纵振夹心换能器式圆筒型行波超声电机理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声电机是近三十年发展起来的一种新型驱动器,具有结构简单、设计灵活、低速大转矩、响应快、无电磁干扰等优点,受到国内外的广泛关注,并在众多领域得到应用,其中对行波超声电机研究的最多,并且应用最广。
     传统的圆环型行波超声电机定转子之间的接触状态为动态的点面接触,造成其输出力矩低。另外这种类型的电机将陶瓷片粘在定子齿的背面,通常陶瓷片都比较薄,能量转换能力有限,也限制了电机的输出力矩。针对传统行波电机的上述缺点,本文提出了一种纵振夹心换能器式圆筒型行波超声电机,一方面将定转子之间的动态点面接触改为线面接触,另一方面采用两对纵振夹心换能器激发圆筒的弯振模态。
     本文首先介绍了换能器式圆筒型超声电机的基本结构,并对圆筒型定子进行理论分析,从圆柱壳体的振动微分方程出发,通过给定边界条件和初始条件,求解出圆柱壳体振动的特征频率,为此类电机的设计提供初始参数。推导出了弹性体中弯曲行波的方程、激励条件以及定子齿面质点的运动轨迹方程,在理论层面验证该结构电机的可行性。
     以理论计算得到的初始参数为基础,采用有限元软件ANSYS10.0设计了振动模态相互匹配的圆筒型定子和换能器。在此基础上,对电机整体建模,先通过模态分析,得到整个电机定子的振型和特征频率,然后通过瞬态分析,得到齿端质点的运动轨迹,在仿真层面上验证了该结构电机的可行性,最终确定电机的结构参数,并且根据仿真结果发现了该构型电机行波畸变现象,初步分析其产生的原因,提出了改善行波波形质量的方法。
     在理论分析的基础上,制作了纵振夹心换能器式行波超声电机的实验样机,搭建了实验平台,测试了超声电机的机械输出性能,验证了理论分析结果的正确性。并结合样机的制作过程分析了影响电机运转的不利因素。
Ultrasonic motor (USM) is a new-style actuator developed in recent thirty years. With so many advantages such as simple structure, flexible design, low speed, high torque, quick response, and non-electro-magnetic interference, the USM has been attracting intensive attention at home and abroad and widely applied in many fields, especially the traveling wave USM.
     The contract states between the stator and the rotator of traditional ring type traveling wave USM is dynamic point-area contract, which lead to low output torque. In addition, the USM by pasting PZT on the other side of the stator’s teeth is limited in output torque, for the small volume of the PZT and low capacity of energy conversion. To make up for the disadvantages of the traditional traveling wave USM, a new type of cylindrical traveling wave USM using longitudinal sandwich transducer (LST-CTUSM) has been presented, which changes the dynamic point-area contract to dynamic line-area contact and uses two pairs of longitudinal sandwich transducer to excited the bending vibration of the cylindrical stator.
     The structure of LST-CTUSM is introduced at first, and the theoretical analysis of the stator has been carried out later, derive the bending wave equation of the cylinder、excitation condition and the motion trajectory equation of particles on the teeth surface. Moreover the vibration frequency of the cylindrical shell is computed by giving boundary and initial conditions to its vibration differential equation, and provide initial parameters for designing this kind of USM.
     Based on the initial parameters by theoretical calculation, stator and trans-ducer whose vibration mode are matching each other are designed by Ansys 10.0. And then, build the model of the whole motor, get the vibration mode and frequ-ency by model analysis, and get the elliptical motion trajectory of the particles on the driving teeth by transient analysis, verify the feasibility of this kind of USM on the level of simulation, and determine the structure parameters of LST-CTUSM finally. According to the result of the simulation, discover the distortion of the traveling wave and analysis its reason.
     Based on the theoretical analysis, the prototype of LST-CTUSM has been made and the experimental platform also has been built to measure mechanical output characteristics of ST-CTWUSM. Moreover, the factors which affect the operation of USM are studied combined with the making process of USM.
