicarbazone. Talanta, 2003, 59(1): 101-105.
    [292] Ganjali M R, Naji L, Poursaberi T, Shamsipur M, Haghgoo S. Ytterbium(Ⅲ)-selective membrane electrode based on cefixime. Anal Chim Acta, 2003,475(1-2): 59-66.
    [293] Mashhadizadeh M H, Shoaei I S, Monadi N. A novel ion selective membrane potentiometric sensor for direct determination of Fe(Ⅲ) in the presence of Fe(Ⅱ). Talanta, 2004, 64(4): 1048-1052.
    [294] Akhond M, Najafi M B, Tashkhourian J. A new cerium(Ⅲ)-selective membrane electrode based on 2-aminobenzothiazole. Sens Actu B, 2004,99(2-3): 410-415.
    [295] Peper S, Gonczy C, Runde W. Cs~+-selective membrane electrodes based on ethylene glycol-functionalized polymeric microspheres. Talanta, 2005, 67(4): 713-717.
    [296] Akhond M, Najafi M B, Tashkhourian J. Lanthanum-selective membrane electrode based on 2,2'-dithiodipyridine. Anal Chim Acta, 2005, 531(2): 179-184.
    [297] Ganjali M R, Moghimi A, Shamsipur M. Beryllium-selective membrane electrode based on benzo-9-crown-3. Anal Chem, 1998, 70(24): 5259-5263.
    [298] Shamsipur M, Ganjali M R, Rouhollahi A, Moghimi A. Beryllium-selective membrane sensor based on 3,4-di[2-(2-tetrahydro-2H-pyranoxy)]ethoxy styrene-styrene copolymer. Anal Chim Acta, 2001,434(1): 23-27.
    [299] Shamsipur M, Soleymanpour A, Akhond M, Sharghi H. New macrocyclic diamides as neutral ionophores for highly selective and sensitive PVC-membrane electrodes for Be~(2+) ion. Electroanalysis, 2004, 16(4): 282-288.
    [300] Soleymanpour A, Rad N A, Niknam K. New diamino compound as neutral ionophore for highly selective and sensitive PVC membrane electrode for Be~(2+) ion. Sens Actu B, 2006, 114(2): 740-746.
    [301] Shamsipur M, Hosseini M, Alizadeh K, Eskandari M M, Sharghi H, Mousavi M F, Ganjali M R. Polymeric membrane and coated graphite samarium(Ⅲ)-selective electrodes based on isopropyl 2-[(isopropoxycarbothioyl)disulfanyl]ethanethioate. Anal Chim Acta, 2003, 486(1): 93-99.
    [302] Zamani H A, Rajabzadeh G, Ganjali M R. Highly selective and sensitive chromium(Ⅲ) membrane sensors based on 4-amino-3-hydrazino-6-methyl-1,2,4-triazin-5-one as a new neutral ionophore. Sens Actu B, 2006,119(1): 41-46.
    [303] Ganjali M R, Faridbod F, Norouzi P, Adib M. A novel Er(Ⅲ) sensor based on a new hydrazone for the monitoring of Er(Ⅲ) ions. Sens Actu B, 2006, 120(1): 119-124.
    [304] Ganjali M R, Mimaghi F S, Norouzi P, Adib M. Novel Pr(Ⅲ)-selective membrane sensor based on a new hydrazide derivative. Sens Actu B, 2006,115(1): 374-378.
    [305] Ganjali M R, Rasoolipour S, Rezapour M, Norouzi P, Amimasr M, Meghdadi S. Application of N,N'-bis(2-quinolinecarboxamide)-l,2-benzene as an ionophore in the construction of a novel polymeric membrane sensor for the selective monitoring of the holmium(Ⅲ) concentration. Sens Actu B, 2006,119(1): 89-93.
    [306] Ganjali M R, Norouzi P, Alizadeh T, Tajarodi A, Hanifehpour Y. Fabrication of a highly selective and sensitive Gd(Ⅲ)-PVC membrane sensor based on N-(2-pyridyl)-N'-(4-mtrophenyl) thiourea. Sens Actu B, 2007,120(2): 487-493.
    [307] Gupta V K, Chandra S, Lang H. A highly selective mercury electrode based on a diamine donor ligand. Talanta, 2005,66(3): 575-580.
    [308] Gupta V K, Goyal R N, Bachheti N, Singh L P, Agarwal S. A copper-selective electrode based on bis(acetylacetone)propylenediimine. Talanta, 2005, 68(2): 193-197.
