过盈联接摩擦系数的理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文开展的“过盈联接摩擦系数的理论及试验研究”,是在国家高技术研究发展计划项目(863项目)(No.2006AA04Z101)和国家科技支撑计划项(No 2007BAF21B01)的支持的资助下,从大连重工·起重集团减速机厂风机设备的工程实际背景出发,从理论和试验的角度对过盈联接的摩擦系数进行分析研究,为风机等大型工程设备的性能特征信息获取和产品创新设计奠定基础。
     过盈联接摩擦系数作为一个表面接触摩擦特性的表征参数,在理论和试验研究方面均需要开展大量的研究工作,本文采用数值分析方法首先从理论上对过盈联接摩擦系数进行研究分析,利用过盈联接的有限元接触模型分析计算各影响因素的影响程度,然后采用试验的方法测量过盈联接试件的承载扭矩,间接计算并验证摩擦系数,最后通过正交表分析摩擦系数的影响因素。基于这些研究目的,本文研究内容包括:
     1.建立过盈联接的接触分析模型,分析过盈量、长短轴比值与最大承载扭矩、摩擦系数之间的关系,基于有限元方法计算分析对摩擦系数有影响的过盈量、锥度、表面粗糙度等因素的影响程度。数值分析部分具体包括:
     (1)基于曲面模型建立了摩擦系数求解模型,得到摩擦系数的解析表达式;
     (2)基于软件分析,研究过盈联接的过盈量、锥度、表面粗糙度等因素对接触应力的影响程度,并获得一组比较完整的计算结果;
     (3)建立了过盈联接的接触应力分析模型,对过盈联接摩擦特性的影响因素进行深入研究,基于面—面接触进行接触应力分析,进而获得摩擦力和摩擦力矩的情况;
     (4)建立了采用过盈联接中两个零件的体积变形量(称之为“过盈体积”)来描述实际过盈效果的理论方法,基于重构接触曲面的数学理论,分析、计算过盈体积,从而研究过盈体积与过盈联接摩擦系数之间的关系。
     2.设计正交试验方案,通过数据分析、计算获得摩擦系数,具体内容包括:
     (1)进行过盈联接摩擦系数测试系统方案设计以及其正交试验方案设计。在分析确定试验所需要的测量参数的基础上,由于摩擦系数的影响因素较多,提出设计正交试验的测试设计思路,以此来确定各因素对摩擦系数的影响。按照设计的正交表,设计每个试件的详细尺寸;
     (2)完成对具体试件的测量、计算与装配。对加工的试件进行表面粗糙度测量和锥面轮廓测量,拟合得到过盈联接的配合尺寸。为保证测量数据能真实反映零件表面状况,进行了粗大误差的剔除。利用软件的优化工具箱,采用自适应圆锥的方法进行圆锥拟合,为使优化结果达到最优,通过多步拟合得到了较优的初始点并采用序列二次规划的算法进行求解。根据计算结果,采用缩胀法进行试件装配;
     (3)通过扭转试验得到每个试件的失效扭矩。为保证试验结果真实有效,试验前对试验台进行标定,试验时记录每个试件的扭矩和时间,绘制曲线确定失效扭矩。为了解决某些试件超出试验台扭距量程的问题,专门设计并制造了大量程扭距试验台;
     (4)基于零件表面的测量数据进行接触曲面重构,将重构的接触曲面转换成为结点形式,使用有限元分析软件进行静力分析,获得每个接触结点的外力,然后通过外力和力臂的累加计算获得接触面平均摩擦系数。
     (5)实际装配对原有因素的各个水平产生了影响,为了满足试验的正交性,必须重构正交表。通过分析重构的正交表得到了各因素对摩擦系数的影响程度。经过计算极差和剔除误差等操作,得到摩擦系数的经验公式。
     3.对理论和试验研究的过盈联接摩擦系数进行对比分析和联合求证,一方面完善过盈联接摩擦系数的计算方法和过程,另一方面从试验和理论角度给出了可以用于风机等大型设备的过盈联接摩擦系数具体推荐值。
     本文开展对过盈联接摩擦系数的研究,在理论上将完善目前国内大型设备过盈联接的摩擦系数确定过程,从试验角度对摩擦系数进行验证分析,最后形成可以用于风机等大型工程设备过盈联接摩擦系数的经验公式,这对于提高设备的运行效率和运行可靠性都具有重要意义。
This paper studies on the "Theoretical and Experimental Research on Interference Fit Friction Coefficient", which seek proceed from the practical engineering background from DHI-DCW Group. Based on the theoretical and experimental point, the friction coefficient of the interference fit is analyzed. The result will help to obtain the performance characteristics of wind generator and lay the foundation for innovative design. This research is supported by the National High Technology Research and Development Program of China (863 program) under Grant No. 2006AA04Z101 and National Technology Suporting Program of China under Grant No. 2007BAF21B01.
