高糖膳食对小鼠消化系统氧化还原状态的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高糖食品越来越多地出现在人们的生活中,许多流行病学报道了高糖膳食与多种疾病的相关性,但其中的机制还有待研究。氧化应激是多种疾病发生发展的共同作用机制,消化系统是机体重要组成部分,其承担的消化吸收和代谢功能涉及许多物质能量代谢和生理过程,这些过程通常伴随着活性氧的生成。许多研究也证明氧化应激在多种消化系统疾病进程中起着重要作用,然而高糖膳食对消化系统氧化还原状态影响的研究还较为少见。因此本研究拟探究高糖膳食对消化系统氧化还原状态的的影响从而探究高糖膳食与疾病相关性的机制,以便为营养相关疾病的预防和治疗提供参考。
     活性氧的化学发光检测法多用于细胞和单层细胞组织的检测,目前还缺乏对多层细胞组织活性氧的测定方法。本研究以过氧化氢为标准品,辣根过氧化物酶为催化剂,鲁米诺为探针,建立了组织活性氧的化学发光检测法。同时用20%(m/v)葡萄糖溶液灌胃昆明种小白鼠,检测了不同时间点血糖浓度和氧自由基水平,发现血糖和活性氧呈正相关。
     通过调整玉米淀粉和葡萄糖比例(40%,0;30%,10%;25%,15%;20%,20%;10%,30%;0,40%)配制不同葡萄糖浓度膳食喂饲小鼠2周,观察不同葡萄糖水平对血和消化系统主要组织胃、十二指肠、空肠、肝脏和胰腺氧化还原状态和生长抑素的影响,结果发现20%葡萄糖膳食两周喂饲使得十二指肠和空肠氧化还原状态最优,这说明消化道消化与吸收功能达到平衡有利于机体氧化还原平衡的维持。40%葡萄糖膳食使血和消化系统各组织发生了氧化应激,说明快速吸收会使机体氧化还原状态失衡。分析血和消化系统各组织生长抑素与活性氧的相关性,发现生长抑素可能在活性氧的刺激下参与机体的抗氧化防御。用高糖膳食(含20%葡萄糖)分别喂饲小鼠1、2、4周,观察血及消化系统氧化还原状态和生长抑素的变化,结果显示4周的高糖膳食喂饲导致了小鼠血、胃、肝脏和胰腺氧化应激,而十二指肠和空肠仍然没有发生氧化应激;胃肠道生长抑素和活性氧的变化存在着高度正相关,证实活性氧可能作为信号分子刺激生长抑素参与机体抗氧化防御的推论。
     为探究小肠对高糖膳食诱导的氧化应激具有防御能力的机制,本研究取高糖膳食(含20%葡萄糖)4周喂饲下的小鼠空肠组织制备全基因表达谱芯片,全面分析氧化还原酶活性相关基因,发现抗氧化酶基因Prdx1和Prdx4表达显著增高,表明二者的表达产物在空肠中发挥了极强的抗氧化保护功能。用定量PCR检测不同葡萄糖水平膳食两周喂饲和高糖膳食(含20%葡萄糖)不同时间喂饲下十二指肠和空肠Prdx1,Prdx4的基因表达,并分析基因表达变化与生长抑素变化的相关性,发现生长抑素变化和Prdx1,Prdx4基因表达高度正相关;而活性氧变化与Prdx1,Prdx4基因表达并无相关性。综合上述结果得出一个推论:机体ROS可能作为信号分子刺激生长抑素的分泌,生长抑素在小肠可能通过参与Prdx1,Prdx4的表达调控发挥其抗氧化防御功能。
     同样为探究四周高糖膳食(含20%)喂饲导致小鼠肝脏发生氧化应激的分子机制,取肝脏组织制备全基因表达芯片,分析了14446条基因的表达变化,发现1102条基因的表达与对照组相比发生了改变。分析活性氧产生与清除相关基因的表达发现,高糖膳食喂饲下肝脏细胞内游离脂肪酸水平增高,其在线粒体的氧化分解并未加强,而在过氧化物酶体的氧化分解加强,此过程伴随着大量活性氧的生成;细胞色素P450家族的基因表达活动也显著加强,这同样会导致活性氧的生成。另外芯片分析也显示高糖膳食主要通过下调硫醇平衡相关基因的表达削弱了小鼠肝脏的抗氧化防御能力。高糖膳食导致的肝脏活性氧增加和硫醇水平的降低导致了肝脏氧化应激的发生。
     过量糖的摄入会导致机体脂代谢紊乱,其发生发展过程是否氧化应激的参与,这是本课题的研究内容之一。对脂代谢机制的研究多集中于肝脏,而小肠作为脂吸收的主要场所,其脂代谢的改变在脂代谢紊乱中的作用却常被忽略。本研究用高糖膳食(含20%葡萄糖)喂饲小鼠4周,检测高糖对血脂的影响。取肝脏和空肠制作基因芯片,以分析过量糖摄入导致脂代谢紊乱的分子机制。结果发现20%葡萄糖膳食四周喂饲导致小鼠脂代谢紊乱。与其他研究不同,对肝脏脂代谢相关基因的影响主要为甘油三酯水解相关基因和脂肪酸在过氧化物酶体氧化的相关基因,脂肪酸在过氧化物酶体的氧化伴随活性氧的生成,这一结果证实了脂代谢紊乱过程中氧化应激的参与。而空肠基因芯片的分析则显示,高糖摄入显著影响了小肠脂代谢相关基因的表达,主要为甘油三酯消化吸收和胆固醇沉积相关基因,这些基因的表达改变与肝脏脂代谢相关基因的表达改变以及氧化应激一起参与了脂代谢紊乱的发展形成。
Many researches showed the intake of high sugar diet was related to multiple diseases. But the underlying mechanism is still nof fully clear. Oxidative stress is a well-recognized mechanism in many pathological conditions. Digestion, absorption and metabolism in digestive system involve many energy processes which usually accompanied by the production of reactive oxygen species (ROS). Many research reported oxidative stress played important roles in many diseases in digestive system. However there are few researches on the effect of high sugar diet on digestive system and underlying mechanism. In this research, we explored the effect of high glucose diet on digestive system and underlying mechanism, the relation between oxidative and dyslipidemia, which provided the reference value for the prevention and treatment of diseases related to nutrition.
