弛豫铁电单晶铌镁酸铅—钛酸铅复电机系数测试与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以锆钛酸铅、钛酸钡陶瓷为代表的压电材料经过数十年的研究发展,现已广泛应用在医学、军事、工业、民用等众多方面。随着弛豫铁电单晶生长技术的发展,人们已经成功制备出一批性质优异的铁电单晶,这为提高压电器件的性能提供了可能。目前,众多实验数据显示弛豫铁电单晶铌镁酸铅-钛酸铅(PMN-xPT)的压电系数d_(33)最大可达到2800pC/N,这一数值是普通陶瓷的四倍有余;而其电机耦合系数更是可以达到90%左右,远远超过普通陶瓷材料。这种优良的机电性能引起了广大铁电压电领域研究学者的极大兴趣。
     但是,在器件设计应用中,铁电单晶PMN-xPT并没有表现出人们预期的良好效果。这一问题在某种程度上是由于压电材料本身属于电介质其自身带有能量损耗,这种能量损耗会对材料的性能产生影响。在目前测试标准中,IEEE~1987压电材料测试方法又是一种忽略材料自身损耗的测试方法。在对大损耗因子压电材料的测试中,这种方法可能造成一定的测试误差。为了了解弛豫铁电单晶PMN-xPT自身损耗对其宏观机电性能的影响,以至于对由其研发器件性能的影响,本文希望借助传统复系数这一手段对弛豫铁电单晶PMN-xPT损耗进行初步表征,从而更加准确的表征压电材料的性质。
     本课题改进了以往复系数测试方法,并利用此方法计算了弛豫铁电单晶PMN-30%PT的复数形式电机系数。结果发现弛豫铁电单晶PMN-30%PT的弹性系数、介电系数、压电系数的实部会随着极化电压的增加而近似于线性增加,其损耗因子也以线性规律变化。由复电机系数可知,弛豫铁电单晶PMN-30%PT的机械损耗远大于传统单晶,因此在器件设计中,应认真考虑此类单晶材料的损耗特性,以避免对器件综合机电性能的影响。
The piezoelectric materials such as PZT and BaTiO3 ceramic have been used to design devices many years for medical, military, industrial, civil, and so on. Recently, the people have grown some ferroelectric crystals, which have extraordinarily properties. It provides the possibility for enhancing the performance of piezoelectric devices. The Pb(Mg_(1/3)Nb_(2/3))O_3—PbTiO_3 (PMN-xPT) single crystal is one of them, it has been proved the piezoelectric coefficient d_(33) of PMN-33%PT can reach 2800pC/N, this value is larger four times than that of the ordinary ceramics, and its electromechanical coupling coefficient k_(33) may reach about 90% which also go far beyond the ordinary ceramic materials. The extraordinarily properties have aroused many ferroelectric piezoelectricity researchers' enormous interest recently.
     But in the component design application, the PMN-xPT single crystal has not displayed people's anticipated good result. It's because in many practical applications, piezoelectric materials work with lossy, it will influence the performance of the piezoelectric device slightly. But the IEEE~1987 standard on piezoelectricity is the method which neglects the own loss of piezoelectric material. In order to understand the own loss of PMN-xPT and the influence in the design of the piezoelectric device, we use the complex coefficients of the piezoelectric material to exhibit the loss of the PMN-30%PT single crystal. This topic has calculated the complex coefficients of PMN-30%PT single crystal based on the former researchers' work foundation.
     From the results, it has been found that with DC field increasing, the elastic compliance, piezoelectric coefficient and dielectric permittivity increase with approximately linear relationships, and the loss factors change with linearity in the poling process. Based on the observation of complex coefficients, it is suggested the mechanical loss maybe influence the performance of the single crystal PMN-30%PT in the piezoelectric devices slightly. So we should study the loss of piezoelectric material earnest for the better performance of devices.
