磁性金属镍、钴纳米组装结构的控制合成与性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Assembly Nanostructures of Magnetic Metals of Nickel and Cobalt: Controlled Synthesis and Properties Study
  • 作者:倪小敏
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2006
  • 导师:??
  • 学科代码:070301
  • 学位授予单位:中国科学技术大学
  • 论文提交日期:2006-11-01
摘要
本论文中的工作主要可分为两个部分:
     一.进一步发展了以液相化学合成和同步组装的路线制备纳米组装结构的技术,提出了一种在无表面活性剂和无外磁场诱导的条件下制备磁性纳米组装结构的方法,在合成磁性金属镍和钴的纳米组装结构的实践上取得了较大的进展。在液相还原一步法中,通过选择各种配位剂控制纳米晶的生长过程,同时利用磁性纳米粒子之间的磁相互作用,制备得到了多种不同形貌的金属镍和钴的纳米组装结构。在前驱体—氢气固相还原两步法中,首先利用配位剂控制合成具有组装结构的金属氢氧化物前驱体,然后通过氢气还原,在前驱体形貌保持的条件下获得了金属镍和钴的纳米组装结构。详细内容归纳如下:
     1.利用柠檬酸钠作配位剂辅助控制金属镍纳米晶在水热体系中的各向异性生长和同步组装,制备出由刺状纳米晶组装而成的镍微米线。通过调节柠檬酸钠的浓度、体系的碱度和反应温度等条件参数,实现了对镍微米线的微结构控制。对比实验研究发现该组装结构的形成是受反应动力学和磁性粒子的内在磁相互作用的共同影响。将此配位剂辅助合成法推广应用到其它配位剂体系,可得到类似的具有组装结构的镍微米线,证实了该反应路线的普适性。该镍纳米组装结构的磁学性质和催化碳氢化合物热解生成碳纳米管的性能均与其微结构密切相关。以此多刺镍微米线为原位模板,通过简单的金属置换反应,在其表面修饰一层金属银,可以在保持其形貌和磁性质基本不变的条件下有效地提高材料的抗氧化性能,同时屏蔽其催化碳纳米管生成的特性。
     2.利用氨水和丁二酮肟作配位剂,在水合肼—镍盐的体系中,通过对反应物浓度和反应温度的调节,在低温水热的条件下分别制备出两种由面心立方结构金属镍的单晶六方片组装而成的花状多级结构。对比实验研究表明,配位剂的配位作用和结构导向作用以及磁性粒子内在的磁相互作用共同决定了纳米晶的各项异性生长和自发同步组装。
     3.同时选择丁二酮肟和水合肼两种配位剂和镍离子配位形成的两种配合物组成混合镍源,利用这两种配合物的结构和稳定性差异,实现镍纳米晶的分步生长,合成了一种以球状颗粒为花心,剑状纳米晶为花瓣的镍纳米组装结构。两种
The work in this dissertation could be divided into two parts.
    In the first part, solution-based routes assisted by complexants were developed to realize the chemical synthesis and simultaneous assembly of isolated nanoparticles into hierarchical nanostructures. We established a new route for the synthesis of magnetic assembly nanostructures without any surfactants or external magnetic field, which was successfully used in the fabrication of metallic nickel and cobalt hierarchical nanostructures. In the one-step solution chemical reduction method, nickel and cobalt assembly nanostructures with different-shapes were created by controlling the crystal growth with various complexants, together based on the magnetic interactions of magnetic particles. In the hydrogen reduction route, metallic nanoarchitectures were fabricated by hydrogen reduction of the hydroxides precursors, which were prepared first with the assistance of different complexant agents. The details are summarized as follows.
    1. Prickly nickel microwires assembled by nanothorns were fabricated from the anisotropic growth of metallic nickel nanocrystals and their simultaneous assembly assisted by citrate. By adjusting the reagent concentrations and temperature, microstructures of the nickel wires were modulated. Formation of the assembly nanostructures could be ascribed to the kinetic control of the reaction process and the inherent magnetic interactions between the magnetic particles. Such a complexant-assisted method could be extended to the other complexing systems, which was proved as a general route for the synthesis of nickel microwires. As-prepared nickel assembly nanostructures showed microstructure-dependent magnetic properties and catalysis for the growth of carbon nanotubes in pyrolyzing acetone. Using the nickel wires as in-situ reductant, prickly Ag_(shell)-Ni_(core) wires were obtained through a simple transmetallation reaction. The surface modification with silver showed little influence on the morphology and magnetic properties of the nickel wires, while greatly improved their oxidation-resistance and blocked their catalysis for the growth of carbon nanotubes in pyrolyzing acetone.
引文
[1] 张立德,牟季美,《纳米材料和纳米结构》,科学出版社,2001.
    [2] R.A. Webb, Phys. Rev. Lett. 89 (1989) 1861.
    [3] H. W. Kroto, Nature, 318 (1985) 162.
    [4] 田民波,《磁性材料》清华大学出版社,2001.
    [5] 李国栋,《物质的磁性及其新应用》清华大学出版社,2000.
    [6] C. Robert, O'handley, Modem Magnetic Materials Principle and Applications, John Wiley &Sons, 2000.
    [7] 《全国纳米磁性材料和物理学术讨论会会议文集》1993.
    [8] 候登录,温桂荣,唐贵德,《磁记录材料》2(1997)2.
    [9] W. Kaszuwara, M. Leonowicz, J. A. Kozubowski. Mater. Lett. 42 (2.000) 383.
    [10] A. K. Menon, B. K. Gupta. Nanotechnology 11 (1999) 965.
    [11] 向宇《磁记录材料》1(1999)54.
    [12] O. Kazuhiro, H. Naoki, IEEE Trans. Magn. 36 (2000) 16.
    [13] 李国栋《金属功能材料》8(2001)7
    [14] 李国栋《磁的世界》长沙:湖南教育出版社,1994,p112.
    [15] C. Y. You, X. K. Sun, W. Liu et al. J. Phys. D: Appl. Phys. 33 (2000) 926.
    [16] R. Yapp, H. A. Davies, Rare-Earth Magnets. Their Appl.; Proc. Int. Workshop 15th, 1 (1998) 315.
    [17] K. Akinori, M. Akihiro, I. Akihisa. J. Appl. Phys., 87 (2000) 6576.
    [18] T. Takumi, A. Tomomi, S. Katsuya, et al. 89 (1997) 1207.
    [19] L. Johan, A. Tomomi, H. Kimona. Eur. Pat. Appl. Ep, 1997, No: 754799.
    [20] H. N. Frase, R. D. Shull, L. B. Hong. et al. Nanostruct. Mater. 11 (1999) 987.