引文
1赵淳生.21世纪超声电机技术展望.振动、测试与诊断.2000.20(1):7~11
    2 K.Uchino Piezoelectric Ultrasonic Motors:Overview. Smart Mater. Structure 1998,(7):173-285
    3贺思源.超声电机理论模型与新型超声驱动器的研究.哈尔滨工业大学博士论文. 1998:7~10
    4 A L. W. Williams , W. J. Brown. Piezoelectric Motor. 1948 , US Patent:2439499
    5褚祥诚.行波超声电机理论建模及其振动行为实验研究.哈尔滨工业大学博士论文. 1999:1~19
    6 H. Hose. Ultrasonic Motor for Auto Focus Lenses. Ultrasonic Technology. 1989,1(2): 36~41
    7卢亚萍,孟繁琴,姜开利,袁云龙.超声电机研究现状.微电机. 2005,38(5):75~77
    8 Ueha S, Tomikawa Y. Ultrasonic Motors:Theory and Application. Claren-don Press, Oxford,1993,4(24):5~7
    9朱美玲,金龙,赵淳生.行波超声电机传动机理的研究(一)――运动传动机理、定子中行波存在条件.振动、测试与诊断.1996,16(4):7~14
    10 R.Inaba,.A.Tokushima,O.Kawasaki..Piezoelectric.Ultrasonic.Motor.Proceedings of IEEE Ultrasonics Symposium. 1987:747~756
    11伊势悠纪彦.超音波モ―タ.日本音响学会誌.1987,43(3):184~188
    12赵淳生,李朝东.日本超声电机的产业化、应用和发展.振动.测试与诊断.1999,(1):1~5
    13 S. Ueha. Present State of the Art of Ultrasonic Motors. Japanese Journal of Applied Physics. 1989, 28(3):34~37
    14 K. Nakamura, M. Kurosawa and S. Ueha. Characteristics of a Hybrid Transducer-Type Ultrasonic Motor. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 1991, 38(3): 188~193
    15 K. Nakamura, J. Margairaz, T. Ishii and S. Ueha. Ultrasonic Stepping Motor Using Spatially Shifted Standing Vibrations. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control. 1997, 44(4): 823~828
    16 J. R. Friend, J. Satonobu, K. Nakamura, S. Ueha and D. S. Stutts. A Single-Element Tuning Fork Piezoelectric Linear Actuator. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(2): 179~186
    17 J. Satonobu, J. R. Friend, K. Nakamura and S. Ueha. Numerical Analysis of the Symmetric Hybrid Transducer Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2001, 48(6): 1625~1631
    18 Y. Tomikawa, M. Yaginuma, S. Hirose and T. Takano. Equivalent Circuit Expression of an Ultrasonic Motor and Measurement of Its Elements. In the Case of L1-B8 Multimode Rectangular Thin-Form Motor. Japanese Journal of Applied Physics. 1991, 30(9B): 2398~2401
    19 Y. Tomikawa, M. Yaginuma, S. Hirose and T. Takano. An Equivalent-Circuit Expression of an Ultrasonic Motor and Measurement of Its Elements - in the Case of L1-B8 Multimode Rectangular Thin-Form Motor. Japanese Journal of Applied Physics. 1991, 30(9B): 2398-2401
    20 Y. Tomikawa, T. Takano and H. Umeda. Thin Rotary and Linear Ultrasonic Motors Using a Double-Mode Piezoelectric Vibrator of the First Longitudinal and Second Bending Modes. Japanese Journal of Applied Physics. 1992, 31(9B): 3073~3076
    21 Y. Tomikawa, K. Adachi, M. Aoyagi, T. Sagae and T. Takano. Ultrasonic Motors Using Longitudinal and Torsional Modes of a Rod Vibrator. Japanese Journal of Applied Physics. 1990, 29: 188~190
    22 C. Kusakabe, Y. Tomikawa, T. Takano and M. Aoyagi. Waveform of Driving Pulse Train to Prevent Metallic Sound of Ultrasonic Motors. Japanese Journal of Applied Physics. 1993, 32(5B): 2408~2411
    23 M. Aoyagi, S. P. Beeby and N. M. White. A Novel Multi-Degree-of-Freedom Thick-Film Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2002, 49(2): 151~158
    24 M. Aoyagi, T. Nakajima, Y. Tomikawa and T. Takano. Examination of Disk-Type Multidegree-of-Freedom Ultrasonic Motor. Japanese Journal of Applied Physics 2004, 43(5B): 2884~2890
    25 T. Takano, Y. Tomikawa and C. Kusakabe. Operating Characteristics of a Same-Phase Drive-Type Ultrasonic Motor Using a Flexural Disk Vibrator.Japanese Journal of Applied Physics. 1999, 38(5B): 3322~3326
    26 T. Takano, Y. Tomikawa, M. Aoyagi and C. Kusakabe. Transient-Response Characteristics of a Same-Phase Drive-Type Ultrasonic Motor. Japanese Journal of Applied Physics. 1994, 33(9B): 5370-5373
    27 T. S. Glenn. Mixed-Domain Performance Model of the Piezoelectric Traveling-Wave Motor and the Development of a Two-Sided Device. Massachusetts Institute of TechnologyDoctor Thesis. 2002.
