原子间相互作用势在稀土金属间化合物中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子间相互作用势的研究,是材料设计学的一个重要方向。但由于稀土金属间化合物结构复杂,而有关的原子间相互作用势也难以获得,致使此类材料的原子级模拟受到较大的限制,尤其是有关稀土与过渡族金属之间的相互作用势的研究还很少有人涉及。针对我国稀土资源丰富的国情,运用原子间相互作用势加强稀土过渡族金属间化合物永磁材料的研究意义重大。
     本工作的研究方法是利用简单虚拟结构的第一性原理计算,通过自主创新的Chen-M?bius晶格反演获得的稀土-过渡金属间化合物的原子间相互作用势,在稀土金属间化合物领域开展系列性的研究工作。
     本文系列性的研究了1:12钴基、锰基、铁基,2:17钴基、铁基以及间隙化合物的结构确定、相稳定性、择优代位、居里温度、磁晶各向异性以及晶格振动。涉及了160多种原子间相互作用势及300余种稀土金属间化合物。主要成果是:(1)首先使用晶格反演的原子间相互作用对势,通过能量最小化结构弛豫,得到了稀土永磁材料1:12,2:17体系的结构参数,与实验报道符合很好,误差在3.0 %范围以内;(2)用反演原子间对势确定了第三组元在1:12,2:17体系中的择优代位。结果表明,在1:12 Co基、Fe基体系中第三组元择优占据8i晶位,1:12 Mn基体系中Fe, Co, Ni择优占据8f晶位,在2:17体系中第三组元择优占据6c或4f晶位。对于1:12 Co基化合物,第三组元在择优占位的基础上还存在择优组态问题;(3)在择优代位的基础上,计算了一些特殊晶位原子间的键长,了解在不同组分的含量下反铁磁耦合的Fe-Fe磁矩及铁磁耦合的Co-Co磁矩的分布情况,研究了在不同稀土金属间化合物中居里温度随第三组元及间隙原子浓度的变化的机制;(4)磁晶各向异性与第三组元的择优占位关系最密切,不同晶位在磁晶各向异性中扮演着不同的角色,替位原子可以强化或者削弱被占据晶位的磁晶各向异性贡献,利用第三组元择优占位的计算,探讨了磁晶各向异性对组分的依赖关系;(5)利用晶格反演的原子间对势,计算了三元体系的声子态密度,同时从原子尺度分析了不同原子对晶格振动的贡献,并预测了这些化合物的比热、振动熵和德拜温度等热力学性质。(6)利用第一性原理对晶格反演势作用下弛豫后的晶体结构进行了态密度及磁性计算,对结果进行了定性分析。
     本工作进行了晶格反演势的原子级系列模拟,预测了稀土金属间化合物的结构性质、热力学性质以及磁学性质,力求能够在探索材料性能优化方面提供新的方法与借鉴。
The research of interatomic potentials is an important part in material design. However, the atomistic simulations of the rare-earth intermetallics are limited, because the structures of these alloys are complicated and the effective interatomic potentials are difficult to be acquired, especially for the potentials of rare-earth and transition-metal elements. As the situation that our country is rich in rare-earth resource, studies by using interatomic potentials to strengthen permanent magnetic materials are of great significance.
     Based on the interatomic potentials related to the rare earth and transition metals, which are obtained from the first-principle cohesive energy curves of simple virtual structures and Chen-M?bius inversion method, a large amount of serial researches are made systematically in the field of the rare-earth intermetallics.
     In present work, the phase stability, site preference, Curie temperature, magnetocrystalline anisotropy and lattice vibrations of 1:12 and 2:17 systems are studied by the Chen’s inverted potentials, which related to more than 160 interatomic potentials and more than 300 rare-earth intermetallics. There are some results are worth mentioned in the paper. The lattice constants of rare earth compounds are calculated by the inverted potentials and they are all close to the experimental reports. The differences of lattice constants between the calculated and the experimental values are less than 3.0 %. The site preference of ternary element is studied. The ternary elements prefer the 8i sites in 1:12 Co-based systems, and the 8f sites in 1:12 Mn-based systems, and the 6c or 4f sites in Th2Zn17 or Th2Ni17 structure respectively. Especially, it is worth noting that when the ternary elements preferentially occupy the 8i sites, they probably present the configuration preference. Based upon site preference, with the bond lengths between special sites being calculated, and with the distribution of antiferromagnetic coupling of Fe-Fe magnetic moment and ferromagnetic coupling of Co-Co magnetic moment with different content, we have studied the mechanism for Curie temperature of different rare earth intermetallic compounds which varies with ternary element and interstitial atom concentration. There is a close relationship between magnetocrystalline anisotropy and site preference of ternary element, with different site playing a different role in magnetocrystalline anisotropy, and with doping atoms being able to strengthen or weaken magnetocrystalline anisotropy. We have studied the relationship between magnetocrystalline anisotropy and component by using the site preference of ternary element. We have presented the phonon spectra of ternary alloys by the inverted potentials. A qualitative analysis is carried out to discuss the contributions of distinct atoms to the vibrational modes on the atomic scale. Furthermore, the properties related to the lattice dynamics, such as the vibrational entropy, specific heat, Debye temperature are also evaluated. By using ab initio method, the densities of states and magnetic properties are calculated for the relaxed crystal structures.
     The present work finally reveals that the inverted potentials can be effectively applied to study the structural, thermodynamic and magnetic properties of the rare earth intermetallic compounds with complex structures. The present work is trying to play a guiding or referring part on optimizing material properties.
引文
[1] J. Needham, Science and Civilization in China, Vol4.1 (Cambridge Universty Press, 1962).
    [2] E.A. Nessbit, et.al., Magnetic moments of alloy and compounds of iron and cobalt with rare earth metal additions. J. Appl. phys., 30 (1959) 365-367.
    [3] G. Hoffer, et.al. Maganetocrystalline Anisotropy of YCo5 and Y2Co17, IEEE Tran. on Mag., , MAG-7 (1966) 487.
    [4] K.J. Strant, G. Hoffer, J. Olson, W. Ostertag. A Family of Now Cobalt-Base permanent Magnet Materials. J. Appl. Phys., 38 (1967) 1001.
    [5] K.J. Strant, Cobat-Rare Earth Alloys as Promising New Permanent Magnet Materials, Cobalt, 36 (1967) 133.
    [6] K.H.J. Buschow, W. Luiten, P.A. Naastepad, F.F. Westendorp, Magnet material with a (BH)max of 18.5 million gauss oersteds, Philips Tech. Rew., 29 (1968) 336-337.
    [7] K.H.J. Buschow, et al., Permanent magnetic materials of rare earth cobalt compounds, Z. Angew. Phys., 26 (1969) 157.
    [8] K.H.J. Buschow, Intermetallic compounds of rare-earth and 3d transition metals, Rep. Prog. Phys., 40 (1977) 1179-1256.
    [9] W.A.J.J. Velge and K.H.J. Buschow, Magnetic and crystallographic properties of some rare earth cobalt compounds with CaZn5 structure, J. Appl. Phys., 39 (1968) 1717.
    [10] F. Rothwarf et al., Magnetic anisotropy in the Th(Co1-xFex)5 and Y(Co1-xFex)5 systems, Int. J. Magn., 4 (1973) 267-271.
    [11] H.P. Klein, A. Menth and R.S. Perkins Magnetocrystalline anisotropy of light rare-earth cobalt compounds, Physica B, 80 (1975) 153-163.
    [12] J.E. Greedan and V.U.S. Rao, An analysis of the rare earth contribution to the magnetic anisotropy in RCo5 and R2Co17 compounds, J. Solid St. Chem., 6 (1973) 387-395.
    [13] S.G. Sankar, et al., Magnetocrystalline anisotropy of SmCo5 and its interpretation on a crystal-field model, Phys. Rev. B, 11 (1975) 435.
    [14] K.H.J. Buschow et al., Crystal-field anisotropy of Sm 3+ IN SmCo5, Solid St. Commun., 15 (1974) 903-906.
    [15] K.J. Strnat, Permanent magnets based on 4f-3d compounds, IEEE Trans. Magn., MAG-23 (1987) 2094.
    [16] K.H.J. Buschow, W.A.J.J. Velge, Z. Angew. Phys., 26 (1969) 157-160.
    [17] S. Yajima and M. Hamano, Magnetocrystalline anisotropy of nonstoichiometric Y2+xCo17-2x, J. Phys. Soc. Japan, 32 (1972) 861.
    [18] K.H.J. Buschow and A.S. van der Goot, Intermetallic compounds in the system samarium-cobalt, J. Less-Common Metals, 14 (1968) 323.
    [19] J. Deportes, et al., Influence of substitutional pairs of cobalt atoms on the magnetocrystalline anisotropy of cobalt-rich rare-earth compounds, J. Less-Common Metals, 44 (1976) 273.
    [20] N.P. Thuy et al., 3d anisotropy in R-3d intermetallics, J. de Physique, 49 (1988) C8-499.
    [21] S.G. Sankar et al., Magnetocrystalline anisotropy of SmCo5 and its interpretation on a crystal-field model, Phys. Rev. B, 11 (1975) 435-439.