    [21] S. K. Putatunda, N. Timothy, V. John, et al. Adv. Power Matall. Part. Mater. 13 (1999) 29.
    [22] 胡小平,邬秋林,季雨,等,《金属材料研究》25(1999)1.
    [23] 张雪峰,李哲男,王威娜,董星龙,《粉末冶金工业》16(2006)11.
    [24] L. Liu, M. X. Zhang, L. C. Hu, Aerospace Mater. Tech. 24 (1994) 1.
    [25] B. G. Shong, H. Zhao, J. Metal Funct. Mater. 10 (1994) 21.
    [26] B. B. Vladimir, IEEE Trans. Magn. 40 (2004) 1679.
    [27] K. J. Widder, R. M. Morris, G. Poore, et al. Proc. Nat. Acad. Sci. 19 (1983) 135.
    [28] K. J. Widder, P. A. Marino, R. M. Morris. et al. Eur. J. Cancer Clin. Oncol. 19 (1983) 141.
    [29] P. K. Gupta, C. T. Hung, F. C. Lam, etal. J. Pharm. Sci. 79 (1990) 634.
    [30] S. Rudge, C. Peterson, C. Vessely, et al. J. Controlled Release, 74 (2001) 335.
    [31] G. P. Braos, T. P. Mairelles, C. E. Rodrguez, J.Mol. Catal. A. Chem. Cal. 193 (2003) 185.
    [32] M. Takimoto, Y. Nakamura, K. Kimura, et al. J. Am. Chem. Soe. 126 (2001) 5956.
    [33] T, Satoshi, T. Ryoji, et al. Appl. Cata. A 241 (2003) 349.
    [34] K. Z. Chen, Z. Hu, Z. Zhang, Chin. J. Catal. 17 (1996) 351.
    [35] 左东华,张志琨,崔作林,等,《催化学报》17(1996)166.
    [36] 王彦妮,张志琨,《催化学报》16(1995)304.
    [37] 范崇正,李正华,焦键,等,《中国科技大学学报》30(2000)744.
    [38] 刘磊力,李凤生,谈玲华,等,《应用化学》21(2004)488.
    [39] 陈新兵,安忠维,《化学通报》1(2002)36.
    [40] H. P. Cuong, V.Ricardo, L. Benoit, A. Carvalho, et al. J. Catal. 204 (2006) 194.
    [41] 陈蓓京,陈利民,等《云南大学学报·自然科学版》37(2005)122
    [42] 刘思林,滕荣厚,于英仪,《功能材料》31(2000)369.
    [43] X. K. Yan, L. S. Zhu, J. C. Dong, J. Func. Polyn. 10 (1997) 128.
    [44] 中谷功(日)《金属材料研究》26(2000)57.
    [45] a) J. Shi, S. Gider, K. Babcock, D. D. Awschalom, Science 271 (1996) 937. b) S. Sun, C. D. Murray, D. Weller, L. Folks, A. Moser, Science 287 (2000) 1989. c) V. Kesavan, P. S. Sivanand, S. Chandrasekharan, Y. Koltypin, A. Gedankan, Angew. Chem. Int. Ed. 38 (1999) 3521.
    [46] X. Peng, L. Manna, W. Yang, J, Wickhan, E. Scher, A. Kadavanisch, A. P. Alivisatos, 59 (2000) 404.
    [47] M. Kilner, S. R. Hoon, et al. IEEE Trans. Magn. 20 (1984) 1735.
    [48] Y, Kato, S. Sugimoto, K.Shinohara, N. Tezuka, T. Kagotani, K. Inomata, Mater. Transl. 43 (2002) 406.
    [49] 马荣骏,邱电云,《湿法冶金》20(2001)1.
    [50] 高晓云,李谨,等,《磁记录材料》12(1994)9.
    [51] R. Kalyanaraman, S. Yoo, et.al. Nanostructured. Mater. 10(1998) 1379.
    [52] K. S. Napolsky, A. A. Eliseev, A. V. Knotko, A. V. Lukahsin, A. A. Vertegel, Y. D. Tretyakov. Mater. Sci. Engineering C 23 (2003) 151.
    [53] N. Cordente, R. M. Espaud, F. Secocq, M. J. Casanove, C. Amiens, B. Chaudret, Nano. Lett. 1 (2001) 565.
    [54] F. Dumestre, B. Chaudret, C.Amiens, M. C. Fromen, M. J. Casanove, P. Renaud, P.Zurcher, Angew. Chem. Int. Ed. 41 (2002) 4286.
    [55] S. J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc. 122 (2000) 8581.
    [56] V. Tzitzios, D. Niarchos, M. Gjoka, N. Boukos, D. Petridis, J. Am. Chem. Soc. 127 (2005) 13756.
    [57] D. Dinega, M. G. Bawendi, Angew. Chem. Int. Ed. 38 (1999) 1788.
    [58] A. Ekstrand, K. Jansson, G. Westin, J. Sol-Gel. Sci. Tech. 19 (2000) 353.
    [59] A. Ekstrand, K. Jansson, G. Westin, Chem. Mater. 17 (2005) 199.
    [60] Y. Hattori, T. Konishi, H. Kanoh, et al, Adv. Mater. 15 (2003) 529.
    [61] P. Jin, Q. Chen, L. Hao, R. Tian, L. Zhang, L. J Wang. J. Phys. Chem. B 108 (2004) 6311.
    [62] L.Vayssieres, L. Rabenberg, A. Manthiram, Nano Lett. 2 (2002) 1393.
    [63] 曾京辉,郑化桂,曾桓兴,钱逸泰,《中国科学技术大学学报》29(1999)595.
    [64] S. Hisano, K. Saito, Tour. Magn. Magn. Mater. 190 (1998) 371.
    [65] a)一种钠米金属钴粉或镍粉的制备方法 发明专利 99101538.X 1999.b)一种钠米金属铁粉的化学制备方法 发明专利99110250.9.1999
    [66] a) Y. C. Zhu, H. G. Zheng, Q. Yang, A. L. Pan, Z. P. Yang, Y. T. Qian, J. Cryst. Growth. 260 (2004) 427. b)Y. C. Zhu, Q. Yang, H. G. Zheng, W. C. Yu, Y. T. Qian, Mater. Chem. Phys. 91 (2005) 293. c) M. W, Y. C. Zhu, H. G. Zheng, Y. T. Qian, Inorg, Chem. Commun. 5 (2002) 971. d) Y. C. Zhu, Q. Yang, H. G. Zheng, L. S. Gao. Z. P. Yang, Y. T. Qian, Mater. Chem. Phys. 96 (2006) 506. e) X. M. Ni, Q. B. Zhao, H. G. Zheng, et al. Eur. J. Inorg. Chem. 23 (2005) 4788. f) D. D. Yang, X. M. Ni, D. G Zhang, et al. J. Cryst. Growth. 286 (2006) 152. g) D. G. Zhang, X. M. Ni, H. G. Zheng, J. Colloid. Interface. Sci. 292 (2005) 410. h) X.M. Ni, Q. B. Zhao, D. E. Zhang, et al. J. Cryst. Growth. 280 (2005) 217. i) D. E. Zhang, X. M. Ni, H. G. Zheng, et al. Mater. Lett. 59 (2005) 2011. j) X. M. Ni, X. B. Su, H. G Zheng, et al. J. Cryst. Growth. 275 (2005) 548. k) X. M. Ni, L. F. Chen, H. G Zheng, et al. Chem. Lett. 33 (2005) 1564.1) X. B. Su, H. G Zheng, Y. C. Zhu, A. L. Pan, et al. J. Mater. Sci. 38 (2004) 4581. M) 郑化桂,曾京辉, 梁家和,《金属学报》 35(1999)837.
    