     Interference fit friction coefficient is a friction characterization parameter expressing the surface contact condition. It needs to launch a lot of research work on its theoretical and experimental research. So this paper will firstly study the numerical analysis methods of the interference fit friction coefficient, then by the use of indirect methods, verify the fiction coefficient calculated by orthogonal experiment. Meantime, the factors which influence the friction coefficient will be discussed with the finite element analysis method. The impact size of different factors will be obtained. For the objects, this paper includes:
     1. Establish the two contact analysis model for interference fit and analysis the fit capacity and the maximum torque load. Based on the finite element method, the influencing factor of the friction coefficient, such as the fit capacity, taper, the surface Roughness, has been studied, and the incidence of different factors has been obtained. The specific parts of the numerical analysis include:
     (1) Based on the model of solving friction coefficient which is based on surface model, the analytical expression of friction coefficient is obtained;
     (2) Based on analysis, study the influencing factosr of the interference fit, such as fit capacity, taper, surface roughness. The incidence of different factors has been discussed; a group of the optimal results have been received;
     (3) Establish interference fit contact stress analysis model, with in-depth researching on the influencing factor for the interference fit friction characteristics. Based on its face - contact stress analysis method, get the interference fit contact stress, and further access to the friction and friction torque;
     (4) Establish theory method which can be use to describe a fit in the two parts of the size of deformation (referred to as "the volume of fit"). Based on the reconstruction contact surface mathematical theory, the volume of fit have been analyzed and calculated, which will be help to study and contact stress and the friction coefficient of interference fit.
     2. Design orthogonal experimental to determine the friction coefficient of interference fit, the specific contents are:
     (1) Design the interference fit friction coefficient test system and its orthogonal test programme table. the measured parameters have been determined. Because more factors influence on friction coefficient, the orthogonal experimental table is designed. In accordance with the orthogonal design, the details of each sample size are designed.
     (2) Complete the measurement, calculation and assembly of the specific samples. Surface roughness and cone profile have been measured, and the fit size has been received by tight fitting. To ensure that measurement data can reflect the true state of the surface, the error has been eliminated by using intuitive methods. Using software optimization toolbox and adaptive approach to taper cone fitting, optimal results of taper cone fitting have been achieved. The solving algorithm of sequential quadratic programming (SQP) and an adaptive initial point based on fitting step by step are provided for the optimal results. According to the results, a reduction expansion assembly way has been proposed.
     (3) Failure torque is determined by torsion test. The test-bed is calibrated with proving ring. Each couple of specimen is tested with time, torque and corner being recorded. The failure torque is obtained from the curve of torque and time. In order to solve issues of some samples exceeded the test-bed torque range, the large torque test-bed is designed and made specially.
     (4) Reconstruction surface which is based on measurements of parts has been converted into contact model with the form of nodes. By using of finite element analysis software the result of static analysis is achieved and the average friction coefficient can be implemented through accumulating the external force and force-arm.
     (5) Orthogonal reconstruction table is used to analyse the influence factors of the friction coefficient.After actually assembling, the levels of factor are affected.In order to satisfy the orthogonality, the orthogonal table is strongly demanded to reconstruct.The empirical formula of friction coefficient is obtained after range calculating and error rejecting.
     3. Theoretical and experimental research process on the interference fit coefficient friction were analyzed and verified. On the one hand, it will improve the interference fit friction coefficient method and calculating process, on the other hand, the friction coefficient from theoretical point with the test point can be used for the wind generator and other large equipments.
     This paper researches on the interference fit coefficient friction. In theory, it will improve determined process of interference fit coefficient friction for the current domestic large equipments. From the test results, the paper verifies and obtains the empirical formula of interference fit friction coefficient which can be used in wind generator and other large equipments. The research results are of great value to improve the efficiency of the devices operation and operating reliability.
引文
[1]戴旭东,谢友柏.产品性能特征建模及以性能特征驱动的产品现代设计模式.计算机工程与应用,2003,39(3):43-46.
    [2]苏素.企业产品性能特征值的选择与价值策略.重庆大学学报:自然科学版,2002,25(1):141-145.
    [3]谢友柏.产品的性能特征与现代设计.中国机械工程,2000,11(1):26-32.
    [4]吴石林,张玘.一种新型结构风机设计及其性能测试.机械科学与技术(西安),2008,27(4):490-493.