引文
1李远,泰子楷,张志刚.压电与铁电材料的测量.科学技术出版社,1984:1~7
    2 S. E. Park, T. R. Shrout. Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals. J. Appl. Phys. 1997, 82(4):1804~1811
    3 S. E. Park, T. R. Shrout. Characteristics of Relaxor-Based Piezoelectric Single Crystals for Ultrasonic Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. 1997, 44(5):1140~1147
    4 H. S. Luo, G. S. Xu and H. Q. Xu. Compositional Homogeneity and Electrical Properties of Lead Magnesium Niobate Titanate Single Crystals Grown by a Modified Bridgman Technique. Japan. J. Appl. Phy. Part 1-Regular Papers Short Notes & Review Papers. 2000, 39 (9B):5581~5585
    5 C. S. Tu, C. L. Tsai and V. H. Schmidt. Dielectric, Hypersonic, and Domain Anomalies of (PbMg1/3Nb2/3O3)(1-x)(PbTiO3)(x) Single Crystals. J. Appl. Phys. 2001, 89 (12):7908~7916
    6 Z. R. Li, Z. Xu and Z. Z Xi. Dielectric Properties and Phase Transition of PMN-0.32PT Single Crystal under DC Electric Field. Optical Material. 2003, 23 (1-2):429~432
    7 R. Zhang, B. Jiang and WW. Cao. Elastic, Piezoelectric, and Dielectric Properties of Multidomain 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 Single Crystals. J. Appl. Phys. 2001, 90:3471~3475
    8 Yin Z.W., Luo H.S., Wang P.C., Xu G.S. Growth, Characterization and Properties of Relaxor Ferroelectric PMN-PT Single Crystals, Ferroelecreics. 1999, 229 (1-4): 207~216
    9 H. S. Luo, G. S. Xu, H. Q. Xu, P. C. Wang, Z. W. Yin. Compositional Homogeneity and Electrical Properties of Lead Magnesium Niobate Titanate Single Crystals Grown by a Modified Bridgman Technique, Jap. J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers.2000, 39(9B): 5581~5585
    10 C. S. Tu, C. L. Tsai, V. H. Schmidt, H. S. Luo, Z. W. Yin. Dielectric, Hypersonic, and Domain Anomalies of (1-x) (PbMg1/3Nb2/3O3) (x) (PbTiO3) Single Crystals,J. Appl. Phys. 2001, 89 (12): 7908~7916
    11 H. R. Zeng, H. F. Yu, R. Q. Chu, G. R. Li, H. S. Luo, Q. R. Yin. Domain Orientation Imaging of PMN-PT Single Crystals by Vertical and Lateral Piezoresponse Force Microscopy. J. Cryst. Growth.2004, 267(1-2): 194~198
    12 X. Y. Zhao, J. Wang, K. H. Chew, H. L.W. Chan, C. L. Choy, Z. W. Yin, H. S. Luo. Composition Dependence of Piezoelectric Constant and Dielectric Constant Tunability in the < 001 >-Oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals. Mater. Lett. 2004, 58 (14): 2053~2056
    13 Z. R. Li, Z. Xu, Z. Z. Xi, X. Y. Wei, X. Yao. Dielectric Properties and Phase Transition of PMN0.32PT Single Crystal under DC Electric Field, Opt. Mater. 2003, 23 (1-2): 429~432
    14 Z. Xu, Z. Z. Xi, F. T. Chen, Z. G. Li, L. H. Cao, Y. J. Feng, X. Yao. Effects of Hydrostatic Pressure on the Dielectric Response and Phase Transition of PMN-PT68/32 Single Crystal. Ceram. Inter. 2004, 30 (7): 1699~1701
    15 R. Zhang, B. Jiang and WW. Cao. Single-domain Properties of 0.67Pb(Mg1/3Nb2/3)O3 -0.33PbTiO3 Single Crystals under Electric Field Bias. Appl. Phys. Lett. 2003, 82(5):787~789
    16 R. Zhang, WW. Cao. Transformed Material Coefficients for Single-Domain 0.67Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 Single Crystals under Differently Defined Coordinate Systems. Appl. Phys. Lett. 2004, 85 (26):6380~6382