    [67] 郭志诚 《电镀与环保》 14(1994)12
    
    [68] Y. L. Hou, S. Gao, J. Mater. Chem. 13 (2003) 1510.
    
    [69] a) B. Nagy, I. Bodart-Ravet, E. G Derouane, Faraday Discuss. Chem. Soc. 87 (1989) 189. b) Legrand, A. Taleb, S. Gota, M. J. Guittet, C. Petit. Langmuir 18 (2002)4131.
    [70] Z. P. Liu, S. Li, Y. Yang, S. Peng, Z. K. Hu, Y. T. Qian, Adv. Mater. 15 (2003) 1946.
    [71] Q. Xie, Z. Dai, W. Huang, J. Liang, H. Jiang, Y. T. Qian, Nanotechnology 16 (2005) 2958.
    [72] Y. Yamauchi, T. Yokoshima, T. Momma, T. Osaka, K. Kuroda, J. Mater. Chem, 14 (2004) 2935.
    
    [73] J. Bao, Y. Liang, Z. Xu, L. Si, Adv. Mater. 15 (2003) 1832.
    [74] H. Niu, Q. Chen, M, Ning, Y. Jia, X. Wang, J. Phys. Chem. B 108 (2004) 3996.
    [75] T. Masaharu, H. Masayuki, T. Takeshi, Chem. Lett. 12 (2002) 1232.
    [76] D. Ung, G Viau, C. Ricolleau, F. Varmont, P. Gredin, F. Fievet. Adv. Mater. 17 (2005) 338.
    [77] J. S. Bradley, B. Tesche, W. Buser, M. Maase, M. T. Reetz, J. Am. Chem. Soc. 122(2000)4631.
    [78] K. J. Takeuchi, A. C. Marschilok, C. A. Bessel, N. R. Dollahon, J. Catal. 208 (2002) 150.
    [79] a) J. Bao, C. Tie, Z. Xu, Q. Zhou, D. Shen, Q. Ma, Adv. Mater. 13 (2001) 1631. b) A. Jagminas, R. Juskenas, I. Gailiute, G Statkute, R. Tomasiunas, J. Cryst. Growth. 294 (2006) 343. c) J. X. Xu, X. M. Huang, G. Z. Xie, Y. H. Fang, D. Z. Liu, Mater. Lett. 59 (2005) 981.
    [80] L. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, J. B. Wiley, Adv. Mater. 15 (2003) 1562.
    [81] Z. L. Bao, K. L. Kavanagh, J. Cryst. Growth 287 (2006) 514.
    [82] W. He, P. Gao, L. Chu, L. Yin, Z. Li, Y. Xie, Nanotechnology 17 (2006) 3512.
    [84] 何伟 中国科学技术大学硕士学位论文 2006.
    [84] 朱英杰 中国科学技术大学博士学位论文 1994.
    [85] 倪小敏 中国科学技术大学硕士学位论文 2004.
    [86] F. Wang, Z. Zhang, Z. Chang, Mater. Lett. 55 (2002) 27.
    [87] a) B. Z. Tang, Y. H. Geng, J. W. Y. Lam, B. S. Li, et al. Chem. Mater. 11 (1999) 1581. b) M. Kryszewski, J. K. Jeszka, Synth. Met. 94 (1998) 99. c) V. F. Puntes, P. Gorostiza, D. M. Aruguete, N. G. Bastus, A. P. Alivisatos, Nat. Mater. 3 (2004) 263. d) M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Science 281 (1998) 2013.
    [88] G. Duan, W. Cai, Y. Luo, Z. Li, Y. Lei, J. Phys. Chem. B 110 (2006) 15729.
    [89] J. Jin, T. Iyoda, C. Cao, Y. Song, L. Jiang, T. J. Li, D. B. Zhu, Angew. Chem. Int. Ed. 40 (2001) 2135.
    [90] Y. L. Hou, S. Gao, T. Ohta, H. Kondoh, Eur. J. Inorg. Chem. 4 (2004) 1169.
    [91] S. H. Sun, S. Anders, H. F. Hamann, J. U. Thiele, J. E. E. Baglin, T. Thomson, E. E. Fullerton, C. B. Murray, B. D. Terris, J. Am. Chem. Soc. 127 (2002) 2884.
    [92] S. B. Lei, C. Wang, S. X. Yin, L. J. Wan, C. L. Bai, ChemPhysChem. 4 (2003) 1114
    [93] Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. P. Furlani, P. N. Prasad. J. Phys. Chem. B 108 (2004) 3380.
    [94] H. Niu, Q. Chen, H. Zhu, Y. Lin, X. Zhang, J. Mater. Chem. 13 (2003) 1803.
    [95] J. Gao, B. Zhang, X. Zhang, B. Xu, Angew. Chem. Int. Ed. 45 (2006) 1220.
    [96] S. Singamaneni, V. Bliznyuk, Appl. Phys. Lett. 87 (2005) 62511.
    [97] T. Zhang, W. Dong, M. K. Brewer, S. Konar, R. N. Njabon, Z. R. Tian, J. Am. Chem. Soc. 128 (2006) 10960.
    [1] Z. Liu, S. Li, Y. Yang, S. Peng, Z. Hu, Y. Qian, Adv. Mater. 15 (2003) 1946.