    [22] H.J. Schaller et al., Magnetic characteristics of some binary and ternary 2:17 compounds, J. Appl. Phys., 43 (1972) 3161
    [23] N.P. Thuy et al., The magnetocrystalline anisotropy of Y2(CoxFe1-x)17, J. Magn. Magn. Mat., 54-57 (1986) 915
    [24] R.K. Mishra et al., Microstructure and properties of step aged rare earth alloy magnets, J. Appl. Phys., 52 (1981) 2517.
    [25] G.C. Hadjipanayis et al., A study of magnetic hardening in Sm(Co0.69Fe0.22Cu 0.07Zr0.02)7.22, J. Appl. Phys., 53 (1982) 2386.
    [26] M. Sagawa et al., New material for permanent magnets on a base of Nd and Fe, J. Appl. Phys., 55 (1984) 2083.
    [27] J.J. Croat et al., Pr-Fe and Nd-Fe-based materials: a new class of high-performance permanent magnets, J. Appl. Phys., 55 (1984) 2078.
    [28] N.F. Chaban et al., Dopov. Acad Nauk. USSR, Ser. A Fiz. Mat. Tekh. Nauki, 10 (1979) 8730.
    [29] Y.C. Yang, B. Kebe, W.J. James, J. Deportes, and W. Yelon, Structural and magnetic properties of Y(Mn1-xFex)12, J. Appl. Phys. 52 (1981) 2077.
    [30] K.H.J. Buschow, Structure and properties of some novel ternary Fe-rich rare-earth intermetallics, J. Appl. Phys. 63 (1988) 3130.
    [31] D.B. de Mooij, K.H. J. Buschow, Some novel ternary ThMn12-type compounds, J. Less-Common Met.136 (1988) 207.
    [32] F.R. de Boer, Y.K. Huang, D.B. de Mooij, and K.H. J. Buschow, Magnetic properties of a series of novel ternary intermetallics (RFe10V2). J. Less-Common Met. 135 (1987) 199-204.
    [33] D.B. de Mooij, and K.H. J. Buschow, New dlass of ferromagnetic materials: RFe10V2, Philips J. Res. 42 (1987) 246.
    [34] K.H. J. Buschow, D.B. de Mooij, M. Brouha, H.H.A. Smith, and R.C. Thiel, Magnetic properties of ternary Fe-rich rare earth intermetallic compounds, IEEE Trans. Magn. MAG 24 (1988) 1611.
    [35] P.C. M. Gubbens, A.M. van der Kraan, and K.H. J. Buschow, RFe10V3 compounds studied by 57Fe, 161Dy, 166Er and 169Tm Mossbauer spectroscopy, Hyperfine Interactions 40 (1988) 389-392.
    [36] R.B. Helmholdt, J.J.M. Vleggaar, and K.H. J. Buschow, Crystallographic and magnetic structure of TbFe10V2 and ErFe10V2, J. Less-Common Met. 144 (1988) 209.
    [37] R. Verhoef, F.R. de Boer, Z.D. Zhang, and K.H. J. Buschow, Moment reduction in RFe12-xTx compounds (R = Gd, Y and T = Ti, Cr, V, Mo, W), J. Magn. Magn. Mat. 75 (1988) 319.
    [38] K.H. J. Buschow, Magnetovolume effects in ternary compounds of the type RFe12-xTx and R2Fe14 C (R equivalent rare earth, T equivalent Ti, V, Cr, Mo, W, Si), J. Less-Common Met. 144 (1988) 65-69.
    [39] B.P. Hu, H.S. Li, J.P. Gavigan, and J.M.D. Coey, Intrinsic magnetic properties of the iron-rich ThMn12-structure alloys R(Fe11Ti); R = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu, J. Phys. Condens. Mat. 1 (1989) 755.
    [40] K. Ohashi, T. Yokoyama, R. Osugi, et al, The magnetic and structural properties of R-Ti-Fe ternary compounds, IEEE Trans. Magn. MAG, 23 (1987) 3101-3103.
    [41] G.C. Hadjipanayis, S.H. Aly, F. S. Cheng, Hard magnetic properties of R-Fe-Ti alloys, Appl. Phys. Lett. 51 (1987) 2048-2050.
    [42] Y.C. Yang, L.S. Wang, S. H. Sun, et al, Intrinsic magnetic properties of SmTiFe10, J. Appl. Phys. 63 (1988) 3702-3703.
    [43] J.M.D. Coey, H. Sun, Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in ammonia, J. Magn. Magn. Mater. 87 (1990) L251-L254
    [44] H. Sun and J. M. D. Coey, Y. Otani, et al. Magnetic properties of a new series of rare-earth iron nitrides: R2Fe17Ny (y approximately 2.6). J. Phys.: Condens. Matter 2 (1990) 6465-70
    [45] Y.C.Yang, Q. Pan, X. D. Zhang, et al, Formation and characterization of hard magnetic materials: Pr(Mo,Fe)12Nx, Appl. Phys. Lett. 61 (1992) 2723-2725
    [46] M.S.Anagnostou, C.Christides, D.Niarchos, Nitrogenation of the RFe10Mo2 (R = rare earth) compounds with ThMn12 type structure. Solid State Commun. 78 (1991) 681-4
    [47] M.Endoh, K.Nakamura, H.Mikami, Nd(Fe,Mo)12Nx compounds and magnets, IEEE Trans. Magn. MAG, 28 (1992) 2560-2562
    [48] Y. Z. Wang, B. P. Hu, X. L. Rao, et al, Structural and magnetic properties of NdFe12-xMoxN1-y compounds, J. Appl. Phys. 73 (1993) 6251-6253
    [49] Y.C.Yang, X.D. Zhang, L.S. Kong, et al., Magnetocrystalline anisotropies of RTiFe11Nx compounds, Appl. Phys. Lett., 58 (1991) 2042.
    [50] Y.C.Yang, X.D. Pei, et al., Theoretical explanations of magnetocrystalline anisotropy behaviors in RTiFe11Nx compounds, J. Appl. Phys. 70 (1991) 6574.
    [51] J. Yang, S.Z. Dong, W.H. Mao, et al., The effect of hydrogen disproportionation, desorption, and recombination on the structure and magnetic properties of Sm2Fe17Nx and NdFe10Mo2Nx compounds, J. Appl. Phys. 76 (1994) 6053.
    [52] S.S.Jaswal, W.B.Yelon, G.C.Hadjipanayis, et al, Electronic and Magnetic structure of the Rare earth compounds R2Fe17Nx. Phys. Rev. Lett. 67 (1991) 644-647.
    [53] S. J. Collocott, R. K. Day, J. B. Dunlop, and R. L. Davis, in Proceedings of the 7th International Symposium on Magnetic Anisotropy and Coercivity in R-T Alloys, Canberra. July, 1992, p437.
    [54] J. M. Cadogan, H.-S.Li, R. L. Davis, A. Margarian, J. B. Dunlop, and P. B. Gwan, Structural and magnetic properties of Nd2(Fe,Ti)19, J. Appl. Phys. 75 (1994) 7114
    [55] H.S. Li, Suharyana, J.M. Cadogan, et al., Magnetic properties of a novel Pr-Fe-Ti phase, J. Appl. Phys., 75 (1994) 7120.
    [56] H.-S. Li, J. M. Cadogan, R. L. Davis, A. Margarian, and J. B. Dunlop, Structural properties of a novel magnetic ternary phase: Nd3(Fe1-xTix)29 (0.04<=x<=0.06), Solid State Commun. 90 (1994) 487
    [57] C. D. Fuerst, F. E. Pinkerton, J. F. Herbst, On the formation of NdFe9.5-xTx compounds (T = Ti, Cr, Mn), J. Magn. Magn. Mater. 129 (1994) L115
    [58] O. Kalogirou, V. Psycharis, L. Saettas, et al. Existence range, structural and magnetic properties of Nd3Fe27.5Ti1.5?yMoy and Nd3Fe27.5Ti1.5?yMoyNx (0.0 ≤ y ≤ 1.5), J. Magn. Magn. Mater. 146 (1995) 335.
    [59] D. Courtois, D. Givord, B. Lambert-Andron, E. Bourgeat-Lami, Y. Amako, H.-S. Li, J. M. Cadogan, X-ray and magnetic single-crystal analysis of the crystallographic structure of the Y3(Fe0.933V0.067)29 compound, J. Magn. Magn. Mater, 189 (1998) 173
    [60] H. Pan, Y. Chen, X. Han, C. Chen, F. Yang, Structural characterization of the ternary phase R3(Fe,Mo)29(R = rare earth), J. Magn. Magn. Mater., 185 (1998) 77.
    [61] F.M. Yang, B. Nasunjilegal, J.L. Wang, H.G. Pan, W.D. Qing, R.W. Zhao, B.P. Hu, Y.Z. Wang, G.C. Liu, H.S. Li, and J.M. Cadogan, Magnetic properties of a novel Sm3(Fe,Ti)29Ny nitride, J. Appl. Phys. 76 (1994) 1971.
    [62] B.P.Hu, G.C. Liu, Y.Z. Wang, B. Nasunjilegal, R.W. Zhao, F.M. Yang, H.S. Li, and J. M. Cadogan, A hard magnetic property study of a novel Sm3(Fe,Ti)29Ny nitride, J. Phys.: Condens. Matter., 6 (1994) L197.