    28 N. W. Hagood and A. J. Mcfarland. Modeling of a Piezoelectric Rotary Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995, 42(2): 210~224
    29 B. Koc, P. Bouchilloux and K. Uchino. Piezoelectric Micromotor Using a Metal-Ceramic Composite Structure. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2000, 47(4): 836~843
    30 S. X. Dong, S. P. Lim, K. H. Lee, J. D. Zhang, L. C. Lim and K. Uchino. Piezoelectric Ultrasonic Micromotor with 1.5 Mm Diameter. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(4): 361~367
    31 S. Cagatay, B. Koc and K. Uchino. A 1.6-Mm, Metal Tube Ultrasonic Motor. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2003, 50(7): 782~786
    32 S. X. Dong, J. D. Zhang, H. W. Kim, M. T. Strauss, K. Uchino and D. Viehland. Flexural Traveling Wave Excitation Based on Shear-Shear Mode. Ieee Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(10): 1240~1246
    33 S. Manuspiya, P. Laoratanakul and K. Uchino. Integration of a Piezoelectric Transformer and an Ultrasonic Motor. Ultrasonics. 2003, 41(2): 83~87
    34 J. Wallaschek. Piezoelectric Ultrasonic Motors. Journal of Intelligent Material Systems and Structures. 1995, 6(1): 71~83
    35 J. Wallaschek. Contact Mechanics of Piezoelectric Ultrasonic Motors. Smart Materials & Structures. 1998, 7(3): 369~381
    36 P. Hagedorn, J. Wallaschek and W. Konrad. Traveling-Wave Ultrasonic Motors, .2. A Numerical-Method for the Flexural Vibrations of the Stator. Journal of Sound and Vibration. 1993, 168(1): 115~122
    37 P. Hagedorn and J. Wallaschek. Traveling-Wave Ultrasonic Motors- Working Principle and Mathematical-Modeling of the Stator. Journal of Sound and Vibration. 1992, 155(1): 31~46
    38 O. Vyshnevskyy, S. Kovalev and J. Mehner. Coupled Tangential-Axial Resonant Modes of Piezoelectric Hollow Cylinders and Their Application in Ultrasonic Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(1): 31~36
    39 E. Vyshnevskyy, S. Kovalev and W. Wischnewskiy. A Novel, Single-Mode Piezoceramic Plate Actuator for Ultrasonic Linear Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(11): 2047~2053
    40 A. Ferreira. Optimized Friction Drive Controller for a Multi-Dof Ultrasonic Nanopositioner. IEEE-Asme Transactions on Mechatronics. 2004, 9(3): 481~490
    41 L. Petit and P. Gonnard. Industrial Design of a Centimetric "Twila" Ultrasonic Motor. Sensors and Actuators a-Physical. 2005, 120(1): 211~224
    42 L. Petit and P. Gonnard. Inter-Phases Mechanical Coupling in Ultrasonic Motors. Sensors and Actuators a-Physical. 2004, 116(3): 492~500
    43 P. Minotti, P. LeMoal, L. Buchaillot and A. Ferreira. Traveling Wave Ultrasonic Motors .1. Modeling of the Mechanical Energy Transduction at the Stator/Rotor Interface. Journal De Physique Iii. 1996, 6(10): 1315~1337
    44 J. F. Manceau and F. Bastien. Production of a Quasi-Traveling Wave in a Silicon Rectangular Plate Using Single-Phase Drive. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 1995, 42(1): 59~65