    [2] a) Y. G. Sun, Y. D. Yin, B. B. Mayers, T. Herricks, Y. N. Xia, Chem. Mater. 14 (2002) 4736. b) K. K. Caswell, C. M. Bender, C. J. Murphy, Nano. Lett. 3 (2003) 667.
    [3] a) V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, Science, 291 (2001) 2115. b) Z. A. Peng, X. Peng, J. Am. Chem. Soc. 123 (2001) 1389. c) J. M. Petrovski, Z. L. Wang, J. Phys. Chem. B 102 (1998) 3316.
    [4] Y. Xiong, Y. Xie, S. Chen, Z. Li, Chem. Eur. J. 9 (2003) 4991.
    [5] H. Niu, Q, Chen, M. Ning, Y. Jia, X. Wang, J. Phys. Chem. B 108 (2004) 3996.
    [6] X. Ni, X. Su, Z. Yang, H. Zheng, J. Cryt. Growth. 252 (2003) 612.
    [7] J. Qsuna, D. de Caro, C. Amiens, B. Chaudret, E. Snoeck, M. Respaud, J. M. Broto, A. Fert, J. Phys. Chem. 100 (1996) 14571.
    [8] 《简明无机化学手册》国防工业出版社,1986,p 310.
    [9] 郭忠诚《电镀与环保》,14(1994)12.
    [10] a) S. M. Lee, S. N. Cho, J. Cheon, Adv. Mater. 15 (2003) 441. b) S. M. Lee, Y. Jun, S. N. Cho, J. Cheon, J. Am. Chem. Soc. 124 (2002) 11244.
    [11] Z. Liu, S. Li, Y. Yang, Z. Hu, S. Peng, J. Liang, Y. Qian, New. J. Chem. 27 (2003) 1748.
    [12] D. Ung, G. Viau, C. Ricolleau, F. Warmont, P. Gredin, F. Fiévet. Adv. Mater. 17 (2005) 338.
    [13] A. P. Alivisatos, Science 289 (2000) 736.
    [14] X. Y. Zhang et al, Applied Handbook of Chemistry, 1st ed., NationalDefence Industry Press, 1986, p 310-311
    [15] Y. D. Li, C. W. Li, H. R. Wang, L. Q. Li, Y. T. Qian, Mater. Chem. Phys. 59 (1999) 88.
    [16] a)K. S. Suslick, Science. 247(1990)4949. b)郑秀文 中国科学技术大学博士学位论文 2004.
    [17] L. Guo, C. M. Liu, R. M. Wang, H. B. Xu, Z. Y. Wu, S. H. Yang, J. Am. Chem. Soc. 126 (2003) 4530.
    [18] J. H. Hwang, V. P. Dravid, M. H. Teng, J. J. Host, B. R. Elliott, D. L. Johnson, T. O. Mason J. Mater. Res. 12 (1997) 1076.
    [19] a) D. L. L. Pelecky, R. D. Rieke, Chem. Mater. 8 (1996) 1770. b) S. H. Wu, D. H. Chen, J. Colloid Interface Sci. 259 (2003) 282.
    [20] a) G. P. Braos, T. P. Mairelles, C. E. Rodrguez, J. Mol. Catal. A. Chem. Cal. 193 (2003) 185. b) M. Takimoto, Y. Nakamura, K. Kimura, et al. J. Am. Chem. Soc. 126 (2001) 5956.
    [21] a) E. F. Kukovitsky, S. G. L'vov, N.A. Sainov, V. A. Shustov, Applied Surface Science 215 (2003) 201. b) H. Gao, J. Lin, H. Pan, G. Wu, Y. Feng, Chem. Phys. Lett. 393 (2004) 511.
    [22] M. Han, W. Zhang, C. Gao, Y. Liang, Z. Xu, J. Zhu, J. He, Carbon 44 (2006) 211.
    [23] C. Phan-Huu, R. Vieira, B. Louis, A. Carvalho, J. Amadou, T. Dintzer, M. J. Ledoux. J. Catal. 240 (2006) 194.
    [24] G. N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjipanayis, Langmuir 8(1992)771.
    
    [25] S. U. Son, S. I. Lee, Y. K. Chung, S. W. Kim, T. Hyeon, Org. Lett. 4 (2002) 277.
    [26] 程静 中国科学技术大学硕士学位论文,2006 .
    [27] V. V. Hardikar, E. Matijevic, J. Colloid Interface Sci. 221 (2000) 133.
    [28] J.-II. Park, J. W. Cheon, J. Am. Chem. Soc. 123 (2001) 5743.
    [29] K. Nagaweni, A. Gayen, G. N. Subbanna, M. S. Hegde J. Mater. Chem. 12 (2002) 3147.
    [30] T. Bala, S. D. Bhame, P. A. Joy, B. L. V. Prasad, M. Sastry J. Mater. Chem. 14 (2004) 1057.
    [31] T. Bala, S. D. Bhame, P. A. Joy, B. L. V. Prasad, M. Sastry J. Mater. Chem. 14 (2004)2941.
    [32] Y. Hattori, T. Konishi, H. Kanoh, S. Kawasaki, K. Kaneko, Adv. Mater. 15 (2003) 529.
    
    [33] C. D. Wanger, W. M. Riggs, L. E. Davis, J. F. Moulder, G. E. Muilenberg, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN 1978.
    