    [63] 潘洪革,浙江大学博士学位论文,1996.
    [64] V. Papaefthymiou, F.M. Yang et al., Mossbauer studies of R3(Fe, Ti)29 compounds, J. Magn. Magn. Mater., 140-144 (1995) 1101-1102.
    [65] J.M. Cadogan et al., New rare-earth intermetallic phases R3(Fe,M)29Xn: (R=Ce, Pr, Nd, Sm, Gd; M=Ti, V, Cr, Mn; and X=H, N, C), J. Appl. Phys., 76 (1994) 6138.
    [66] X.F. Han, J.L. Wang, et al., Magnetohistory effects and spin reorientations of Nd3Fe29-xTx and Nd3Fe29-xTxN4 (T = V and Cr) compounds, J. Appl. Phys., 81 (1997) 5170.
    [67] J. F. Hu, Y. Z. Wang, Volume expansion and Curie temperature enhancement in R3(Fe, M)29Zx (M = Cr, Ti, and Z = N, C) compounds, Journal of Alloys and Compounds 284 (1999) 308-311
    [68] Y.C. Yang, X.D. Zhang, S.L. Ge, L.S. Kong, Q. Pan, Y.T. Hou, S. Huang, and L. Yang, Proceedings of the 6th. International Symposium on Magnetic Anisotropy and Coercivity in RE-TM Alloys, edited by S.G. Sanker (Carnegie Mellon University, Pittsburgh, 1990), p. 190.
    [69] Y.C. Yang, X.D. Zhang, S.L. Ge, Q. Pan, L.S. Kong, H.L. Li, J.L. Yang, B.S. Zhang, Y.F. Ding, and C.T. Ye, Magnetic and crystallographic properties of novel Fe-rich rare-earth nitrides of the type RTiFe11N1-δ (invited), J. Appl. Phys. 70 (1991) 6001-6005.
    [70] A. Fukuno et al., Characterization of nitrogenation of Sm2Fe17, IEEE Trans. MAG-28 (1992) 2575-2577.
    [71] S. Suzuki, T. Miura, et al., Sm2Fe17Nx bonded magnets with high performance, IEEE Trans. MAG-29 (1993) 2815.
    [72] 程本培等,中国科学(B),1993.
    [73] P.E. Pinkerton, C.D. Fuest, J.F. Herbst, Nitriding of Melt-spun Nd-Fe-Mo Alloy, J. Appl. Phys. 75 (1994) 6015-6017.
    [74] W. Gong, G.C. Hadjipanayis, Nitrogenated 1:12 Compunds Prepared by Mechanical Alloying. IEEE Trans Magn, MAG-28 (1992) 2563-2565.
    [75] Y.C. Yang, Q. Pan, et al., Structural and Magnetic Properties of RFe10.5Mo1.5Nx. J. Appl. Phys. 74 (1993) 4066-4071.
    [76] Sakuma Akimasa, Self-Consistent Band Calculations for YFe11Ti and YFe11TiN. J. Phys. Soc. Japan, 61 (1992) 4119-4124.
    [77] Y.P. Li, J.M.D. Coey, Electronic Structure and Magnetism of YFe11Ti and YFe11TiN. Solid State Commun 81 (1992) 447-449.
    [78] Y.C. Yang, X.D. Zhang, L.S. Kong, et al., Magnetocrystalline anisotropies of RTiFe11Nx compounds. Appl. Phys. Lett., 58 (1991) 2042.
    [79] Y.C. Yang, Q. Pan, et al., Formation and characteristics of hard magnetic materials: Pr(Mo, Fe)12Nx. Appl. Phys. Lett. 61 (1992) 2723.
    [80] M. Endoh, K. Nakamura and H. Mikami, Nd(Fe,Mo)12Nx compounds and magnets, IEEE Trans. Mag. 28 (1992) 2560.
    [81] X. Chen, L.X. Liao, Z. Altounian, D.H. Ryan, J.O. Strom-Olsen, Structures and magnetocrystalline anisotropies of NdFe10Mo2N0.5 and NdFe10V2N, J. Magn. Magn. Mater. 111 (1992) 130-134.
    [82] X.C. Kou, C. Christides, R. Grossonger, et al., Magnetic anisotropy and magnetic transitions in RFe10Mo2, J. Magn. Magn. Mater. 104-107 (1992) 1341-1343.
    [83] Y.C. Yang, X.D. Zhang, L.S. Kong, et al., New potential hard magnetic material- NdTiFe11Nx, Solid State Commun., 78 (1991) 317.
    [84] Y.C. Yang, S.Z. Dong, Z. Yang, Study on the structural and magnetic properties of RFe10.5V1.5Nx, Acta Phys. Sin., 43 (1994) 1177-1183.
    [85] H. Fujii, K. Yamamoto, K. Tatami, et al., Proceedings of the 2nd International Symposiun on Physics of Magn Mater Academic, New York, 1992, 624.
    [86] S. Sinnema, R.J. Radwanski, Magnetic properties of ternary rare-erath compounds of the type R2Fe14B, J. Magn. Magn. Mate., 44 (1984) 333.
    [87] G.B. Olson, Computational design of hierarchically structured materials. Science. 277 (1994) 1237-1242.
    [88] J. Hafner, Atomic-scale computational materials science. Acta. Mater. 48 (2000) 71-92.
    [89] Ch. Hausleitner and J. Hafiner, Hybridized nearly-free-electron tight-binding-bond approach to interatomic forces in disordered transition-metai alloys. I. Theory, Phys. Rev. B, 45 (1992) 115-127.
    [90] W.A. Harrison, Electronic structure of f-shell metals, Phys. Rev. B, 28 (1983) 550-559.
    [91] W.A. Harrison, et al., Interionic interactions in simple metals, Phys. Rev. B, 25 (1982) 5007-5017.
    [92] N. Singh and S.P. Singh, Phonon spectra and isothermal elastic constants for f-shell metals: A dynamical treatment, Phys. Rve. B, 42 (1990) 1652-1658.
    [93] J.M. Wills and W.A. Harrison, Interionic interactions in transition metals, Phys. Rev. B, 28 (1983) 4363-4373.
    [94] P. Alinaghian, S.R. Nishitani, and D.G. Pettifor, Shear constants using angularly dependent bond order potentials, Philos. Mag. B, 69 (1994) 889-900.
    [95] K. Hachiya and Y. Ito, Interatomic potentials for rare-earth metals, J. Phys.: Condens. Matter, 11 (1999) 6543-6551.
    [96] G.M. Bhuiyan, M.A. Khaleque, Structure and thermodynamic properties of liquid transition metals: an embedeed-atom-method approach, J. Alloys. Non-Crysta. Solid. 226 (1998) 175-181.
    [97] W.Y. Hu, H.D. Xu, X.L. Shu, et al. Calculation of thermodynamic properties of Mg-RE(Re = Sc, Y, Pr, Nd, Gd, Tb, Dy, Ho or Er) alloys by an analytic modified embedded atom method, J. Phys. D: Appl. Phys. 33 (2000) 711-718.
    [98] J. T. Mason, K.S. Sree Harsha, P. Chiotti, The crystal structure of a samarium-zinc compound with approximate composition SmZn11, Acta Cryst , B 26(4) (1970) 356-361.
    [99] K. Bushow, A. S. van der Goot, Composition and crystal structure of hexagonal Cu-rich rare-earth- copper compounds, Acta Cryst , B27(6) (1971) 1085-1088.
    [100] N.X. Chen, J. Shen, and X.P. Su, Theoretical study of the phase stability, site preference and lattice parameters for Gd(Fe, T)12. J. Phys: Condens. Matter 13 (2001) 2727.
    [101] Y. Wang, J. Shen, and N.X. Chen, Theoretical investigation on site preference of foreign atoms in rare-earth intermetallics, J. Alloys Comp. 319 (2001) 62-73.
    [102] N.X. Chen, S.Q. Hao, Y. Wu, and J. Shen, Phase stability and site preference of Sm(Fe, T)12, J. Magn. Magn. Mater. 233 (2001) 169.
    [103] S. Q. Hao, N. X. Chen, and J. Shen, Atomistic study on the structure and Curie temperature for Nd2Fe17-xCrx ,J. Magn. Magn. Mater. 246 (2002) 115-123.
    [104] S. Q. Hao, N. X. Chen, Atomistic simulation on the phase stability, site preference and lattice parameters for Nd(Fe, T)12 with Nd(Fe, T)12Nx, Phys. Lett. A, 297 (2002) 110-120.
    [105] H. Chang, N.X. Chen, J.K. Liang, G.H. Rao, Theoretical study of the phase forming of NaZn13-type rare-earth intermetallics, J. Phys. Condens. Mat. 14 (2002) 1-12.
    [106] H. Chang, N.X. Chen, J.K. Liang, G.H. Rao, Structural stability and structural imitation of La2Co17-xMx (M = Mn, Mo, Nb, Ti, V, Al, Cr, Ni and Si), Eur. Phys. J. B, 33 (2003) 55-60.