     Chemiluminescence assay is generally applied to detect ROS in cells or monolayer tissues. There are few assays for detection of ROS in multilayer tissues. We established the chemiluminescence assay for ROS in multilayer tissues with hydrogen peroxide as standard, luminol as probe, horseradish peroxidase as catalyst. We did intragastric administration in Kunming mice, detected the blood glucose concentration and ROS level at different times. The results showed positive correlation between blood glucose concentration and ROS.
     Mice were fed by diet with different concentration of glucose which were obtained by adjusting the proportion of corn starch and glucose (40%,0;30%,10%;25%,15%;20%, 20%;10%,40%;0,40%). After two weeks, we detected redox status and somatostatin level of blood, stomach, duodenum, jejunum, liver and pancreas in six groups of mice. The results didn't show the correlation between the concentration of glucose and degree of oxidative stress. Diet with 20% glucose induced the optional redox status in duodenum and jejunum. Diet with 40% glucose induced the complete oxidative stress in blood and digestive system. The correlation analysis for somatostatin and ROS suggested somatostatin played important roles in defense against oxidative stress, while ROS was as signal molecule.
     Why small intestine could defend against oxidative stress induced by high glucose diet (containing 20% glucose)? We did DNA chip using jejunum of mice on high glucose diet for four weeks, comprehensively analyzed genes related to oxidoreductase, found Prdxl and Prdx4 had higher expressions in group fed with high glucose diet compared with control, which suggested Prdxl and Prdx4 played strong roles in defense against oxidative stress in jejunum. We separately detected the relative expression of Prdxl and Prdx4 in mice on diet with different concentration of glucose for two weeks or diet with 20% glucose for four weeks, found the positive correlation between somatotain and the gene expressions of Prdxl and Prdx4. Sum up the above the results, we concluded that ROS as signal molecule induced the secretion of somatostatin, and then somatostain play its roles in defense against oxidative stress by regulating the expressions of Prdxl and Prdx4.