    [34] Y. G. Sun, B. Gates, B. Mayers, Y. N. Xia, Nano. Lett. 2 (2002) 165.
    [35] T. O. Ely, C. Amiens, B. Chaudret. Chem. Mater. 11 (1999) 526.
    [36] C. Phan-Huu, R. Vieira, B. Louis, A. Carvalho, J. Amadou, T. Dintzer, M. J. Ledoux. J. Catal. 240 (2006) 194.
    [37] S. B. Lei, C. Wang, S. X. Yin, L. J. Wan, C. L. Bai, ChemPhysChem. 4 (2003) 1114.
    [38] N. Cordente, R. M. Espaud, F. Secocq, M. J. Casanove, C. Amiens, B. Chaudret, Nano. Lett. 1 (2001) 565.
    [39] S. Singamaneni, V. Bliznyuk, Appl. Phys. Lett. 87 (2005) 62511.
    [40] 武汉大学《无机化学》,高等教育出版社,2002.
    [41] 慈云祥,周天泽,《分析化学中的配位化合物》,北京大学出版社,1986
    [42] J. Pilme, B. Silvi, M. E. Alikhani, J. Phys. Chem. A 109 (2005) 10028
    [43] X. Jiang, Y. Xie, J. Lu, L. Zhu, W. He, Y. Qian, Adv. Mater. 13 (2001) 1278
    [44] 何伟 中国科学技术大学硕士学位论文 2006
    [45] a) R. Jin, Y. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, J. G. Zheng, Science 13 (2001) 136. b) M. Maillard, S. Giorgion, M. R Pileni, Adv. Mater. 14 (2002) 1084.
    [46] Z. Wang, J. Liu, X. Chen, J. Wan, Y. Qian, Chem. Eur. J. 11 (2005) 160.
    [47] D. F. Wan, X. L. Ma, Magnetic Physics, Publishing House of Electronics Industry; Beijing, 1999, p 178.
    [48] 马丽君,邵纯红,《化学工程师》89(2002)66
    [49] 温笑蕾,《化学工程师》106(2004)33
    [50] a) T .Thomas , A. Underhill, Chem. Soc. Rev. 1 (1972) 99, b) P. Day, Chim. Acta 3(1969) 81. c) Y. Ohashi, I. Hanazaki, S. Nagakura, Inorg. Chem. 9 (1970) 2551. d) L. Ingraham, Acta. Chem. Stand. 20 (1966) 283. e) G. Basu, G. Cook, R. Belford, Inorg. Chem. 3 (1964) 1361. e) E. V. Keureny, H. Matsuda, T. Kamata, T. Fukaya, F. Mizukami. J. Phys. D: Appl. Phys., 31 (1998) 3051.
    [51] a) Y. Xiong, Z. Li, R. Zhang, Y. Xie, J. Yang, C. Wu, J. Phys. Chem. B 107 (2003) 3697. b) Y. W. Jun, S. M. Lee, N. J. Kang, J. Cheon, J. Am. Chem. Soc. 123 (2001) 5150. c) C. J. Murphy, N. R. Jana, Adv. Mater. 14 (2002) 80.
    [52] a)W. Chang, K. Li, Concise Handbook of Analytic Chemistry, 1st ed., Science Press 1980, p. 75. b) X. Zhang, X. Y. Song, Y. Z. Li, H. L. Chen, J. Mol. Struct. 749 (2005) 1.
    [53] A. Gole, C. J. Murphy, Chem. Mater. 16 (2004) 3633.
    [1] L.Vayssieres, L. Rabenberg, A. Manthiram, Nano Lett. 2 (2002) 1393.
    [2] P. Jin, Q. Chen, L. Hao, R. Tian, L. Zhang, L. J Wang. J. Phys. Chem. B 108 (2004) 6311.
    [3]P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet, A. De Guibert, J. Power Sources 8 (1982) 229.
    
    [4] F. Portemer, A.Delahaye-Vidal, M. Figlarz, J. Electrochem. Soc. 139 (1992) 671.
    [5] a) F. S. Cai, G. Y. Zhang, J. Chen, X. L. Gou, H. K. Liu, S. X. Dou, Angew. Chem. Int. Ed. 43 (2004) 4212. b) K, Matsui, T. Kyotani, A. Tomita, Adv. Mater. 14 (2002) 1216.
    
    [6] J. He, Y. Li, Chem. Lett. 32 (2003) 1126.
    
    [7] Z. H. Liang, Y. J. Zhu, X. L.Hu, J. Phys. Chem. B 108 (2004) 3488.
    [8] C. Coudun, H. Jean-Francois. J. Phys. Chem. B 109 (2005) 6069.
    [9] Q. S. Song, Z. Y. Tang, H. T. Guo, S. L. I. Chan, J. Power. Sources 112 (2002) 428.
    