    [107] W.X. Li, L.Z. Cao, J. Shen, N.X. Chen, B.D. Liu, J.L. Wang, G.H. Wu, F.M. Yang, and Y.X. Li, Effect of Mo content on the structure stability of R3(Fe,Co,Mo)29, J. Appl. Phys. 93 (2003) 6921.
    [108] W.X. Li, J.G. Guo, B.D. Liu, J. Shen, G.H. Wu, N.X. Chen, and F.M. Yang, Magnetic properties of Sm3Fe28.1-xCoxMo0.9 (x = 0, 4, 8, 12, 14, 16) compounds, Phys. Rev. B 69 (2004) 174427.
    [109] S.Q. Hao, N.X. Chen, and J. Shen, Atomistic study of rare-earth compounds R2Fe17 (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) and Nd2Fe17Nx, Model. Simul. Mater. Sc, 10 (2002) 425-435.
    [110] J. Shen, P. Qian, N. X. Chen, Quasi-ab initio study on structure and Curie temperature for Nd2Co17-xVx and (Nd1-xErx) 2Co15.5V1.5, Modelling Simul. Mater. Sci. Eng. 12 (2004) 871-880.
    [111] P. Qian, J. Shen, N. X. Chen, Phase stability and site preference of the rare-earth intermetallic compound R(Co,T)12 (R = Er or Dy, T = V, Ti, Cr, Mo, Mn, Nb, Ni, Cu), J. Alloy. Comp. 366 (2004) 41-48
    [112] S.Q. Hao, N.X. Chen, and J. Shen, Phase stability and site preference of Nd2Fe17-xTx (T = V, Ti, Nb) and Nd2-xZrxFe17, J. Alloys Comp. 343 (2002) 53-59.
    [113] L.Z. Cao, N.X. Chen, J. Shen, Theoretical study of the phase stability and site preference for R3(Fe, T)29 (R = Nd, Sm; T = V, Ti, Cr, Cu, Nb, Mo, Ag), J. Alloys Comp. 336 (2002) 18-28.
    [114] F.R. de Boer, Y.K. Huang, D.B. de. Mooij, et al, Magnetic properties of a series of novel ternary intermetallics RFe10V2, J. Less-Common Met., 135 (1987) 199-204.
    [115] J.M. Cadogan, H.S. Li, A. Margarian, et al., New rare-earth intermetallic phases R3(Fe, M)29Xn (R Ce, Pr, Nd, Sm, Gd; M = Ti, V, Cr, Mn and X = H, N, C) J. Appl. Phys., 76 (1994) 6138-6143.
    [116] K.H.J. Buschow, Structure and properties of some novel ternary Fe-rich rare-earth intermetallics, J.Appl.Phys. 63(8) (1988) 3130-3135.
    [117] K.H.J. Buschow, Permanent magnet materials based on tetragonal rare-earth compounds of the type RFe12-xMx, J. Magn. Magn. Mater. 100 (1991) 79-89.
    [118] B.P. Hu, K.Y. Wang, Y.Z. Wang, et al, Structure and magnetic properties of RFe11.35Nb0.65 and RFe11.35Nb0.65Nx, Phys. Rev. B, 51 (1995) 2905-2919.
    [119]G.C. Hadjipanayis, S.H. Aly, F.S. Cheng, Hard magnetic properties of R-Fe-Ti alloys, Appl. Phys. Lett. 51 (1987) 2048-2050.
    [120] Y.C. Yang, L.S. Wangs, S.H. Sun, et al., Intrinsic magnetic properties of SmTiFe10, J. Appl. Phys., 63 (1988) 3702-3703.
    [121]M.S. Anagnostou, C. Christides, D. Niarchos, Nitrogenation of the RFe10Mo2 (R = rare earth) compounds with ThMn12 type structure, Solid State Commun., 78 (1991) 681-684
    [122] Y.Z. Wang, B.P. Hu, X.L. Rao, et al., Structural and magnetic properties of NdFe12-xMoxN1-y compounds, J. Appl. Phys., 73 (1993) 6251-6253.
    [123] Y. Scherbakova, G.V. Ivanova, A.S. Yermolenko, et al., Magnetic properties and crystal structure of novel high anisotropic compounds based on the R-Fe-V system (R identical to Y, Nd, Sm, Gd), J. Alloys Comp., 182 (1992) 199-209.
    [124] Y.M. Kang, N.X. Chen, J. Shen. Lattice Vibration of Ce1-xScxFe4Al8. J. Phys. Chem. Solid., 64 (2003) 441~ 448.
    [125] Y.M. Kang, N.X. Chen, Site preference and vibrational properties of ScCuxAl12- x. J. Alloys. Comp., 349 (2003) 41~ 48.
    [126] Y.M. Kang, N.X. Chen, J. Shen, Site preference and vibrational properties of ScFexAl12- x, J. Magn. Magn. Mater., 256 (2003) 381~389.
    [127] Y.M. Kang, N.X. Chen, J. Shen, Atomistic simulation of the lattice constants and lattice vibrations in RT4Al8 (R= Nd, Sm; T = Cr, Mn, Cu, Fe). J. Alloys. Comp., 352 (2003) 26~33.
    [128] Y.M. Kang, N.X. Chen, J. Shen, Site preference and vibrational properties of Ni3Al with ternary additions Pd and Ag, Mod. Phys. Lett. B, 16 (2002) 727~737.
    [129] N.X. Chen, J. Shen, and X.L. Wang, Atomistic study of the phase stability and site preference for Gd3(Fe, M)29 (T = V, Ti, Cr, Mo, Cu, Ag), J. Alloys. Comp., 359 (2003) 91-98.
    [130] G. Liu, N.X. Chen, and Y.M. Kang, Atomistic simulation for the structural properties of Th-T and Th-T-In compounds (T = Fe, Co, Ni, Cu), J. Alloys. Comp., 386 (2005) 96-102.
    [131] J. Shen, P. Qian, N. X. Chen, Theoretical study on the structure for R2Co17 (R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er) and R2Co17T (T = Be, C), J Phys. Chem. Soli. 65 (2004) 1307-1315.
    [132] P. M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev. 34 (1929) 57-64.
    [133] H.G.Pan, F.M.Yang, C.P.Chen, X.F.Han, N.Tang, J.F.Hu, J.L.Wang, R.W.Zhao, K.W.Zhou, Q.D.Wang, Formation and mahnetic properties of R3(Fe, Mo)29 intermetallic compounds (R = Nd, Sm and Gd), J.Magn.Magn.Mater, 159 (1996) 352-356.
    [134] M. Born and K. Huang, Dynamical Theory of Crystal lattices (Oxford University Press, Clarendon, 1954).
    [135] A. E. Carlsson, C. D. Gelatt and H. Ehrenreich, An ab initio pair potential applied to metals, Philos. Mag. A 41 (1980) 241.
    [136] N. X. Chen, Modified M?bius inverse formula and its applications in physics, Phys. Rev. Lett. 64 (1990)1193.
    [137]. N. X. Chen, M. Li and S. J. Liu, Phys. Lett. A, Modified Mobius inversion transform and interatomic pair potentials in the bcc-metals Mo and Cr, 28 (1994) 135.
    [138]. N. X. Chen, Z. D. Chen and Y. C. Wei, Phys. Rev. E, Multidimensional inverse lattice problem and uniformly sampled arithmetic Fourier transform, 55 (1997) 1.
    [139] J. Maddox, M?bius and problrms of inversion, Nature (Lodon), 334 (1990) 377.
    [140] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos L D, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients, Rev. Mod. Phys. 64 (1992) 1045-1097.
    [141] M.D. Segall, P.J.D. Lindan, M.J. Prober, et al., First-principles simulation: ideas, illustrations and CASTEP code, J. Phys.: Condens. Mater. 14 (2002) 2717-2744.
    [142]黄昆原著,韩汝琦改编,固体物理学,高等教育出版社,1988.
    [143] 陈义龙等,穆斯堡尔效应与晶体动力学,武汉大学出版社,2000.
    [1] K.H.J. Buschow, Structure and properties of some novel ternary Fe-rich rare-earth intermetallics, J.Appl.Phys. 63(8) (1988) 3130-3135.
    [2] R.B. Helmholdt, J.J.M. Vleggaar, K.H.J. Buschow, Note on the crystallographic and magnetic structure of YFe10V2, J. Less-Common Met. 138 (1988) L11-L14.
    [3] J.Hu, T.Wang, S.G.Zhang, et al, Structure and magnetic properties of RTi1.1Fe10.9, J. Magn. Magn. Mater. 74 (1988) 22-26
    [4] K. Ohashi, Y. Tawara, R. Osugi, et al, Magnetic properties of Fe-rich rare-earth intermetallic compounds with a ThMn12 structure, J. Appl. Phys. 64(10) (1988) 5714 –5716
    [5] G. Wiesinger, R. Hatzl, Ch. Reichl, R. Groessinger, H. Sassik, K. Knight, On the magnetic structure of HoFe10Mo2, J Magn Magn Mater 196-197 (1999) 773-775.
    [6] S. Q. Hao, N. X. Chen, Atomistic simulation on the phase stability, site preference and lattice parameters for Nd(Fe, T)12 with Nd(Fe, T)12Nx, Phys. Lett. A, 297 (2002) 110-120.