    [5]黎少辉,蔡利梅.非线性动力学在风机叶轮系统流固耦合振动分析中的应用.煤矿机械,2008,29(3):145-147.
    [6]郜立焕,万畅,赵积武等.大型风机的状态检测及分析.流体机械,2008,36(1):5-9,18.
    [7]赵莉香,殷国富.基于虚拟原型的风机设计方法研究.煤矿机械,2008,(1):35-37.
    [8]刘文军.局部通风主备用风机联接装置及应用.矿业安全与环保,2005,32(2):78-78.
    [9]陈连.过盈联接可靠性设计研究.中国机械工程,2005,16(1):28-32.
    [10]张建兵,韩勇,韩建增等.膨胀套管螺纹联接设计研究.石油机械,2008,36(3):5-8.
    [11]杨国华.超跨度主梁螺栓联接的计算.起重运输机械,2007,(12):56-58.
    [12]孙玉亮,张文明.渐开线花键联接.矿山机械,2007,35(1):116-117.
    [13]陈连.过盈联接的模糊可靠性分析与仿真研究.机械强度,2007,29(1):81-85.
    [14]吕莉,崔文平.无键联接技术及其在滚筒中的应用.煤矿机械,2006,27(10):167-169.
    [15]王志坚,龚小平,仝崇楼.轴毂固定联接结构的一种创新设计.机械设计,2005,22(5):54-56.
    [16]王旱祥,于艳艳,李增亮等.锥度对油管螺纹联接应力影响的有限元分析.石油机械,2007,35(9):55-57,61.
    [17]李洪,黄建峰,张清泉等.法兰-螺栓联接对加速器对中装配同轴度的影响.四川大学学报:工程科学版,2007,39(3):155-159.
    [18]郑友益,刘高领.对数螺线型面联接接触强度分析与计算.制造技术与机床,2007,(7):84-86.
    [19]刘巧伶.联接件的可靠性灵敏度设计.机械设计与制造,2007,(4):6-7.
    [20]章巧芳,贾虹.轮轴过盈联接有限元分析.机械强度,2006,28(4):543-546.
    [21]刘逸民,王雅红.过盈联接技术的改进.矿山机械,2005,33(7):89-91.
    [22]林腾蛟,李润方,徐铭宇.双台阶钻柱螺纹联接弹塑性接触特性数值仿真.机械设计与研究,2004,20(1):48-49.
    [23]魏宗平.螺栓联接静强度的非概率可靠性设计研究.煤矿机械,2006,27(8):16-18.
    [24]Nayak,P.R,Random Process Model of Rough Surfaces,Trans.ASME,Series F,1971,93:398-407.
    [25]刘逸明.热压配合无键联接技术的过盈量计算.矿山机械,2005,33(10):141-142.
    [26]王继新,王国强,罗世魁等.带式输送机传动滚筒胀套联接有限元分析.起重运输机械,2004,(2):38-41.
    [27]机械设计手册编委会.机械设计手册2.北京:机械工业出版社,2004.
    [28]许定奇,孙荣文.过盈联接的设计、计算与装拆.北京:中国计量出版社,1992.
    [29]Chryssolouris G.Manufacturing Systems Theory and Practice.Springer Verage,1992.
    [30]Hitomi K.Manufacturing Systems Engineering.London:Taylor&Francis,1999.
    [31]刘维明,薛群基.摩擦学研究及发展趋势.中国机械工程,2002,11(1-2):77-80.
    [32]谢友柏.摩擦学的三个公理.摩擦学学报,2001,21(3):161-166.
    [33]B.布尚著.摩擦学导论.葛世荣译.北京:机械工业出版社,2007.
    [34]温诗铸.摩擦学原理.北京:清华大学出版社,1990.
    [35]Greenwood J A.Contact of Nominally Flat Surfaces.Proc.Roy.Soc,1966,A295:300-319.
    [36]D.F.摩尔著.摩擦学原理和应用.黄文治等译.北京:机械工业出版社,1982.
    [37]Whitehouse,D.J.and Archard,J.F.,The Properties of Random Surfaces of Significance in Their Contact,Proc.Roy.Soc.,London,1970,A316:97-121,
    [38]宋敏.真实粗糙表面的研究.机械科学与技术,2001,20(5):737-739.
    [39]Lior Kogut,Izhak Etsion.A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces.ASME,J.Tribology,2004,126(1):34-40.
    [40]J.Yang,K.Komvopoulos.A Molecular Dynamics Analysis of Surface Interference and Tip Shape and Size Effects on Atomic-Scale Friction.ASME,J.Tribology,2005,127(3):513-521.