    [10] P. V. Kamath, G. N. Subbanna, J. Appl. Electrochem. 2 (1992) 478.
    [11] L. C. Demourgues-Guerlou, Delmas, J. Power. Sources 45 (1993) 281.
    [12] G. J. D. A.Soler-Illia, A.; Jobbagy, M.; Regazzoni, A. E.; Blesa, M. A. Chem. Mater. 11(1999)3140.
    [13] J. H. Hwang, V. P. Dravid, M. H. Teng, J. J. Host, B. R. Elliott, D. L. Johnson, T. O. Mason J. Mater. Res. 12 (1997) 1076.
    [14] a) B. Salvadori, L. Dei, Langmuir, 17(2001)2371. b) F. Maurel, M. J. Hytch, B. Knosp, M. Backhaus-Ricoult, Eur. Phys.J. Ap 9(2000)205. c) S. Kannan, C. S. Swamy, J. Mater. Sci. Lett. 11(1992)1585. d) H. Cai, A. C. Hillier, K. R. Franklin, C. C. Nunn, M. D. Ward, Science 266(1994)1551. e) L. Hickey, J. T. Kloprogge, R. L. Frost, J. Mater. Sci. 35(2000)4347. f) R. L. Penn, A. T. Stone, D. R. Veblen, J. Phys. Chem. B 105(2001) 4690.
    [15] W. Chang, K. Li, Concise Handbook of Analytic Chemistry, 1st ed., Science Press 1980, p. 75.
    [16] Z. Gui, R. Fan, W. Mo, X. Chen, L. Yang, S. Zhang, Y. Hu, Z. Wang, W. Fan, Chem. Mater. 14 (2002) 5053.
    [17] a) D. L. L. Pelecky, R. D. Rieke, Chem. Mater. 8 (1996) 1770. b) S. H. Wu, D. H. Chen, J. Colloid Interface Sci. 259 (2003) 282.
    [1] F. Dumestre, B. Chaudret, C. Amiens, M. C. Fromen, M. J. Casanove, P. Renaud, P. Zurcher, Angew. Chem. Int. Edn. Engl. 41 (2002) 4286.
    [2] D. P. Dinega, M. G Bawendi, Angew. Chem. Int. Edn. Engl. 38 (1999) 1788.
    [3] a) J. Connolly, T.G. St. Pierre, M. Rutnakornpituk, J.S. Riffle, J. Phys., D, Appl. Phys. 37 (2004) 2475. b) K. Nagaveni, A. Gayen, G N. Subbanna, M. S. Hegde, J. Mater. Chem. 12 (2002) 3147. c) A Smogunov, A. Dal Corso, E. Tosatti, Surface Science 507 (2002) 609. d) R. M. H. New, R. F. W. Pease, R. L. White, J. Magn. Magn. Mater. 155 (1996) 140. e) C. S. Kuroda, M. Maeda, H. Nishibiraki, N. Matsushita, H. Handa, M. Abe, IEEE. Trans. Magn. 41 (2005) 4117
    [4] a) A.W. Hull, Phys. Rev. 17 (1921) 571. b) D. P. Dinega, M.G. Bawendi, Angew. Chem. Int. Ed. Engl. 38 (1999) 1788. c) M. Respaud, J. M. Broto, H. Rakoto, A.R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. Ould Ely, C. Amiens, B. Chaudret, Phys. Rev. B 57 (1998) 2925.
    [5] a) H. T. Yang, C. M. Shen, Y. G. Wang, Y.K. Su, T. Z. Yang, H. J. Gao, Nanotechnology 15 (2004) 70. b) S. Sun, C. B. Murray, J. Appl. Phys. 85 (1999) 4325. c) C. B. Shoemaker, D. P. Shoemaker, T.E. Hopkins, S. Yindepit, Acta Crystallogr.B 34 (1978) 3573.
    
    [6] a) V.F. Puntes, K.M. Krishnan, IEEE Trans. Mag. 37 (2001) 2210. b) H. T. Yang, C. M. Shen, Y. K. Su, T. Z. Yang, H. J. Gao, Y.G. Wang, Appl. Phys. Lett. 82 (2003) 4729. c) P. Gambardella, S. Rusponi, M. Veronese, S.S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P.H. Dederichs, K. Kern, C. Carbone, H. Brune, Science 300 (2003) 1130.
    