    [7] 张百生,杜红林等,PrFe10.5V1.5 氮化物晶体和磁结构的中子衍射研究,原子能科学技术,34(2000)8.
    [8] J. H. V. J. Brabers, G. F. Zhou, et al., Magnetic properties of ThMn12-type RCo12-xVx compounds with R = Y, Gd, Tb, Dy, Ho, Er. J. Magn. Magn. Mater. 118 (1993) 340.
    [9] T. Zhao, Z. G. Zhao, et al., Crystallographic and magnetic properties of ternary nitrides of the type RCo10Mo2Nx, J. Alloys compounds. 228 (1995) 133.
    [10] Xie Xu and S.A. Shaheen, Structures and magnetocrystalline anisotropies of RCo10Mo2 compounds, J. Magn. Magn. Mater.118 (1993) L7.
    [11] C. Kittel.Introduction to solid state physics (5th edition),John Wiley & Sons. New York,1976.
    [12] S. Melchionna, G. Ciccotti, B.L. Holian, Hoover NPT dynamics for systems varying in shape and size. Molec. Phys. 78(3) (1993) 553-544.
    [13] L. Verlet, et al. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159 (1967) 98-103
    [14] D.B.de Mooij, K.H.J.Buschow, Some novel ternary ThMn12-type compounds, J. Less-Common Met., 136 (1988) 207-215
    [15] V. L. Moruzzi, C. B. Sommers, Calculated Electronic Properties of Ordered Alloys, World Scientific, New Jersey, 1995; A. R. Williams, J. Kuebler, J. R. Gelatt, Cohesive properties of metallic compounds: Augmented-spherical-wave calculations. Phys. Rev. B 19 (1979) 6094.
    [16] D.D. Koelling, B. N. Harmon, A technique for relativistic spin-polarised calculations, J. Phys. C, 10 (1977) 3107.
    [17] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13 (1976) 5188.
    [18] D.G. Anderson, Iterative procedures for nonlinear integral equations, J. Assoc. Computing machinery, 12 (1965) 547.
    [19] C.S. Kim, S.Y. An, Y.R. Uhm, S.W. Lee, and Y.B. Kim, Crystallization and Mossbauer studies of melt-spun NdFe10.7TiB0.3Nδ alloys, J. Appl. Phys. 83 (1998) 6929.
    [20] J. Yang, S.Z. Dong, W.H. Mao, P. Xuan, Y.C. Yang, Structural and magnetic properties of H and N modified Y(Fe, M)12 compounds (M = Ti, V, Mp, Cr, W), Physica B 205 (1995) 341-345.
    [21] J.J. Bara, B.F. Bogacz, A.T. P?dziwiatr, P. Stefański, A. Szlaferek, and A. Wrzeciono, Mossbauer spectral and magnetic investigations of RFe10Cr2 compounds (R = rare earth), J. Alloy Comp. 265 (1998) 70.
    [22] J. Hu, L. Mei, K. Luan, H. Li, B. Hu, and Z. Wang, Effects of volume expansion and electron correlation in some R(Fe, M)12 compounds (M = Nb, Ti, V) and their nitrides, J. Alloy. Compd. 264 (1998) 54.
    [23] N.X. Chen, J. Shen, X.P. Su, Theoretical study of the phase stability, site preference and lattice parameters for Gd(Fe, T)12, J. Phys.: condens. Matter. 13 (2001) 2727-2736.
    [24] N.X. Chen, S.Q. Hao, Y. Wu, J. Shen, Phase stability and site preference of Sm(Fe, T)12, J. Magn. Magn. Mater. 233 (2001) 169-180.
    [25] H. Balamane, T. Halicioglu, and W.A. Tiller, Comparative study of silicon empirical interatomic potentials, Phys. Rev. B 46 (1992) 2250-2279.
    [26] Y.C. Yang, B. Kebe, and W.J. James, Structural and magnetic properties of Y(Mn1-xFex)12, J. Appl. Phys. 52 (1981) 2077.
    [27] J.S.O. Evans, Z. Hu, J.D. Jorgensen, D.N. Argyyiou, S. Short, A.W. Sleight, Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8, Science, 275 (1997) 61-65.
    [28] T.A. Mary, J.S.O. Evans, T. Vogt, A.W. Sleight, Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8, Science, 272 (1996) 90.
    [29] J.S.O. Evans, T.A. Mary, A.W. Sleight, Negative Thermal Expansion in a Large Molybdate and Tungstate Family, J. Solid State Chem., 133 (1997) 580.
    [30] D.K. Seo, M.H. Whangbo, Symmetric Stretching Vibrations of Two-Coordinate Oxygen Bridges as a Cause for Negative Thermal Expansion in ZrVxP2-xO7 and AW2O8 (A = Zr, Hf) at High Temperature, J. Solid State Chem., 129 (1997) 160.
    [31] N. Khosrovani, V. Korthuis, A.W. Sleight, Unusual 180o P-O-P Bond Angles in ZrP2O7, Inorg. Chem., 35 (1996) 485.
    [32] X.R. Xing, in Proceeding of the 10th National symposium on Phase Diagram, edited by committee on Phase Diagrams of Chinese Physical Society and Anhui Normal University (Wuhu, Anhui Normal University Press, 2000) p.166.
    [33] K. Lagarec, D.G. Rancourt, Fe3Ni-type chemical order in Fe65Ni35films grown by evaporation: Implications regarding the Invar problem, Phy. Rev. B, 62 (2000) 978-985.
    [34] D. Givord, R. Lemaire, Magnetic transition and anomalous thermal expansion in R2Fe17 compounds, IEEE. Trans. Magn. 10 (1974) 109-113.
    [35] J.P. Gavigan, D. Givord, H.S. Li, and J. Voiron, 3d magnetism in R-M and R2M14B compounds (M=Fe, Co; R=rare earth), Physica B 149B+C (1988) 345.
    [36] R. Coehoorn, Electronic structure and magnetism of transition-metal-stabilized YFe12-xMx intermetallic compounds, Phys. Rev. B 41 (1990) 11790.
    [37] J.B. Yang, W.B. Yelon, W.J. James, S. Cai, D. Eckert, A. Handstein, K.H. Müller and Y.C. Yang,Structural and magnetic properties of R(FexMn1-x)12 (R = Ho, Y), Phys. Rev. B 65 (2002) 064444-1.
    [38] M. Morales, M. Artigas, M. Bacmann, D. Fruchart, J.L. Soubeyroux, Relationship between the structural and the magnetic properties of ErMn12-xFex compounds, J. Alloys Comp. 262-263 (1997) 134-140.
    [39] W. Suski, B. Belan, T. Mydlarz, K. Wochowski, Magnetic properties of NdMn12-xNix alloys, J. Alloys Comp., 367 (2004) 215-218.
    [40] W. Suski, K. Wochowski, T. Mydlarz, B. Belan, Magnetic properties of RMn12-xCox alloys with R = Nd and Sm, Physica B 319 (2002) 45-51.
    [41] Y.C. Yang, X.D. Zhang, S.L. Ge, Q. Pan, L.S. Kong, H.L. Li, J.L. Yang, B.S. Zhang, Y.F. Ding, and C.T. Ye, Magnetic and crystallographic properties of novel Fe-rich rare-earth nitrides of the type RTiFe11N1-δ (invited), J. Appl. Phys. 70 (1991) 6001-6005.
    [42] J.B. Yang, W.H. Mao, Y.C. Yang, S.L. Ge, and D.F. Chen, Ab initio calculation of interstitial-atom effects in YFe10Mo2X (X = E, H, B, C. N, O, F), Phys. Rev. B 56 (1997) 15647.
    [43] W.B. Yelon and G.C. Hadjipanayis, Neutron diffraction studies of rare earth transition metal nitrides, IEEE Trans, Magn. 28 (1992) 2316.
    [44] Y.C. Yang, X.D. Zhang, L.S. Kong, Q. Pan, S.L. Ge, J.L. Yang, Y.F. Ding, B.S. Zhang, and C.T. Ye, Neutron diffraction study of the nitride YTiFe11Nx, Solid State Commun. 78 (1991) 313.
    [45] Y.C. Yang, X.D. Zhang, S.L. Ge, et al., Magnetic and crystallographic properties of novel Fe-rich rare-earth nitrides of type RTiFe11N1-δ, J. Appl. Phys., 70 (1991) 6001-6005.
    [46] W. Gong, C.G. Hadjipanayis, Nitrogenated 1:12 compounds prepared by mechanical alloying, IEEE Trans Magn, MAG-28 (1992) 2563-2565.
    [47] Y.C. Yang, Q. Pan, et al., Structural and Magnetic Properties of RFe10.5Mo1.5Nx. J. Appl. Phys. 74 (1993) 4066-4071.
    [48] J. Yang, S.Z. Dong, and Y.C. Yang, B.P. Cheng, Structural and magnetic properties of RFe10.5V1.5Nx, J. Appl. Phys. 75 (1994) 3014.
    [49] J.J. Bara, B.F. Bogacz, A.T. P?dziwiatr, P. Stefański, A. Szlaferek and A. Wrzeciono, Wrzeciono, Mossbauer spectral and magnetic investigations of RFe10Cr2 compounds (R = rare earth), J. Alloy Comp. 265 (1998) 71.