     We also did DNA chip using liver of mice on high glucose diet for four weeks, comprehensively genes related to ROS production and removing, found that ROS in oxidative stress induced by high GI diet were mainly fromβ-andωoxidation in peroxisome and CYPE1 in microsome, which was different from other researches; high glucose diet impaired the antioxidant defense by down-regulating the expression of genes related to thiol redox.
     Excess of sugar intake can induce dyslipidemia, whose initiation and development involve oxidative stress. The research on the underlying molecular mechanism of simple sugar inducing deleterious effects on lipid metabolism focused the hepatic gene expression and enzyme activities change related to lipid metabolism. However, there are few researches on the effect of high carbohydrate on lipid metabolism of intestine. In this research, we fed mice with high glucose diet (containing 20% glucose) for four weeks, detected the effect of high glucose diet on blood lipid profiles. The results showed high glucose diet feeding induced dyslipidemia in mice. In order to explore the mechanism of dyslipidemia induced by high glucose diet, we comprehensively analyzed expressions of genes related to lipid metabolism in liver and jejunum using microarray analysis, found expressions of genes related to triglyceride hydrolysis and fatty acid oxidation in peroxisome were different from control. Fatty oxidation in peroxisome was accompanied by the production of ROS, which verified that oxidative stress participated in the initiation and development of dyslipidemia. Microarray analysis for jejunum showed the intake of high glucose diet influenced expressions of genes related to triglyceride digestion, absorption and deposit. The expressions of genes related to lipid metabolism in liver and jejunum, together with oxidative stress, participated in the initiation and development of dyslipidemia induced by high glucose diet.
引文
1. Dawber TR, Moore FE, Mann GV. Coronary heart disease in the Framingham Study. Am J Publ Health 1957; 47:4-24.
    2. Keys A, Anderson JT, Grande F. Prediction of serum-cholesterol responses of man to changes in fats in the diet. Lancet 1957; I:943-66.
    3. Taubes G. The soft science of dietary fat.Science 2001; 291:2536-45.
    4. Allison DB, Saunders SE. Obesity in North America, an overview. Med Clin North Am 2000; 84:305-32.
    5. Rubenstein AH. Obesity:a modern epidemic. Trans Am Clin Climatol Assoc 2005; 116:103-11.
    6. Bazzano LA, Serdula M, Liu S. Prevention of type 2 diabetes by diet and lifestyle modification. J Am Coll Nutr 2005; 24(5):310-9.
    7. Krauss RM, Eckel RH, Howard BV, Appel LJ, Daniels SR, Deckelbaum RJ, et al. AHA Dietary Guidelines. Revision 2000:a statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 2000; 102:2284-99.
    8. Parks EJ. Effect of dietary carbohydrate on triglyceride metabolism in humans. J Nutr 2001; 131:2772S-4.
    9. Graham TE, Adamo KB. Dietary carbohydrate and its effects on metabolism and substrate stores in sedentary and active individuals. Can J Appl Physiol 1999; 24(5):393-415.
    10. Popkin BM, Nielsen SJ. The Sweetening of the World's Diet. Obesity Res.2003; 11:1325-1332.
    11. Otto H, Bleyer G, Pennartz M, Sabin G, Schauberger G, Spaethe K. Kohlenhydrataustauschnach biologischen aquivalenten. (Carbohydrate exchange according to biological equivalents.) Diatetik bei diabetes mellitus. Bern, Switzerland: Huber 1973:41-50.
    12. Jenkins DJ, Wolever TM, Taylor RH, et al. Glycemic index of foods:a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34:362-6.
    13. Jenkins DJ, Wolever TM, Kalmusky J, et al. Low glycemic index foods in the management of hyperlipidemia. Am J Clin Nutr 1985; 42:604-17.
    14. Jenkins DJ, Wolever TM, Collier GR, et al. Metabolic effects of a low-glycemic-index diet. Am J Clin Nutr 1987;46:968-75.
    14. Jenkins DJ, Wolever TM, Collier GR, et al. Metabolic effects of a low-glycemic-index diet. Am J Clin Nutr 1987; 46:968-75.
    15. Kiens B, Richter EA. Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. Am J Clin Nutr 1996; 63:47-53.
    16. Frost G, Leeds A, Trew G, Margara R, Dornhorst A. Insulin sensitivity in women at risk of coronary heart disease and the effect of a low glycemic diet. Metabolism 1998; 47:1245-51.