    17 R. Zhang, B. Jiang and WW. Cao. Complete Set of Elastic, Dielectric, and Piezoelectric Coefficients of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 Single Crystal Poled along [011]. Appl. Phys. Lett. 2006, 89:242908
    18 R. Zhang, B. Jiang and WW. Cao, A. Amin. Complete Set of Material Constants of 0.93Pb(Zn1/3Nb2/3)O3-0.07PbTiO3 Domain Engineered Single Crystal. J. Mater. Sci. Lett. 2002, 21:1877~1879
    19 R. Zhang, B. Jiang, W. H. Jiang and WW. Cao, A. Amin. Anisotropy in Domain Engineered 0.92Pb(Zn1/3Nb2/3)O3-0.08PbTiO3 Single Crystal and Analysis of Its Property Fluctuations . IEEE Trans. Ultrason. Ferroelectr. Freq. 2002, 49(12):1622~1627
    20 F. Wang, L. H. Luo, D. Zhou, X. Y. Zhao and H. S. Luo. Complete Set of Elastic, Dielectric, and Piezoelectric Constants of Orthorhombic 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 Single Crystal. Appl. Phys. Lett. 2007, 90:212903
    21 J. Peng, H. S. Luo, T. H. He, H. Q. Xu, D. Lin. Elastic, Dielectric, and Piezoelectric Characterization of 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 Single Crystals. Matter. Lett.2005, 59:640~643
    22 Standards on Piezoelectric Crystals,1949. Proc. IRE. 1949:1378~1395
    23 IRE Standards on Piezoelectricity Crystals: Determination of the Elastic, Piezoelectric and Dielectric Constants—The Electromechanical. Proc. IRE. 1958, 14:764~778
    24 IRE standards on Piezoelectric Crystals: Measurements of Piezoelectric Ceramics. Proc. IRE. 1961, 49:1161~1169
    25 IEEE Standard on Piezoelectricity, IEEE Std. 176-1987. New York: The Institute of Electrical and Electronics Engineers. 1987
    26 K. Uchino, S. Hirose. Loss Mechanisms in Piezoelectrics: How to Measure Different Losses Separately. IEEE Trans. Ultrason. Ferroelectr. Freq. 2001, 48(1):307~322
    27 R. Holland, E. P. Eer Nisse. Accurate Measurement of Coefficients in Ferroelectric Ceramic. IEEE Trans. Sonics. Ultrason. 1969, SU-16(4):173~181
    28 R. Holland . Representation of Dielectric, Elastic and Piezoelectric Losses by Complex Coefficients. IEEE Trans. Ultrason. Ferroelectr. Freq. 1967, SU-14: 18~21
    29 J. G. Smits. Iterative Method for Accurate Determination of the Real and Imaginary Parts of the Materials Coefficients of Piezoelectric Ceramics. IEEE Trans. Sonics. Ultrason. 1976, SU-23:393~402
    30 J. G. Smits. High Accuracy Determination of Real and Imaginary Parts of Elastic, Piezoelectric and Dielectric Constants of Ferroelectric PLZT (11/55/45) Ceramics with Iterative Method. Ferroelectrics.1985, 64:275~291
    31 C. Alemany, A. M. Gonzalez and L. Pardo. Automatic Determination of Complex Constants of Piezoelectric Lossy Materials in the Radial Mode. J. PHY. D: Appl. Phy. 1995, 28:945~956
    32叶会英,葛强.压电材料复系数的非线性最小而乘法估计.压电与声光. 2003, 25(5):407~409
    33叶会英,浦昭邦.一种用于压电材料复系数的快速迭代算法.压电与声光1999, 21(5):502~505
    34杜宝强,屈芳升.基于压电材料复系数自动测量的算法.机电产品开发与创新. 2005, 18(6):41~43
    35 S Sherrit., H. D. Wiederick and B. K. Mukherjee. Non-iterative Evaluation of the Real and Imaginary Material Constants of Piezoelectric Resonators. Ferroelectrics 1992, 134:111~119
    36 S Sherrit., H. D. Wiederick and B. K. Mukherjee. Accurate Evaluation of Real and Imaginary Material Constants for a Piezoelectric Resonator in the Radial Mode. Ferroelectrics.1991, 119:17~32
    37 K. W. Kwok, H. L. W. Chan and C. L. Choy. Evaluation of the Material Parameters of Piezoelectric Materials by Various Methods. IEEE Trans. Ultrason. Ferroelectr. Freq. 1997, 44:733~742