    [50] J. Hu, L. Mei, K. Luan, H. Li, B. Hu and Z. Wang, Effects of volume expansion and electron correlation in some R(Fe, M)12 compounds (M = Nb, Ti, V) and their nitrides,J. Alloy. Comp. 264 (1998) 55.
    [51] B.P. Hu, X.L. Rao J.M. Xu, et al., Magnetic properties of Sm2(Fe1-xMx)17Ny nitrides (M = Co, Ni, Al, Ti,V) J. Magn. Magn. Mater., 114 (1992) 138-144.
    [52] K.S.V.L. Narasimhan, W.E. Wallace, Magnetization studies on Tm2Fe17-xCox and Tm2Fe17-xAlx compounds, Trans. Magn. Mag. 10 (1974) 729-732.
    [53] X.C. Kou, T.S. Zhao, R. Grossinger, et al., Ac-susceptibility anomaly and magnetic anisotropy of R2Co17 compounds, with R = Y, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu, Phys. Rev. B 46 (1992) 6225-6235.
    [54] D.P. Middleton, K.H.J. Buschow, Magnetic properties of Ce2Fe17-xSix compounds, J. Alloys Comp., 206 (1994) L1-L2
    [55] O. Isnard, S. Miraglia, D. Fruchart, et al, Hydrogen absorption in R2Fe17 alloys thermodynamics, structural and magnetic properties, J. Alloys Comp. 257 (1997) 150-155
    [56] W.B. Yelon, Z. Hu, W.J. James, et al, Site affinity of substituents in Nd2Fe17-xTx (T=Cu, Zr, Nb, Ti, V) alloys, J. Appl. Phys. 79(8) (1996) 5939-5941
    [57] R.F. Sabiryanov, S.S. Jaswal, Ab initio calculations of the Curie temperature of complex permanent-magnet materials, Phys. Rev. Lett. 79 (1) (1997) 155-158.
    [58] R.F. Sabiryanov, S.S. Jaswal, Ab initio calculations of the Curie temperature of complex permanent magnet materials: Sm2Fe16A (A=Ga,Si), J. Appl. Phys. 81 (1997) 5615-7.
    [59] N.X. Chen, J. Shen, X.P. Su, Theoretical study on the phase stability, site preference, and lattice parameters for Gd(Fe,T)12, J. Phys.: Condens. Matter., 13 (2001) 2727-2736
    [60] N.X. Chen, S.Q. Hao, Y. Wu, et al, Phase stability and site preference of Sm(Fe,T)12, J. Magn. Magn. Mater., 233 (2001) 169-180.
    [61] X.F. Han, H.G Pan, H.L. Liu, F.M. Yang and Y.W. Zhang, Syntheses and magnetic properties of Tb3Fe29-xCrx compounds, Physical Review B, 56 (1997) 8867.
    [62] Y. Horikawa, N.K. Ohkubo, K. Kanematsu, Effect of beryllium on magnetism of R2Co17Be, J. Magn. Magn. Mater. 140-144 (1995) 1005-1006.
    [63] Z.G. Sun, H.W. Zhang, B. Liang, J.Y. Wang and B.G. Shen. Structure and magnetic properties of Y2Co17-xMox (x = 0-8) compounds, J. Appl. Phys. 87 (9) (2000) 5311-5315.
    [64] S.J. HU, X.Z. Wei, D.C. Zeng, X.C. Kou, Z.Y. Liu, E. Brück, J.C.P. Klaasse, F.R. de Boer, K.H.J. Buschow, Structure and magnetic properties of Ce2Co17-xAlx compounds, J. Alloy. Comp. 283 (1999) 83-87.
    [65] L. Zhang, D.C. Zeng, Y.N. Ling, J.C.P. Klaasse, E. Brück, Z.Y. Liu, F.R. de Boer and K.H.J. Buschow, Structure and magnetic properties of Pr2Co17-xSix compounds, J. Alloys. Comp. 302 (2000) 5-11.
    [66] L. Zhang, Y.N. Ling, D.C. Zeng, J.C.P. Klaasse, E. Brück, Z.Y. Liu, F.R. de Boer and K.H.J. Buschow, Magnetic properties of Nd2Co17-xSix compounds, Physica B 291 (2000) 117-122.
    [67] W.Q. Wang, J.L. Wang, N. Tang, F.Q. Bao, G.H. Wu, F.M. Yang and H.M. Jin, Sm-Co-Ti phase diagram and structural and magnetic properties of some single-phase compounds, Acta. Phys. Sinica. 50(4) (2001) 756.
    [68] Z.H. Cheng, B.G. Shen, J.X. Zhang, et al., Influence of Al substitution on the structure and Co-sublattice magnetocrystalline anisotropy of Gd2Co17 compounds, Appl. Phys. Lett. 70 (25) (1997) 3467-3469.
    [69] Z.G. Sun, H.W. Zhang, S.Y. Zhang, J.Y. Wang and B.G. Shen, Structure and magnetic properties of Tb2Co17-xMnx compounds, J. Appl. Phys., 87 (12) (2000) 8666-8670.
    [70] C.H. de Groot, K.H.J. Buschow, F.R. de Boer. Magnetic properties of R2Co17-xAlx compounds (R Ho, Dy, Y), Physica B 229 (1997) 213-216.
    [71] S.J. HU, X.Z. Wei, O. Tegus, D.C. Zeng, E. Brück, J.C.P. Klaasse, F.R. de Boer, K.H.J. Buschow, Magnetic properties of Ho2Co17-xSix compounds, J. Alloy. Comp. 284 (1999) 60-64.
    [72] L. Zhang, D.C. Zeng, Y.N. Ling, J.C.P. Klaasse, E. Brück, Z.Y. Liu, F.R. de Boer and K.H.J. Buschow, Magnetic properties of Er2Co17?xSix compounds, J. Magn. Magn. Mater. 214 (2000) 31-36.
    [73] J.F. Herbst, J.J. Croat, W.R. Lee, and W.B. Yelon, Neutron diffraction studies of Nd2(CoxFe1-x)17 alloys: preferential site occupation and magnetic structure, J. Appl. Phys. 53 (1982) 250.
    [74] Q.L. Liu, J.J. Nan, J.K. Liang, F. Huang, Y. Chen, G.H. Rao, X.L. Chen , Subsolidus phase relations in the Co-rich region of the La-Co-Ti system, J. Alloys Comp. 307 (2000) 212-214.
    [75] K.H.J. Buschow, S.J. Hu, O. Tegus, L. Zhang, E. Brück, F.R. de Boer, Anisotropy and spin-reorientations in Co-rich rare earth compounds, J. Alloys Comp. 317-318 (2001) 2-7.
    [76] Y.B. Li, L.G. Zhang, S.Y. Zhang, and B.G. Shen, Structural and magnetic properties of Dy2Co17-xMnx compounds, Chin. Phys. 11 (2002) 174.
    [77] Q.L. Liu, J.K. Liang, G.H. Rao, W.H. Tang, J.R. Sun, X.L. Chen and B.G. Shen, Structure and uniaxial magnetocrystalline anisotropy of intermetallic compounds La2Co17-xTix, Appl. Phys. Lett. 71 (1997) 1869.
    [78] Q.L. Liu, J.K. Liang, F. Huang, Y. Chen, G.H. Rao, X.L. Chen , B.G. Shen, structure and magnetic properties of intermetallic compounds (La1-xRx)2Co16Ti (R = Sm, Nd), J. Alloys Comp. 297 (2000) 33-36
    [79] Y.G. Wang, F.M. Yang, C.P. Chen, N. Ting, P.H. Lin, and Q.D. Wang, Investigation of magnetic properties of Tb2Fe17-xMnx compounds, J. Appl. Phys. 84 (1998) 6229.
    [80] J.L. Wang, M.R. Ibarra, C. Marquina, B. García-Landa, W.X. Li, N. Tang, W.Q. Wang, F.M. Yang, andG.H. Wu, Effect of Mn substitution on the volume and magnetic properties of Er2Fe17, J. Appl. Phys. 92 (2002) 1453.
    [81] C.P. Yang, Y.Z. Wang, G.H. Wu, B.P. Hu, J.L. Wang, Z.X. Wang, Z.L. Jiang, and J. Zhu, Magnetic properties of Tb2(Fe, Cr)17 single crystal, J. Phys.: Condens. Matter 11 (1999) 5169-5174.
    [82] Y.M. Hao, Q.W. Yan, P.L. Zhang, X.D. Sun, F.W. Wang, and B.G. Shen, Magnetic properties of Dy2Fe17-xCrx and Er2Fe17-xCrx (x = 0-3) compounds, Acta Physica Sinica 6 (1997) 440-444.
    [83] C. Kittel, Introduction to solid state physics (6th edition), John Wiley & Sons. New York, 1986.
    [84] S.H. Ge, M.X. Mao, Z.H. Cheng, C.X. Li, J.J. Sun, F.S. Li, Q. Lin, Magnetic hyperfine fields in Y2Fe17-xSix compounds, Hyperfine Interactions 78 (1993) 445-449.