    [7] a) V. F. Puntes, K. M. Kishnan, A. P. Alivisatos, Science 291 (2001) 2115. b) Q. Xie, Z. Dai, W. W. Huang, J. B. Liang, C. L. Jiang, Y. T. Qian, Nanotechnology. 16 (2005) 2958. c) Q. Xie, Y. Qian, S. Zhang, S. Fu, W. Yu, Eur. J. Inorg. Chem. 12 (2006) 2425. d) V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, J. Am. Chem. Soc. 124 (2002) 12874. e) F. Dumestre, B. Chaudret, C. Amiens, M. Respaud. P. Fejes, P. Renaud, P. Zurcher, Angew. Chem. Int. Ed. Engl. 42 (2003) 5213. f) Y. Hou, H. Kondoh, T. Ohat, Chem. Mater. 17 (2005) 3994. g) Y. Zhu, Q. Yang, H. Zheng, W. Yu. Y. Qian, Mater. Chem. Phys. 91 (2005) 293. h) A. Ekstrand, K. Jansson, G. Westin, Chem. Mater. 17 (2005) 199.
    [8] Y. Ohgo, S. Takeuchi, J. Yoshimura, Bull. Chem. Soc. Japan. 44 (1971) 283.
    [9] D. L. Leslie-Pelecky, M. Bonder, T. Martin, E.M. Kirkpatrick, Y. Liu, X.Q. Zhang, S.H. Kim, R. D. Rieke, Chem. Mater. 10 (1998) 3732.
    [10] Z. He, S. H. Yu, X. Zhou, X. Li, J.Qu, Adv. Funct. Mater. 16(2006) 1105.
    [11] a) K. Hernadi, A. Fonseca, J.B. Nagy, A. Siska, I. Kiricsi, Appl. Catal. A 199 (2000) 245. b) A. Fonseca, K. Hernadi, J.B. Nagy, D. Bemaerts, A.A. Lucas, J. Mol. Catal. A 107 (1996) 159. c) V. Ivanov, J.B. Nagy, P. Lambin, A.A. Lucas, X.F. Zhang, D. Bernaerts, G.V. Tendeloo,. S. Amelinckx, J.V. Landuyt, Chem. Phys. Lett. 223 (1994) 329.
    [12] a) P. J iang, F. Jona, P. M. Marcus, Phys. Rev., 36 (1987) 6336. b) Y. Wang, N. Phy. Chem. 95 (1991) 5211.
    [13] a) Y.Wang, J. Phy. Chem., 95 (1991) 11912. b) 陈次平,任亲所.《化学通报》9(1992) 10.
    [14] 张雪峰,李哲男,王威娜,董星龙,《粉末冶金工业》16(2006)11
    [15] a)孙晓刚,《塑料》33(2004)66.b)刘先曙.《科技导报》6(2002)25.c)李宏建,彭景翠,等.《化学物理学报》14(2001)211.
    [16] a)沈曾民,赵东林.《新型炭材料,》16(2001)1. b)R.C.Che,L.M.Peng, Adv. Mater.16(2004)401.
    [17] M. Han, W. Zhang, C. Gao, Y. Liang, Z. Xu, J. Zhu, J. He, Carbon, 44 (2006) 211.
    [18] a) W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, W. Y. Zhou, et al. 274 (1996) 1701. b) S. P. Chai, S. H. S. Zein, A. R. Mohamed, Chem. Phys. Lett. 426 (2006) 345. c) S. Takenaka, M. Ishida, M. Serizawa, E. Tanabe, K. Otsuka, J. Phys. Chem. B, 108 (2004) 11464.
    [19] K. Lafdi, A. Chin, N. All, J. F. Despres, J. Appl. Phys. 79 (1996) 6007
    [1] a) D. L. Bish, A. Livingstore, Miner. Mag. 44(1981)339. b) P. Oliva, J. Leonardi, J. F. Laurent, C. Delmas, J. J. Braconnier, M. Figlarz, F. Fievet, J. Power Sources 8(1982)229.
    [2] a) C. Mockenhaupt, T. Zeiske, H. D. Lutz, J. Mol. Struct. 443 (1998) 191. b) P. V. Kamath, M. F. Ahmed, J. Appl. Electrochem. 23 (1993) 225. c) J. Ismail, M. F.Ahmed, P. V. Kamath, J. Solid State Chem. 114(1995)550. d) M. Dixit, G. N. Subbanna, P. V. Kamath, J. Mater. Chem. 6 (1996) 1429. e) P. V. Kamath, G. H. A. Therese, J. Gopalakrishnan, J. Solid State Chem. 128(1997)38. f) R. S. Jayashree, P. V. Kamath, J. Mater. Chem. 9 (1999) 961. g) Z. P. Xu, H. C. Zeng, Chem. Mater. 11(1999) 67. g) Y. Zhu, H. Li, Y. Koltypin, A. Gedanken, J. Mater. Chem. 12 (2002) 729. h) R.Xu, H. C. Zeng, Chem. Mater. 15 (2003) 2040. i) K. Watanabe, T Kikuoka, N. Kumagai, J. Appl. Electrochem. 25 (1995) 219. j) P. Elumalai, H. N. Vasan, N. Munichandraiah, J. Power Sources 93 (2001) 201.
    [3] a) L. Cao, F. Xu, Y. Y. Liang, H. L. Li, Adv. Mater. 16 (2004) 1853. b) R. Xu, H.C. Zeng, J. Phys. Chem B 107 (2003) 926. c) J. Feng, H.C. Zeng, Chem. Mater. 15(2003) 2829. d) L. Gao, M. Lu, H. L. Li, J. Electrochem. Soc. A 152 (2005) 871. e) X. Wang, X. Chen, L. Gao, H. Zheng, Z. Zhang, Y. Qian, J. Phys. Chem. B 1 08 (2004) 16401.
    [4] a) H. Itahara, S. Tajima, T. Tani, J. Ceram. Soc. Jpn. 110 (2002) 1048. b) J. T. Sampanthar, H. C. Zeng, J. Am. Chem. Soc. 124 (2002) 6668. c) A. Gaunand, W. L. Lim, Powder Technol. 128 (2002) 332. d) X. L. Li, J. F. Liu, Y. D. Li, Mater. Chem. Phys. 80 (2003) 222.
    [5] a) I. Terasaki, Y. Sasago, K. Uchinokura, Phys. Rev. B 56(1997)12685. b) T. Tani, H. Itahara, C. Xia, J. Sugiyama, J. Mater. Chem. 13(2003)1865. c) H. Itahara, W. S. Seo, S. Lee, H. Nozaki, T. Tani, K. Koumoto, J. Am. Chem. Soc. 127(2005)6367. d) F. M. van der Kooij, H. N. W. Lekkerkerker, J. Phys. Chem. B 102(1998) 7829. e) S. Liu, J. Zhang, N. Wang, W. Liu, C. Zhang, D. Sun, Chem. Mater. 15 (2003) 3240. f) J. C. P. Gabriel, P. Davidson, Adv. Mater. 12 (2000) 9. g) J. C. P. Gabriel, F. Camerel, B. J. Lemaire, H. Desvaux, P. Davidson, P. Batail, Nature 413 (2001) 504.
    [6] Z. Liu, R. Ma, M. Osada, K. Takata, T. Sasaki, J. Am. Chem. Soc. 127 (2005) 13869.
    [7] a) M. Respaud, J.M. Broto, H. Rakoto, A.R. Fert, L. Thomas, B. Barbara, M. Verelst, E. Snoeck, P. Lecante, A. Mosset, J. Osuna, T. Ould Ely, C. Amiens, B. Chaudret, Phys. Rev., B 57 (1998) 2925. b) N. Shukla, E. B. Svedberg, E. John, A. J. Roy, Mater. Lett. 60 (2006) 1950
    [8] a) D. L. L. Pelecky, R. D. Rieke, Chem. Mater. 8 (1996) 1770. b) S. H. Wu, D. H. Chen, J. Colloid Interface Sci. 259 (2003) 282.
    [9] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, M. J. Mcdermott, M. A. Rodriguez, H. Konishi, H. F. Xu, Nat. Mater. 2(2003)821
    
    [10] J. Yuan, K. Laubemds, Q. Zhang, S. L. Suib, J. Am. Chem. Soc. 125(2003)4966.
    [11] a) F. Caruso. Chem. Eur. J . 6 (2000) 413 b) F. Caruso. Adv . Mater. 13 (2001)11. c) D. L. Wilcox, M. Berg, T. Bernat, et al. Materials Research Society Proceedings, 1995. 1 - 13
    
    [12] a) W. Schartl. Adv. Mater. 12 (2000) 1899. b) T. Sugama, B. Lipford. J. Mater. Sci. 32 (1997) 3523. c) K. Okada, A. Shimai, T Takei, et al. Microporous Mesoporous Mater. 21(1998) 289. d) K Sakanishi, H. Hasuo, M. Kishino, et al. Energy Fuels, 10(1996)216.
    
    [13] 乐园,陈建峰,汪文川,《化工进展》 23(2004)595
    
    [14] a) S. Eiden, G. Germany . J . Colloid Interface Sci. 250 (2002) 281. b) A. Imhof, Langmuir, 17 (2001) 3579. c) G Zhang, Y Yu, X Chen, et al. J. Colloid Interface Sci. 263 (2003) 467. d) Z. Niu, Z. Yang, Z. Hu, et al. Adv. Funct. Mater. 13 (2002) 949. e) D Wang, F. Caruso, Chem. Mater. 14 (2002) 1909. f) J. Yin, X. Qian, J. Yin, et al. Inorg. Chem. Commun. 6 (2003) 942. g) S. Chah, J. H. Fendler, J. Yi. J. Colloid Interface Sci. 250 (2002) 142. h) H. Shiho, N. Kawahashi. J. Colloid Interface Sci. 226 (2000) 91
    
    [15] B. Liu, H. C. Zeng, J. Am. Chem. Soc. 126 (2004) 8124.
    [16] Y. Wang, Q. Zhu, H. Zhang, Chem. Commun. 41 (2005) 5231.
    