    45 F. Giraud, B. Semail and J. T. Audren. Analysis and Phase Control of a Piezoelectric Traveling-Wave Ultrasonic Motor for Haptic Stick Application. IEEE Transactions on Industry Applications. 2004, 40(6): 1541~1549
    46上羽贞行,富川义郎著.超声电机理论与应用.杨志刚,郑学伦译.上海科学技术出版社, 1998
    47李东林.一种环状行波超声马达.应用声学. 1992, 11(4): 32~37
    48赵向东.旋转型行波超声电机动力学模型及性能仿真的研究.南京航空航天大学博士论文. 2000
    49 C. S. Zhao, Z. R. Li and W. Q. Huang. Optimal Design of the Stator of aThree-Dof Ultrasonic Motor. Sensors and Actuators a-Physical. 2005, 121(2): 494~499
    50 Zhihua Chen, Chunsheng Zhao and Weiqing Huang. An Effective Frequency Tracking Control and Balancing Compensation between Cw and Ccw Rotation Speed Techniques for Ultrasonic Motor. IEEE Ultrasonics Symposium. Montreal, Que., Canada, 2004: 2251~2254
    51周铁英,董蜀湘,刘小萍,李龙土,张孝文.超声振子箝位压电直线微动马达研究.声学学报(中文版). 1993, 18(1): 30~32
    52 T. Zhou, L. Y. Chai, C. X. He, Y. B. He and A. X. Kuang. A Standing Wave Type Ultrasonic Motor. Ferroelectrics. 1999, 232(1-4): 1133~1137
    53 T. Y. Zhou, K. Zhang, Y. Chen, H. Wang, J. G. Wu, K. L. Jiang and P. Xue. A Cylindrical Rod Ultrasonic Motor with 1 Mm Diameter and Its Application in Endoscopic Oct. Chinese Science Bulletin. 2005, 50(8): 826~830
    54陈宇,刘庆利,周铁英.大力矩行波超声电机的性能.清华大学学报(自然科学版). 2006, 46(3): 396~398
    55曲建俊,周铁英,姜开利,袁世明.行波超声马达定子和转子接触状态实验研究.声学学报(中文版). 2003, 28(3): 217~222
    56郭吉丰,龚书娟,刘晓,纪科辉.纵扭复合型超声波电机的特性研究.声学学报(中文版). 2004, 29(4): 334~340
    57 J. F. Guo, S. J. Gong, H. X. Guo, X. Liu and K. H. Ji. Force Transfer Model and Characteristics of Hybrid Transducer Type Ultrasonic Motors. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2004, 51(4): 387~395
    58丁敬,周广睿,傅平,郭吉丰.基于dsp的超声波电机瞬态特性测试系统.机电工程. 2006, 23(7): 15~17
    59向馗,郭吉丰,蒋静坪.基于hht的超声电机噪声源分析.振动工程学报. 2005, 18(2): 200~203
    60郭吉丰,傅平.多自由度球形超声波电机的研究进展.电工电能新技术. 2005, 24(2): 65~68
    61赵炎彤.超声波马达的研究.哈尔滨工业大学硕士论文. 1993
    62 S. Y. He, W. S. Chen and Z. L. Chen. A Uniformizing Method for the Free Vibration Analysis of Metal-Piezoceramic Composite Thin Plates. Journal of Sound and Vibration. 1998, 217(2): 261~281
    63 F. Zhang, W. S. Chen, J. A. Liu and Z. S. Wang. Bidirectional Linear Ultrasonic Motor Using Longitudinal Vibrating Transducers. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control. 2005, 52(1): 134~138
    64赵学涛,陈维山,刘军考.三种基于夹心换能器驱动的球形超声马达设计.组合机床与自动化加工技术. 2006, 7): 11~14
    65徐旭,梁艳春,时小虎.超声马达的频率温度特性分析.吉林大学学报(理学版). 2002,40(2): 109~114
    66 Roytamn, O. trrova. An Analytical Approach to Determining the Dynamic Characteristics of a Cylindrical Shell with Closing Cracks. Journal of Sound and Vibration. 2002, 254(2):379~386
    67 I.A.Jones. Flugge Shell Theory and Solution for Orthotropic Cylinrical Shells under Pinching Loads. Composite Structure. 1998, Vol. 42:53~72
    68王志松.夹心换能器式超声波马达研究.哈尔滨工业大学硕士论文. 2004:9
    69林仲茂.超声变幅杆的原理与设计[M].北京:科学出版社. 1987

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700