    [85] Y.M. Hao, P.L. Zhang, J.X. Zhang, X.D. Sun, Q.W. Yan, Ridwan, Gunawan and Marsonkohadi A high-resolution neutron study of Y2Fe15Cr2 at 77 K including magnetic properties, J. Phys.: Condens. Matter 8 (1996) 1321.
    [86] B.G. Shen, J.Y. Wang, H.W. Zhang, et al., Magnetocrystalline anisotropy of Ce2Co17-xAlx compounds with x = 0-3, J. Appl. Phys., 85 (1999) 4667
    [1] 戴道生,钱昆明,铁磁学(上册),科学出版社,(1987)
    [2] K.H.J. Buschow, New developments in hard magnetic materials, Rep. Prog. Phys. 54 (1991) 1123-1213
    [3] J.F. Herbst, R2Fe14B materials: intrinsic properties and technological aspects, Rev. Mod. Phys. 63 (1991) 819-898
    [4] F.R. de Boer. The magnetization process in free single-crystalline particles of rare-earth transition metal compounds, J. Magn. Magn Mater. 159 (1996) 64-70.
    [5] Z.W. Li, A.H. Morrish, Negative exchange interactions and Curie temperature for Sm2Fe17 and Sm2Fe17Nx, Phys. Rev. B, 55(6) (1997) 3670-3676.
    [6] D. Givord, R. Lemaire, Magnetic transition and anomalous thermal expansion in R2Fe17 compounds, IEEE. Trans. Magn. 10 (1974) 109-113
    [7] W. Gong, G.C. Hadjipanayis, Nitrogenated 1:12 Compunds Prepared by Mechanical Alloying. IEEE Trans Magn, MAG-28 (1992) 2563-2565.
    [8] F.M. Yang, B. Nasunjilegal, J.L. Wang, H.G. Pan, W.D. Qing, R.W. Zhao, B.P. Hu, Y.Z. Wang, G.C. Liu, H.S. Li, and J.M. Cadogan, Magnetic properties of a novel Sm3(Fe,Ti)29Ny nitride, J. Appl. Phys. 76 (1994) 1971.
    [9] Y.D. Zhang, J.I. Budnick, W.A. Hines, B.G. Shen, Z.H. Cheng, Effect of Ga substitution on the Sm sublattice anisotropy in Sm2Fe17-xGax compounds, J. Appl. Phys., 85 (1999) 4663.
    [10] E. Girt, M. Guillot, I.P. Swainson, et al., Structural and magnetic properties of Nd2Fe17-δGaδ (δ ≤ 2). J. Appl. Phys. 87 (2000) 5323.
    [11] Z.H. Chang, B.G. Shen, J.X. Zhang, et al., Influence of Al substitution on the structure and Co-sublattice magnetocrystalline anisotropy of Gd2Co17 compounds, Appl. Phys. Lett. 70 (1997) 3467-3469.
    [12] M.V. Satyanarayana, H. Fujii and W.E. Wallace, Magnetic and structural investigations on substituted Pr2Co17-xTx systems (T = Fe, Mn, Cr, Cu, and Al), J. Magn. Magn. Mater. 40 (1984) 241-246.
    [13] J.Y. Eang, B.G. Shen, S.Y. Zhang, et al., Structure, exchange interactions and magnetic anisortropy of Ho2Co17-xSix compounds, J. Appl. Phys. 87 (2000) 427.
    [14] W.X. Li, B.D. Liu, J.L. Wang, et al., Sm3(Fe,Co,Mo)29 compounds: Promising materials for permanent magnets, Chinese Phys., 12 (2003) 661-664.
    [15] J.L. Wang, C. Marquina, M.R. Ibrra, et al., Synthesis, thermal expansion, and magnetic properties of Gd3(Fe,Co,Mo)29 compounds, J. Appl. Phys. 93 (2003) 6924-6926.
    [16] V.R. Shah, G. Markandeyulu, K.V.S. Rama, M.Q. Huang, K.Silisha, M.E. McHenry, Effects of Co substitution on magnetic properties of Pr3(Fe1-xCox)27.5Ti1.5 (x = 0-0.3), J. Appl. Phys. 85 (1999) 4678.
    [17] O. Kalogirou, C. Sarafidis, M. Gjoka, T. Bakas, M. Giannouri, Structural and magnetic properties of Nd3(Fe1-xCox)27.2Ti1.3 (0 < x ≤ 0.4) alloys, J. Alloys Comp., 325 (2001) 59.
    [18] J.P. Gavigan, D. Givord, H.S. Li, and J. Voiron, 3d magnetism in R-M and R2M14B compounds (M=Fe, Co; R=rare earth), Physica B 149B+C (1988) 345.
    [19] E. P. Wohlfarth, Iron, cobalt and nickel. [Ferromagnetic properties],Ferromagnetic materials. A handbook on the properties of magnetically ordered substances, vol.1, 1980, p 1-70
    [20] M. Jurczyk, G. K. Nicolaides and K. V. Rao, Magnetic anisotropy in Dy(Fe, Co)10V2, J. Appl. Phys., 70 (1991) 6110.
    [21] V. G. Harris, Q. Huang, V. R. Shah, G. Markandeyulu, K.V. S. Rama Rao, M. Q. Huang, K. Sirisha and M. E. McHenry, Neutron diffraction and extended X-ray absorption fine structure studies of Pr3(Fe1-xCox)27.5Ti1.5 permanent magnet compounds, IEEE Trans. Magn., 35 (1999) 3286.
    [22] W.B. Yelon and G.C. Hadjipanayis, Neutron diffraction studies of rare earth transition metal nitrides, IEEE Trans, Magn. 28 (1992) 2316.
    [23] J. Yang, S.Z. Dong, and Y.C. Yang, B.P. Cheng, Structural and magnetic properties of RFe10.5V1.5Nx, J. Appl. Phys. 75 (1994) 3014.
    [24] W.Q. Wang, J.L. Wang, N. Tang, F.Q. Bao, G.H. Wu, F.M. Yang and H.M. Jin, Sm-Co-Ti phase diagram and structural and magnetic properties of some single-phase compounds, Acta. Phys. Sinica. 50(4) (2001) 756.
    [25] H. Tang, B.G. Shen, K.H.J. Buschow and F.R. de Boer, Y.Z. Wang and G.W. Qiao, Magnetic properties and structure of R2Co17-xTix intermetallic compounds (R = Pr or Nd), J. Appl. Phys. 81 (1997) 5127.
    [26] W.Q. Wang, J.L. Wang, N. Tang, et al., Structure and magnetic properties of Sm2Co17-xTix compounds, Acta Meta. Sini. 37(2001) 416.
    [27] B.G. Shen, B. Liang, Z.H. Cheng, et al., Magnetic properties of Gd2Co17-xSix compounds, Chin. Phys. Lett., 15 (1998) 223.
    [28] F. Su, W.Q. Wang, X.Q. Wang, X.F. Wang, S.F. Zhao, X.B. Du, Y. Yan, H.M. Jin, A studies of structure and magnetic properties of compounds Nd2(Co1-xFex)17-yCry. J. JiLin University 40 (2002) 170-174.
    [29] Y.G. Wang, F.M. Yang, C.P. Chen, N. Ting, P.H. Lin, and Q.D. Wang, Investigation of magnetic properties of Tb2Fe17-xMnx compounds, J. Appl. Phys. 84 (1998) 6229.
    [30] J.L. Wang, M.R. Ibarra, C. Marquina, B. García-Landa, W.X. Li, N. Tang, W.Q. Wang, F.M. Yang, and G.H. Wu, Effect of Mn substitution on the volume and magnetic properties of Er2Fe17, J. Appl. Phys. 92 (2002) 1453.
    [31] H.R. Kirchmayr and C.A. Poldy, 1979 Handbook on chemistry of Rare Earths, (North-Holland, Amsterdam) p55.
    [32] N.P. Thuy, J.J.M. Franse, N.M. Heng, and T.D. Hien, 3d anisotropy in R-3d intermetallics, J. de Physique, 49 (1988) C8-499.
    [33] B.P. Hu, H.S. Li, and J.M.D. Coey, Relationship between ThMn12 and Th2Ni17 structure types in the YFe11-xTix alloy series, J. Appl. Phys. 67 (1990) 4838.
    [34] H.Y. Chen, W.W. Ho, S.G. Sankar, et al., Magnetic anisotropy phase diagrams of R2(Co1-xFex)17 compounds (R = Y, Pr, Sm, Gd, Dy, Er), J. Magn. Magn. Mater. 78 (1989) 203-207.
    [35] B.P. Hu, J.M.D. Coey, A 57Fe Mossbauer study of Sm2Fe17, J. Less-Common Metals, 171 (1991) 33-39
    [36] T.H. Jacoba, K.H.J. Buschow, G.F. Zhou, et al., Magnetic interactions in R2Fe17-xAlx compounds (R = Ho, Y), J. Magn. Magn. Mater. 116 (1992) 220-230.
    [37] B.G. Sheng, Z.H. Cheng, B. Liang, et al., Structure and magnetocrystalline anisotropy of R2Fe17-xGax compounds with higher Ga concentration, Appl. Phys. Lett, 67 (1995) 1621-1623.