    17. Ford ES, Liu S. Glycemic index and serum high-density lipoprotein cholesterol concentration among us adults. Arch Intern Med 2001; 161:572-6.
    18. Shikany JM, Phadke RP, Redden DT, Gower BA.Effects of low- and high-glycemic index/glycemic load diets on coronary heart disease risk factors in overweight/obese men.Metabolism.2009 Jul 22. [Epub ahead of print]
    19. Salmeron J, Ascherio A, Rimm EB, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997;20:545-50
    20. Clapp JF, Lopez B.Low-Versus High-Glycemic Index Diets in Women:Effects on Caloric Requirement, Substrate Utilization and Insulin Sensitivity.Metab Syndr Relat Disord. 2007 Sep;5(3):231-242.
    21. George SM, Mayne ST, Leitzmann MF, Park Y, Schatzkin A, Flood A, Hollenbeck A, Subar AF.Dietary glycemic index, glycemic load, and risk of cancer:a prospective cohort study. Am J Epidemiol.2009 Feb 15; 169(4):462-72.
    22. Gnagnarella P, Gandini S, La Vecchia C, Maisonneuve P.Glycemic index, glycemic load, and cancer risk:a meta-analysis. Am J Clin Nutr.2008 Jun; 87(6):1793-801.
    23. Jiao L, Flood A, Subar AF, Hollenbeck AR, Schatzkin A, Stolzenberg-Solomon R. Glycemic index, carbohydrates, glycemic load, and the risk of pancreatic cancer in a prospective cohort study.Cancer Epidemiol Biomarkers Prev.2009 Apr;18(4):1144-51.
    24. Kabat GC, Shikany JM, Beresford SA, Caan B, Neuhouser ML, Tinker LF, Rohan TE.Dietary carbohydrate, glycemic index, and glycemic load in relation to colorectal cancer risk in the Women's Health Initiative.Cancer Causes Control.2008 Dec; 19(10):1291-8.
    25. Lajous M, Boutron-Ruault MC, Fabre A, Clavel-Chapelon F, Romieu I.Carbohydrate intake, glycemic index, glycemic load, and risk of postmenopausal breast cancer in a prospective study of French women. Am J Clin Nutr.2008 May; 87(5):1384-91.
    26. Hoeschen RJ. Oxidative stress and cardiovascular disease. Can J Cardiol 1997; 13(11):1021-5.
    27. Ceriello A, Quagliaro L, Piconi L, et al. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes.2004; 53:701-710.
    28. Partick L. Nonalcoholic fatty liver disease:relationship to insulin sensitivity and oxidative stress.Treatment approaches using vitamin E, magnesium, and betaine. Altern Med Rev 2002; 7(4):276-91.
    29. Kruidenier L, Verspaget HW. Review article:oxidative stress as a pathogenic factor in inflammatory bowel disease-radicals or ridiculous? Aliment Pharmacol Ther 2002; 16(12):1997-2015.
    30. Brand-Miller J, Dickinson S, Barclay A, Celermajer D. The glycemic index and cardiovascular disease risk.Curr Atheroscler Rep 2007; 9(6):479-85.
    31. Willet W, Manson J, Liu S. Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr 2002; 76(1):274S-80S.
    32. Oh K, Hu FB, Cho E, Rexrode KM, Stampfer MJ, Manson JE, Liu S, Willett WC.Carbohydrate intake, glycemic index, glycemic load, and dietary fiber in relation to risk of stroke in women. Am J Epidemiol 2005; 161(2):161-9.
    33. McCann SE, McCann WE, Hong CC, Marshall JR, Edge SB, Trevisan M, Muti P, Freudenhem JL. Dietary patterns related to glycemic index and load and risk of premenopausal and postmenopausal breast cancer in the Western New York Exposure and Breast Cancer Study.Am J Clin Nutr 2007;86(2):465-71.
    34. Vrolix R, Van Meiji LE, Mensink RP.The metabolic syndrome in relation with the glycemic index and the glycemic load.Physiol Behav 2008; 94(2):293-9.