    [17] C.Pacholski, A. Kornowski, H. Weller. Angew. Chem. Int. Ed. 41 (2002) 1188.
    
    [18] a) J. Y. Gong, S. H. Yu, H. S. Qian, L. B. Luo, X. M. Liu, Chem. Mater. 109 (2005) 3703. b) M. Mo, J. C. Yu, L. Zhang, S. K. A. Li, Adv.Mater. 17 (2005) 756. c) R. L. Penn, G Oskam, T. Strathmann, J. P. C. Searson, A. T. Stone, D.R. Veblen, J. Phys. Chem. B 105(2001) 2177.
    [1] R. E. Tapscott, Annual Meeting of the National Fire Protection Association, Cincinnati, Ohio, 6-9 April 1987.
    [2] T. A. Moore, J. P. Moore, M. L. Rodriguez, R. E. Tapscott, Halocarbon Database, Air Force Engineering and Services Laboratory, Tyndall Air Force Base, Florida, June 1989.
    [3] R. E. Tapscott, E. T. Morehouse, "Alternative Agents Initiative," Conference on Substitutes and Alternatives to CFCs and Halons, The Conservation Foundation, Washington, D.C., 13-15 January 1988.
    [4] R. E. Tapscott, "Halon Alternatives," Third Annual Symposium, Defense Fire Protection Association, Arlington, Virginia, 14-16 February 1989.
    [5] J. S. Nimitz, R. E. Yapscott, S. R. Skaggs, H. D. Beeson, "Survey of Candidate Fire Extinguishing Agents," International Conference on CFC and Halon Alternatives, Washington, D.C., 10-11 October 1989.
    [6] 周文英,介燕妮,罗永乐,张媛怡,《消防技术与产品信息》10(2004)71.
    [7] 周文英,邵宝州,张媛怡,寇静利《消防技术与产品信息》5(2004)62.
    [8] W. M. Pitts, M. R. Nyden, R. G. Gann, W. G. Mallard, W. Tsang, NIST, Technical Note 1279, Air Force Engineering and Services Laboratory, Tyndall Air Force Base, Florida, National Institute of Standards and Technology, Gaithersburg, Maryland, August 1990.
    [9] R. G. Gann, J. D. Barnes, S. Davis, J. W. Harris, R. H. Harris, J. T. Herron, B. C. Levin, F. I. Mopsik, K. A. Notarianni, M. R. Nyden, M. Paabo, R. E. Ricker, NIST Technical Note 1278, Air Force Engineering and Services Laboratory, Tyndall Air Force Base, Florida, National Institute of Standards and Technology, Gaithersburg, Maryland, June 1990.
    
    [10] J. P. Moore, T. A. Moore, D. P. Salgado, R. E. Tapscott, "Halon Alternatives Extinguishment Testing," International Conference on CFC and Halon Alternatives, Washington, D.C., 10-11 October 1989
    [11] R. E. Tapscott, H. D. Beeson, J. R. Floden, International Conference on CFC and Halon Alternatives, Baltimore, Maryland, 27-29 November 1990
    [12] J. S. Nimitz, R. E. Tapscott, S. R. Skaggs, International CFC and Halon Alternatives Conference, Baltimore, Maryland, 3-5 December 1991
    [13] R. E. Tapscott, E. W. Heinonen, G. D. Brabson, Advanced Agent Identification and Preliminary Assessment, NMERI Report No. 95/38/32350, Advanced Agent Working Group, November 1996.
    [14] R. E. Tapscott, Review and Assessment of Tropodegradable Total Flooding Agents, Final Report, Contract No. N00173-96-P-5031, Naval Research Laboratory, Washington, DC, August 1996. NMERI 96/20/32730.
    [15] E. Robert, Tapscott, S. Ronald, Sheinson, V. Babushok, M. R. Nyden, G. G. Richard, "Alternative Fire Suppressant Chemicals: A Research Review with Recommendations" NIST Technical Note 1443.
    [16] a)Y. Zou, N. Vahdat, M. Collins, J. Fluorine Chem. 111 (2001) 33. b) Y. Zou, N. Vahdat, M. Collins, Ind. Eng. Chem. Res. 40 (2001) 4649. c) K. Seshadri, N. Dincic, Combustion and Flame, 101 (1995) 69. d) K. Seshadri, N. Dincic, Combustion and Flame 101 (1995) 271.
    [17] C D Klaassen (ed): Gasarett & Doulls Toxicology-The Basic Science of Poisons. 6th ed. New York: The McGraw-Hill Inc, 2001.
    [18] Hodgson E and Smart RC. Introduction to biochemical toxicology. John Wiley & Sons, Inc, 2001.
    [19] Hayes AW (ed): Principles and Methods of toxicology, 4th ed, Philadelphia: Taylor & Francis, 2001.
    [20] a)H. Marquardt, G. Siegfried, Chafer, Roger McClellan, Frank Wetsch. Toxicology. San Diego Academic Press.1999. b) Sipes IG (ed): Comprehensive Toxicology, 1th ed, Elsevier Science Ltd, 1997. c) C. I. Igarzabal, R. D. Arrua, Polymer Bulletin 55(2005) 19. c) Elaheikh, Y. Maher, et al, "Preparation of 1,1,1-trifluoropropene" US 6,211(2001)421.c)徐克勋等,,《精细有机化工原料及中间体手册》,北京:化学工业出版社,1997.
    [21] a)李寿祺,毒理学原理与方法,第二版。成都:四川大学出版社,2003.b)夏世钧,吴中亮,分子毒理学基础。武汉:湖北科学技术出版社,2001.c)周中灿,毒理学基础,第二版,北京医科大学出版社,2000.d)张桥,卫生毒理学基础,第三版,北京:人民卫生出版社,2000
    [221 a)张铣,毒理学,第一版,北京医科大学中国协和医科大学联合出版社,1997.b)张铣,徐厚恩,卫生毒理学,第一版,北京医科大学中国协和医科大学联合出版社,1991.
    [23] 吴颐伦,《消防技术与产品信息》7(2000)8.
    [24] 胡炳成,刘祖亮,吕春绪,《南京理工大学学报·自然科学版》6(2001)25
    [25] a) K. E. Strawhecker, E. Manias, Chem. Mater. 12 (2000) 2943. b) P. Aranda, F. Leroux, E. Ruiz-Hitzky, J. E Besse, Report CNRS/CSIC 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700