    [309] Gupta V K, Jain A K, Kumar P. PVC-based membranes of N,N'-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane as Pb(Ⅱ)-selective sensors. Sens Actu B, 2006,120(1): 259-265.
    [310] Gupta V K, Agarwal S, Jakob A, Lang H. A zinc-selective electrode based on N,N'-bis (acetylacetone) ethylenediimine. Sens Actu B, 2006,114(2): 812-818.
    [311] Gupta V K, Singh A K, Khayat M A, Gupta B. Neutral carriers based polymeric membrane electrodes for selective determination of mercury(Ⅱ). Anal Chim Acta, 2007, 590(1): 81-90.
    [312} Singh A K, Rupam Singh, R.P. Singh, Puja Saxena. Novel potentiometric sensor for monitoring barium(Ⅱ) based on 2,3,4-pyridine-1,3,5,7,12-pentaazacyclopentadeca-3-ene. Sens Actu B, 2005,106(2): 779-783.
    [313] Singh A K, Saxena P, Mehtab S, Gupta B. Strontium(Ⅱ)-selective electrode based on a macrocyclic tetraamide. Talanta, 2006, 69(2): 521-526.
    [314] Singh A K, Mehtab S. Calcium(Ⅱ)-selective potentiometric sensor based on a-furildioxime as neutral carrier. Sens Actu B, 2007,123(1): 429-436.
    [315] Singh A K, Saxena P. A highly selective thallium(Ⅰ) electrode based on a thia substituted macrocyclic ionophore. Talanta, 2005, 66(4): 993-998.
    [316] Singh A K, Saxena P, Panwar A. Manganese(Ⅱ)-selective PVC membrane electrode based on a pentaazamacrocyclic manganese complex. Sens Actu B, 2005,110(2): 377-381.
    [317] Singh A K, Mehtab S, Saxena P. A novel potentiometric membrane sensor for determination of Co~(2+) based on 5-amino-3-methylisothiazole. Sens Actu B, 2007,120(2): 455-461.
    [318] Singh A K, Saxena P. A PVC-based membrane electrode for nickel (Ⅱ) ions incorporating a tetraazamacrocycle as an ionophore. Sens Actu B, 2007,121(2): 349-355.
    [319] Singh A K, Singh P, Banerjee S, Mehtab S. Development of electrochemical sensors for nano scale Tb(Ⅲ) ion determination based on pendant macrocyclic ligands. Anal Chim Acta, 2009, 633(1): 109-118.
    [320] Prasad K, Kala R, Rao T P, Naidu G R K. Ion imprinted polymer based ion-selective electrode for the trace determination of dysprosium(Ⅲ) ions. Anal Chim Acta, 2006, 566(1): 69-74.
    [321] Yari A, Azizi S, Kakanejadifard A. An electrochemical Ni(Ⅱ)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sens Actu B, 2006, 119(1): 167-173.
    [322] Saleh M B, Gaber A A A, Khalaf M M R, Tawfeek A M. A new ion-selective electrode for potentiometric determination of Ce(Ⅲ) ions. Sens Actu B, 2006,119(1): 275-281.
    [323] Mittal S K,Ashok Kumar S.K., Gupta N, Kaur S, Kumar S. 8-Hydroxyquinoline based neutral tripodal ionophore as a copper(Ⅱ) selective electrode and the effect of remote substitutents on electrode properties. Anal Chim Acta, 2007, 585(1): 161-170.
    [324] Yu X, Zhou Z D, Wang Y, Liu Y, Xie Q, Xiao D. Mercury(Ⅱ)-selective polymeric membrane electrode based on the 3-[4-(dimethylamino)phenyl]-5-mercapto-1,5-diphenyl pentanone. Sens ActuB, 2007,123(1): 352-358.
    [325] 李艳,柴雅琴,袁若,张丽娜,梁文斌,叶光荣.基于双氨基三唑硫醚为中性载体的汞离子选择性电极的研究.分析化学,2007,35(10):1525-1528.
    [326] Bakhtiarzadeh F, Ghani S A. An ion selective electrode for mercury(Ⅱ) based on mercury(Ⅱ) complex of poly(4-vinyl pyridine). J Electroanal Chem, 2008, 624(1-2): 139-143.
    [327] Zhang X B, Han Z X, Fang Z H, Shen G L, Yu R Q. 5,10,15-Tris(pentafluorophenyl)corrole as highly selective neutral carrier for a silver ion-sensitive electrode. Anal Chim Acta, 2006, 562(2): 210-215.
    [328] Kim H S, Kim D H, Kim K S, Choi J H, Choi H J, Kim S H, Shim J H, Cha G S, Nam H. Cation selectivity of ionophores based on tripodal thiazole derivatives on benzene scaffold. Talanta, 2007, 71(5): 1986-1992.