    38 X. H. Du, Q. M. Wang and K. Uchino. Accurate Determination of Complex Materials Coefficients of Piezoelectric Resonators. IEEE Trans. Ultrason., Ferroelect. Freq. 2003, 50(3):312~320
    39 X. H. Du, Q. M. Wang and K. Uchino. An Accurate Method for the Determination of Complex Coefficients of Single Crystal Piezoelectric Resonators ?:Theory, IEEE Trans. Ultrason. Ferroelectr. Freq. 2004, 51(2):227~238
    40 X. H. Du, Q. M. Wang and K. Uchino. An Accurate Method for the Determination of Complex Coefficients of Single Crystal Piezoelectric Resonators ?I: Design of Measurement and Experiments, IEEE Trans. Ultrason. Ferroelectr. Freq. 2004, 51(2): 238~243
    41 Q. M. Wang, T. Zhang, Q. Chen, X. H. Du. Effect of DC Bias Field on The Complex Materials Coefficients of Piezoelectric Resonators. Sens. Actuators, A 1999, 72:149-155
    42 J. Krupka. Precise Measurements of Complex Permittivity of Dielectric Materials at Microwave Frequncies. Mater. Chem. Phys.2003, 79:195~198
    43 Y. Chen, Y. M. Wen and P. Li. Charaterization of Dissipation Factors in Terms of Piezoelectric Equivalent Circuit Parameters. IEEE Trans. Ultrason. Ferroelectr. Freq. 2006, 53(12):2367~2376
    44 Peter C.Y. Lee, N. H. Liu and Arthur Ballato. Thickness Vibrations of a Piezoelectric Plate with Dissipation. IEEE Trans. Ultrason. Ferroelectr. Freq. 2004, 51(1):52~63
    45 M. Maeda, H. Hashimoto, I. Suzuki. Measurements of Complex Materials Constants of Piezoelectrics: Extensional Vibrational Mode of A Rectangular Bar. J. Phys. D: Appl. Phys. 2003, 36:176-180
    46 H. Wang, Q. Zhang, L. E. Cross. A High Sensitivity Phase Sensitive d33 Meter for Complex Piezoelectric Constant Measurement. Jap. J. Appl. Phys.1993, 32: L1281~L1283
    47 C. E. Land, G. W. Smith, C. R. Westgate. The Dependence of the Small-Signal Parameters of Ferroelectric Ceramic Resonators upon State of Polarization. IEEE Trans. Ultrason. Ferroelectr. Freq.1964, 11(1):8~18
    48 T. Tsurumi, H. Kakemoto, S. Wada. Dielectric, Elastic and Piezoelectric Losses of PZT Ceramics in the Resonance State. Applications of Ferroelectrics, 2002. ISAF 2002. Proceedings of the 13th IEEE International Symposium on 28 May-1 June 2002:375~378
    49 J. G. Smits. Influence of Moving Domain Walls and Jumping Lattice Defects on Complex Material Coefficients of Piezoelectrics. IEEE Trans. Sonic. Ultrason. 1976, 23(3):168~174
    50 R. T. Smith, F. S. Welesh. Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate. J. Appl. Phys.1971, 42(6):2219~2230
    51 N. Lamberti, S. Sherrit, M. Pappalardp, A. Iula. Extension to the Definition of Quasistatic Material Coupling Factor to Include Losses. IEEE Trans. Ultrason. Ferroelectr. Freq. 2005, 52(6):1026~1034
    52 M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Gunter. Dielectric, Elastic, Piezoelectric, Electro-Optic, and Elasto-optic tensors of BaTiO3 Crystals. Phys. Rev. B.1994, 50(9):5941~5949
    53 M. Lukacs, T. Olding, M. Sayer, R. Tasker, S. Sherrit. Thickness Mode Material Constants of a Supported Piezoelectric Film. J. Appl. Phys.1999, 85(5):2835~2843
    54 M. Brissaud. Characterization of Piezoceramics. IEEE Trans. Ultrason. Ferroelectr. Freq.1991, 38(6):603~616

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700