    [41]Yongwu Zhao,David M.Maietta,L.Chang.An Asperity Microcontact Model Incorporating the Transition from Elastic Deformation to Fully Plastic Flow.ASME,J.Tribology,2000,122(1):86-93.
    [42]Dincer Bozkaya,Sinan M(u|¨)ft(u|¨).Efficiency Considerations for the Purely Tapered Interference Fit(TIF) Abutments Used in Dental Implants.ASME,J.Biomechanical Engineering,2004,126(4):393-401.
    [43]温诗铸.我国摩擦学研究的现状与发展.机械工程学报,2004,40(11):1-6.
    [44]薛群基,党鸿幸.摩擦学研究的发展概况与趋势.摩擦学学报,1993,13(1):73-81.
    [45]董俊利,王家夫.形状误差对过盈联接摩擦力的影响分析及其修正.辽宁工学院学报,2002,22(3):44-46.
    [46]Yang G M,Conquile J C,Fontaine J F.Contact pressure between two rough surface of a cylindrical fit.Journal of Materials Processing Technology,2002,(123):490-497.
    [47]张绪祥,关丽,耿昌义等.圆柱过盈联接强度摩擦系数的试验研究.武汉化工学院学报,2002,24(2),71-74.
    [48]张绪祥,关丽,耿昌义等.装配方式对圆柱过盈联接摩擦系数影响的试验研究.机械研究与应用,2002,15(2),8-10.
    [49]廖爱华,张洪武,吴昌华.压气机叶轮-轴套-轴摩擦接触的有限元分析.中国机械工程,2006,17(10):1010-1014.
    [50]Tower B.First Report on Friction Experiments.Proc Inst Mech Eng,1883,34(1):632-666.
    [51]Tower B.Second Report on Friction Experiments.Proc Inst Mech Eng,1885,36(2):58-70.
    [52]Hugh Spikes.Tribology research in the twenty- first century.Tribology International.2001,(34):789-799.
    [53]Elcoate CD,Evans HP,Hughes TG,Snidle RW.Thin film time dependent,micro-EHL solutionswith real surface rough-hess.In Proceedings of the Leeds-Lyon Symposium,Lubrication at the Frontier,1998.Elsevier,1999:163-172.
    [54]Chynoweth S,Coy RC,Michopoulos Y.Simulated non-Newto-nian lubricant behavior under extreme conditions.Proc Inst Mech Eng,1995:209;243-254.
    [55]Gao JP,Luedtke WD,Landman U.Nano-elasto-hydrodynam-ics—structure dynamics,and flow in nonuniform lubricated junctions.Science 1995,(270):605-608.
    [56]Yenner CH,LubrechtAA.Numerical analysis of the influence of waviness on the film thickness of a circular EHL contact.Trans ASME,J.Tribology,1996;118:153-161.
    [57]Dowson D.Developments in lubrication—the thinning film.J PhysD,Appl Phys,1992,(25):334-339.
    [58]Bhushan B.Micro/nanotribology and its applications.Dordrecht:KluwerAcademic,1997.
    [59]Spikes HA.Advances in the study of thin lubricant films.Invited paper at World Tribology Congress,London,September1997,New Directions in Tribology.London:MEP Ltd,1997:353-369.
    [60]Dare-Edwards MP,Mead HB.A novel family of traction fluids deriving from molecular design.J Synth Lubr 1991,8:197-205.
    [61]Olver AV,Cole SJ,Sayles RS.Contact stresses in nitrided steels.In:Proceedings of the 19th Leeds-Lyon Symposium on Tribology,Thin Films in Tribology,Leeds,September 1992.Elsevier,1993.
    [62]冯丽,谢沛霖.基于分形几何的表面微观形貌模拟及粘着弹性接触计算研究.润滑与密封,2007,32(6):74-77.
    [63]崔海涛,马海全 温卫东.弹性接触问题的形状优化设计方法.应用力学学报,2004,21(2):83-86.
    [64]王繁生,任家骏.三维弹性接触体形状优化问题的研究.机械设计,2002,19(8):15-18.
    [65]夏开文,唐志平.基于细观弹性接触的多相颗粒材料本构模型.中国科学技术大学学报,2000,30(4):422-429,433.
    [66]陈国庆,陈万吉.弹性接触问题线性互补法的摄动原理.固体力学学报,1995,16(4):355-358.
    [67]周宁.Ansys机械工程应用实例.北京:中国水利水电出版社,2006.