    [329] Mittal S K, Kumar A S K, Kaur S, Kumar S. Potentiometric performance of 2-aminothio-phenol based dipodal ionophore as a silver sensing material. Sens Actu B, 2007, 121(2): 386-395.
    [330] Yan Z N, Lu Y Q, Li X. Silver ion-selective electrodes based on bis(dialkyldithio-carba mates) as neutral ionophores. Sens Actu B, 2007,122(1): 174-181.
    [331] 张丽娜,柴雅琴,袁若,李艳,叶光荣.基于2,3-丁二酮双缩氨基硫脲为中性载体的新型银离子选择性电极的研究.化学学报,2007,65(6):537-541.
    [332] Gonz(?)lez-Bellavista A, Atrian S, Mu(?)oz M, Capdevila M, F(?)bregas E. Novel potentiometric sensors based on polysulfone immobilized metallothioneins as metal-ionophores. Talanta, 2009, 77(4): 1528-1533.
    [333] Morf W E, Kahr G, Simon W. Reduction of the anion interference in neutral carrier liquid-membrane electrodes responsive to cations. Anal Lett, 1974, 7(1): 9-22.
    [334] Meier P C, Morf W E, Laubli M, Simon W. Evaluation of the optimum composition of neutral-carrier membrane electrodes with incorporated cation-exchanger sites. Anal Chim Acta, 1984,156:1-8.
    [335] Horvai G, Graf E, Toth K, Pungor E, Buck R P. Plasticized poly(vinyl chloride) properties and characteristics of valinomycin electrodes. 1. High-frequency resistances and dielectric properties. Anal Chem, 1986, 58(13): 2735-2740.
    [336] Van den Berg A, Van der Wal P D, Skowronska-Ptasinska M, Sudholter E J R, Reinhoudt D N, Bergveld P. Nature of anionic sites in plasticized poly(vinyl chloride) membranes. Anal Chem, 1987, 59(23): 2827-2829.
    [337] Lindner E, Graf E, Niegreisz Z, Toth K, Pungor E, Buck R P. Responses of site-controlled, plasticized membrane electrodes. Anal Chem,1988, 60(4): 295-301.
    [338] Eugster R, Gehrig P M, Morf W E, Spichiger U E, Simon W. Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrode. Anal Chem, 1991, 63(20): 2285-2289.
    [339] Schaller U, Bakker E, Spichiger U E, Pretsch E. Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal Chem, 1994, 66(3): 391-398.
    [340] Schaller U, Bakker E, Pretsch E. Carrier mechanism of acidic ionophores in solvent polymeric membrane ion-selective electrodes. Anal Chem, 1995, 67(18): 3123-3132.
    [341] Amemiya S, Biihlmann P, Pretsch E, Rusterholz B, Umezawa Y. Cationic or anionic sites? Selectivity optimization of ion-selective electrodes based on charged ionophores. Anal Chem, 2000, 72(7): 1618-1631.
    [342] Bakker E. Determination of unbiased selectivity coefficients of neutral carrier-based cation-selective electrodes. Anal Chem, 1997, 69(6): 1061-1069.
    [343] Fox J M, Katz T J, Elshocht SV, Verbiest T, Kauranen M, Persoons A, Thongpanchang T, Krauss T, Brus L. Synthesis, self-assembly, and nonlinear optical properties of conjugated helical metal phthalocyanine derivatives. J Am Chem Soc, 1999,121(14): 3453-3459.
    [344] Zhang Y J, Li L S, Jin J, Jiang S M, Zhao Y Y, Li T J, Du X G, Yang S Q. Organized Langmuir-Blodgett monolayers and multilayers based on semiamphiphilic binuclear phthalocy-anine: Structural and photovoltaic characteristics. Langmuir, 1999,15(6): 2183-2187.
    [345] Schramm C J, Scaringe R P, Stojakovic D R, Hoffman B M, Ibers J A, Marks T J. Chemical, spectral, structural, and charge transport properties of the "molecular metals" produced by iodination of nickel phthalocyanin. J Am Chem Soc, 1980,102(22): 6702-6713.
    [346] Klofta T J, Danziger J, Lee P, Pankow J, Nebesny K W, Armstrong N R. Photoelectro-chemical and spectroscopic characterization of thin films of titanyl phthalocyanine: Comparisons with vanadyl phthalocyanine. J Phys Chem, 1987,91(22): 5646-5651.