    [38] B. Liang, B.G. Shen, F.W. Wang, et al., The magnetic properties of Gd2Co17-xGax compounds, J. Appl. Phys. 82 (1997) 3452-3455.
    [39] Z.H. Cheng, B.G. Shen, X.J. Zhang, et al., Influence of Al substitution on the structure and Co-sublattice magnetocrystalline anisotropy of Gd2Co17-xAlx compounds, Appl. Phys. Lett, 70 (1997) 3467-3469.
    [40] L. Zhang, Y.N. Liang, et al., Influence of substitution of Ti, V, Cr, Cu and Mo for Co on the magnetic properties of Y2Co17, Physica B, 291 (2000) 110
    [41] K. Inomata, Individual Co site contributions to the magnetic anisotropy and NMR investigation of Y2(Co1-xMx)17 (M=Cu,Al), Phys. Rev. B 23 (1981) 2076.
    [42] R.L. Streever, Individual Co site contributions to the magnetic anisotropy of RCo5 compounds and related structures, Phys. Rev. B 19 (1979) 2704.
    [43] S. Yajima, M. Hamano, Magnetocrystalline anisotropy of nonstoichiometric Y2+xCo17-2x, J. Phys. Soc, Japan, 32 (1972) 861.
    [44] J. Deportes, D. Givord, R. Lemaire, et al., Influence of substitutional pairs of cobalt atoms on the magnetocrystalline anisotropy of cobalt-rich rare-earth compounds, J. Less-Common Metals, 44 (1976) 273.
    [45] Q.L. Liu, J.K. Liang, J. Xu, X.L. Chen, et al., The structure and uniaxial magnetocrystalline anisotropy of novel intermetallic compounds La2Co17-xVx, Appl. Phys. Lett. 71 (1997) 1869.
    [46] Z.G. Sun, S.Y. Zhang, H.W. Zhang and B.G. Shen, The structure and magnetic properties of Gd2Co17-xMnx (x = 0-4) compounds, J. Alloys Comp. 322 (2001) 69.
    [47] J.E. Greedan and V.U.S. Rao, An analysis of the rare earth contribution to the magnetic anisotropy in RCo5 and R2Co17 compounds, J. Solid State Chem., 6 (1973) 387.
    [48] E. Callen, Magnetic anisotropy of R2(Co1-xFex)17, J. Appl. Phys., 53 (1982) 2367.
    [49] Z.H. Cheng, S.G. Shen, F.W. Wang, H. Kronmüller, Contributions of individual Fe sites to magnetocrystalline anisotropy of Y2Fe17-xGax compounds, Appl. Phys. Lett. 74 (1999) 1320.
    [50] Z.G. Sun, H.W. Zhang, S.Y. Zhang, J.Y. Wang, and B.G. Shen, Structure and magnetic properties of Sm2Fe17-xMnx compounds, J. Phys. D: Appl. Phys. 33 (2000) 485-491.
    [1] S. M. Shapiro, S. C. Moss, Lattice dynamics of face-centered-cubic Co0.92Fe0.08, Phys. Rev. B 15 (1977) 2726.
    [2] J. Zaretsky, C. Stassis, Lattice dynamics of γ-Fe, Phys. Rev. B 35 (1987) 4500.
    [3] V. J. Minkiewicz, G. Shirane, R. Nathans, Phonon dispersion relation for iron, Phys. Rev. 162 (1967) 528.
    [4] T. Zhao, Z. G. Zhao, et al., Crystallographic and magnetic properties of ternary nitrides of the type RCo10Mo2Nx, J. Alloys compounds. 228 (1995) 133.
    [5] W.Q. Wang, J.L. Wang, N. Tang, F.Q. Bao, G.H. Wu, F.M. Yang and H.M. Jin, Sm-Co-Ti phase diagram and structural and magnetic properties of some single-phase compounds, Acta. Phys. Sinica. 50(4) (2001) 756.
    [6] W.F. Liu, G.H. Rao, H.F. Yang, Z.W. Ouyang, G.Y. Liu, X.M. Feng, J.K. Ling, Formation, structure and magnetic properties of SmCo9.8V2.2 J. Alloys Comp. 361 (2003) 62-65.
    [7] C. Piquer, E. Palacios, M. Artigas, J. Bartolomé, J. Rubín, J. Campo, and M. Hofmann, Neutron powder diffraction study of the RFe11.5Ta0.5 (R = Lu, Er, Ho, Dy and Tb) compounds, J. Phys.: Condens. Matter 12 (2000) 2265-2278.
    [8] R. Vert, M. Bououdina, D. Fruchart, D. Gignoux, Y.M. Kalychak, R.V. Skolozdra, New RFe12-xTax compounds and their related hydrides and carbides (R = Tb to Lu, 0.5 ≤ x ≤ 0.7), J. Alloy Comp. 287 (1999) 38-44.
    [9] W.Q. Wang, J.L. Wang, N. Tang, F.Q. Bao, G.H. Wu, F.M. Yang and H.M. Jin, Sm-Co-Ti phase diagram and structural and magnetic properties of some single-phase compounds, Acta. Phys. Sinica. 50(4) (2001) 756.
    [10] H. Tang, B.G. Shen, K.H.J. Buschow and F.R. de Boer, Y.Z. Wang and G.W. Qiao, Magnetic properties and structure of R2Co17-xTix intermetallic compounds (R=Pr or Nd), J. Appl. Phys. 81 (1997) 5127.
    [11] W.Q. Wang, J.L. Wang, N. Tang, et al., Structure and magnetic properties of Sm2Co17-xTix compounds, Acta Meta. Sini. 37(2001) 416.
    [12] C. Kittel, Introduction to Solid State Physics (6th edition), John Wiley & Sons. New York, 1986.
    [13] Z.G. Sun, H.W. Zhang, S.Y. Zhang, B.G. Shen, Structure and magnetic properties of Nd2(Co, Mn)17 compounds, Physica B. 305 (2001) 127-134.
    [14] Z.G. Sun, S.Y. Zhang, H.W. Zhang, B.G. Shen, The structure and magnetic properties of Gd2Co17-xMnx (x = 0-4) compounds, J. Alloys Comp. 322 (2001) 69-73.
    [15] Z.G. Sun, S.Y. Zhang, H.W. Zhang, and B.G. Shen, Influence of Mn substitution on the structure and magnetic properties of Sm2Co17 compounds, J. Phys.: Condens. Matter 13 (2001) 2001-2008.
    [16] B.D. Liu, Y.X. Li, W.X. Li, H.Y. Liu, G.H. Wu, F.M. Yang, F. R. de Boer. Structural and magnetic properties of Nd2Co17-xVx compounds, Physica B 319(1-4) (2002) 28-34
    [17] B.D. Liu, Y.X. Li, W.X. Li, F.B. Meng, G.H. Wu, F.M. Yang. Structure and anisotropy evolution in the (Nd1-xErx)2Co15.5V1.5 system, Physica B 325 (2003) 265-271
    [18] F. Su, W.Q. Wang, X.Q. Wang, X.F. Wang, S.F. Zhao, X.B. Du, Y. Yan, H.M. Jin, A studies of structure and magnetic properties of compounds Nd2(Co1-xFex)17-yCry. J. JiLin University 40 (2002) 170-174.
    [19] J.F. Herbst, J.J. Croat, R.W. Lee, W.B. Yelon, Neutron diffraction studies of Nd2(CoxFe1-x)17 alloys: preferential site occupation and magnetic structure, J. Appl. Phys. 53 (1) (1982) 250-256.
    [20] Z.G. Sun, H.W. Zhang, J.Y. Wang, and B.G. Shen, Structure and magnetic properties of Pr2Fe17-xMnx (x=0-9) compounds, J. Appl. Phys. 86 (1999) 5153.
    [21] Z.G. Sun, H.W. Zhang, S.Y. Zhang, J.Y. Wang, and B.G. Shen, Structure and magnetic properties of Sm2Fe17-xMnx compounds, J. Phys. D: Appl. Phys. 33 (2000) 485-491.
    [22] I. Nehdi, L. Bessais, C. D.jega-Mariadassou, M. Abdellaoui, H. Zarrouk, X-ray and Mossbauer studies of Sm2Fe17-xCrx materials synthesized by mechanical alloying followed by an appropriate short annealing, J. Alloys Comp. 351 (2003) 24-30.
    [23] Y.G. Wang, F.M. Yang, C.P. Chen, N. Ting, P.H. Lin, and Q.D. Wang, Investigation of magnetic properties of Tb2Fe17-xMnx compounds, J. Appl. Phys. 84 (1998) 6229.
    [24] J.L. Wang, M.R. Ibarra, C. Marquina, B. García-Landa, W.X. Li, N. Tang, W.Q. Wang, F.M. Yang, and G.H. Wu, Effect of Mn substitution on the volume and magnetic properties of Er2Fe17, J. Appl. Phys. 92 (2002) 1453.
    [25] Y.M. Hao, Q.W. Yan, P.L. Zhang, X.D. Sun, F.W. Wang, and B.G. Shen, Magnetic properties of Dy2Fe17-xCrx and Er2Fe17-xCrx (x = 0-3) compounds, Acta Physica Sinica 6 (1997) 440-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700