    [68]张文轩.基于Ansys的混合陶瓷球轴承接触分析与试验研究:(硕士学位论文).天津:天津大学,2004.
    [69]段进,倪栋,王国业编.Ansys 10.0结构分析从入门到精通.北京:兵器工业出版社,2006.
    [70]李美芳.CAE技术及其发展趋势.制造业信息化,2005.(4):82-83.
    [71]成思源.有限元法的方法论.重庆大学学报(社会科学版).2001.7(4):61-63.
    [72]董其伍,刘启玉,刘敏珊.CAE技术回顾与展望.计算机工程十应用 2002.(14):82-84.
    [73]王有智.CAE技术的过去、现在与未来.计算机辅助设计与制造1998.(12):8-11.
    [74]胡忠.塑形有限元模拟技术的最新进展.塑形工程学报.1994.1(3):3-13.
    [75]Brizmer,V.,Kligerman,Y.,and Etsion,I.Elastic-Plastic Spherical Contact under Combined Normal and Tangential Loading in Full Stick.Tribology Letters,2007,25:61-70.
    [76]王德伦,王淑芬.含有C-C二副杆的空间机构自适应运动综合方法.机械工程学报,2004,40(12),25-30.
    [77]廖卫献.基于实测数据的过盈联接承载力预测的概率方法.机械设计与研究,2001,17(3):13-15.
    [78]孙丽崴,姚英学.加工误差对过盈联接承载能力影响的预测.制造技术与机床,2000,43(8):42-44.
    [79]谭昌柏,周来水,张丽艳等.裁剪B样条曲面重建算法研究.中国机械工程,2007,18(19):2366-2370.
    [80]李水进,周艳红,周云飞等.基于B样条曲面的点云孔洞拟合填充.中国机械工程,2006,17(S1):270-274.
    [81]杨文颖,张先波,李军成等.基于曲率调节的二次均匀B样条插值曲线.计算机工程与应用,2008,44(6):77-78,205.
    [82]于潇雁,蓝兆辉.三次样条插值在平面凸轮廓线曲率半径求解中的应用.机械传动,2008,32(1):50-51.
    [83]刘国栋,成刚虎,潘正祥等.三次样条插值函数在凸轮机构运动分析中的应用.机械传动,2007,3l(5):53-55.
    [84]杨智春,谭光辉.一种基于样条插值的经验模态分解改进算法.西北工业大学学报,2007,25(5):737-741.
    [85]符祥,郭宝龙.三次均匀B样条插值曲线和曲面的矩阵形式.光电子.激光,2007,18(8):992-995.
    [86]侯宇,袁志文.任意方位圆锥度误差的测量和评定.现代计量测试,1996(4):16-19.
    [87]田社平.圆锥轮廓误差最小二乘评定方法.计量技术,2005(3):25-27.
    [88]王瑞康,张国雄.三坐标测量仪上实现圆锥度误差测量和评价.仪器仪表学报,1993,14(1),1-7.
    [89]王德伦,王淑芬,李涛.平面四杆机构近似运动综合的自适应方法.机械工程学报,2001,37(12):21-26.
    [90]刘健,王晓明.鞍点规划与形位误差评定.辽宁:大连理工大学出版社,1996.
    [91]褚洪生.MATLAB7.2优化设计实例指导教程.北京:机械工业出版社,2007.
    [92]王世怀,徐亦方,沈复.简约Hesse序列二次规划方法研究进展.石油大学学报,2007,21(4):101-106.
    [93]刘国华,程伟平,郑冠军.序列二次规划法在多水源管网优化调度中的应用研究.水利学报,2003(2):48-54.
    [94]赵小楼.摩擦材料缩比试验原理及试验方法和测试设备研究:(博士学位论文).吉林:吉林大学,2007.
    [95]曹东海,卢泽生.静摩擦因数与表面粗糙度关系的试验分析.机械传动,2005,29(5):66-68.
    [96]周显波,杜秀国.干摩擦的微观机理.试验技术与试验机,2001,41(1,2):19.
    [97]任露泉编著.试验优化设计与分析.北京:高等教育出版社,2001.
    [98]方开泰,马长兴.正交与均匀试验设计.北京:科学出版社,2001.
    [99]陈瑞阳,毛智勇.机械工程检测技术.北京:高等教育出版社,2000.
    [100]姜志明,王玉梅.大过盈量联接的装配和拆卸.煤矿机械,2001(10):41-43.
    [101]茆诗松,周纪芗,陈颖.试验设计.北京:中国统计出版社,2004.
    [102]腾素珍,冯敬海.数理统计学.辽宁:大连理工大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700