    [347] Horning E C. Org Synth, Coll.Vol.Ⅲ, Wiley, New York, 1955, pp.140-141.
    [348] Block B P, Meloni E G The chemistry of dichloro[phthalocyaninato(2-)]titanium(Ⅳ). Inorg Chem, 1965,4(1): 111-112.
    [349] McNaughtan A, Meney K, Grieve B. Electrochemical issues in impedance tomography. Chem Eng J, 2000,77(1-2): 27-30.
    [350] Veksler V I. Electron-exchange mechanisms of the secondary ion emission of metals and some incompatible experimental data. Surf Sci, 1998,397(1-3): 1-12.
    [351] Jiang J H, Kucernak A. Electrochemical impedance studies of the undoping process of platinum phthalocyanine charge transfer microcrystals. J Electroanal Chem, 2000, 490(1-2): 17-30.
    [352] 中华人民共和国卫生部药典委员会.中华人民共和国药典(药典注释).北京:化学工业出版社.1990,Vol 2.
    [353] Hassan S S M, Elmosalamy M A M F. Liquid membrane electrode for selective determination of thiocyanate. Analyst, 1987,112(12): 1709-1712.
    [354] 殷焕成,邓建成,周燕.金属酞菁的固相法合成.染料与染色,2004,41(3):150-152.
    [355] 丛方地,杜锡光,赵宝中,刘群,陈彬.两种四氨基锌酞菁异构体的简易合成及其表征.高等学校化学学报,2002,23(12):2221-2225.
    [356] Trinder P. Rapid determination of salicylate in biological fluids. Biochem J, 1954, 57(2): 301-303.
    [357] Walter L J, Biggs D F, Courts R T. Simultaneous GLC estimation of salicylic and aspirin in plasma. J Pharmaceutical Sci, 1974, 63(11): 1754-1758.
    [358] Dadgar D, Climax J, Lambe R, Darragh A. High-performance liquid chromatographic determination of certain salicylates and their major metabolites in plasma following topical administration of a liniment to healthy subjects. J Chromatogr, 1985, 342: 315-3231.
    [359] You K, Bittikofer J A. Quantification of salicylate in serum by use of salicylate hydroxylase. Clinic Chemistry, 1984, 30(9): 1549-1551.
    [360] 章舒,刘春平.酞菁铜衍生物的合成与性能研究.上海化工,2002,(18):15-17.
    [361] 李党生,张尧旺.亚硝酸盐测定方法研究进展.黄河水利职业技术学院学报,1995,17(1):50-52.
    [362] Issaq H J, Muschik G M, Risser N H. Determination of nitrite in animal feed by spectrophotometry or potentiometry with a nitrite-selective electrode. Anal Chim Acta, 1983, 154: 335-339.
    [363] Bae I T, Barbour R L, Scherson D A. In situ Fourier transform infrared spectroscopic studies of nitrite reduction on platinum electrodes in perchloric acid. Anal Chem, 1997, 69(2): 249-252.
    [364] 谢莉,吕春玲,田芳.基于亚硝化反应吖啶红极谱法测定亚硝酸根.理化检验-化学分册,2000,36(7):289-290.
    [365] Marshall P A, Trenerry V C. The determination of nitrite and nitrate in foods by capillary ion electrophoresis. Food Chem. 1996, 57(2): 339-345.
    [366] Tasker P A, Fleischer E B. Iron(Ⅱ), cobalt(Ⅱ), nickel(Ⅱ), and zinc(Ⅱ) complexes of series of new macrocyclic sexadentate ligands. J Am Chem Soc, 1970,92(2): 7072-7077.
    [367] Hamdi T, Memet S. Novel complexes of manganese(Ⅲ), cobalt(Ⅱ), copper(Ⅱ), and zinc(Ⅱ) with Schiff base derived from 1,2-bis(p-aminophenoxy)ethane and salicylaldehyde. Synth React Inorg Met-Org Chem, 2001, 31(5): 849-857.
    [368] Pillai M R A, Lo J J M, Schlemper E O, Troutner D E. μ-Oxo-bis(oxo) dinuclear complexes of technetium(V) with amine phenol ligands: Syntheses, characterization, and X-ray crystal structures. Inorg Chem 1990, 29(15): 1850-1856.
    [369] 蔡定建,熊道仁.用佛尔哈特法快速测定废定影液中的银.化学世界,1991,(9):410-413.
    [370] Pillai M R A, Kothari K, Jurisson S. Pentadentate chiral amine-phenol ligands: Synthesis and radiochemical studies with ~(99m)Tc. Appl Radiat Isot, 1995,46(9): 923-927.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700