    35. Brownlee M.The pathobiology of diabetic complications:a unifying mechanism. Diabetes 2005; 54:1615-25.
    36. Ceriello A, Bortolotti N, Crescentini A, et al. Antioxidant defences are reduced during the oral glucose tolerance test in normal and non-insulin-dependent diabetic subjects. Eur J Clin Invest.1998;28:329-333
    37. Mohanty P, Hamouda W, Garg R, et al. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab.2000; 85:2970-2973.
    38. Halliwell B, Zhao K, Whiteman M. The gastrointestinal tract:a major site of antioxidant action? Free Radic Res 2000; 33:819-830
    39. Prabhu R, Anup R, Balasubramanian KA. Surgical stress induces phospholipid degradation in the intestinal brush border membrane. J Surg Res 2000; 94:178-184
    40. Bhor VM, Raghuram N, Sivakami S. Oxidative damage and altered antioxidant enzyme activities in the small intestine of streptozotocin-induced diabetic rats. Int J Biochem Cell Biol 2004; 36:89-97
    41. Balkan J, Kanbgli O, Hatipogiu A, Kucuk M, Cevikbas U, Aykac-Toker G, Uysal M. Improving effect of dietary taurine supplementation on the oxidative stress and lipid levels in the plasma, liver and aorta of rabbits fed on a high-cholesterol diet.Biosci Biotechnol Biochem 2002; 66(8):1755-8.
    42. Oliveira CP, da Costa Gayotto LC, Tatai C, Della Bina BI, Janiszewski M, Lima ES, Abdalla DS, Lopasso FP, Laurindo FR, Laudanna AA.Oxidative stress in the pathogenesis of nonalcoholic fatty liver disease in rats fed with a choline-deficient diet. J cell Mol Med 2002;6(3):399-406.
    43. Demori I, Voci A, Fugassa E, Burlando B.Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol 2006; 40(3):185-91.
    44. Rakonczay Z Jr, Boros I, Jarmay K, Hegyi P, Lonovics J, Takacs T. Ethanol administration generates oxidative stress in the pancreas and liver, but fails to induce heat-shock protein rats. J Gastroenterol Hepatol 2003; 18(7):858-67.
    45. Kakkar R, Mantha SV, Radhi J, Prasad K, Kalra J. Increased oxidative stress in rat liver and pancreas during progression of streptozotocin-induced diabetes. Clin Sci (Lond) 1998; (94):623-32.
    46. Yoshitaka K and Hideaki Kaneto. Role of oxidative stress in pancreatic β-cell dysfunction.Annals of the New York Academy of Sci 2006; 1011:168-176.
    47. Brazeaup V, Burgus R, Ling N et al. Hypothalamicpolypeptide that inhibits the secretion of immunoreactive pituitary growth hormore. Science 1973; 179:77-79.
    48. Reisine T, Bell GI. Molecular biolgy of somatostainreceptors. EndocrRev 1995; 16:427-442
    49. Viguerie N, Tahiri JN, Esteve J,et al.Functional somatostaton receptor sonrat pancreatic antinar cell line.Am JPhysiol,1998,255:G113-G120
    50. Katan MB. Effect of low-fat diets on plasma high-density lipoprotein concentrations. Am J Clin Nutr 1998; 6 7 (suppl):573-6.
    51. Ornish D. Low-fat diet. N Engl J Med 1998; 338:128.
    52. Parks EJ, Krauss RM, Christiansen MP, Neese RA, Hellerstein MK. Effects of a low-fat, high-carbohydrate diet on VLDL triglyceride assembly, production and clearance. J Clin Invest 1999; 104:1087-96.
    53. Nestel PJ, Carroll KF, Havenstein N. Plasma triglyceride response to carbohydrates, fats and calorie intake. Metabolism 1970; 19:1-18.
    54. Boberg J, Carlson LA, Freyschuss U, Lassers BW, Wahlqvist ML. Splanchnic secretion rates of plasma triglycerides and total and splanchnic turnover of plasma free fatty acids in men with normo- and hypertriglyceridaemia. Eur J Clin Invest 1972; 2:454-66.
    55. Oscai LB, Tsika RW, Essig DA. Exercise training has a heparin-like effect on lipoprotein lipase activity in muscle.Can J Physiol Pharmacol 1992; 70:905-9.
    56. Parks EJ. Dietary carbohydrate's effect on lipogenesis and the relationship of lipogenesis to blood insulin and glucose oncentrations. Br J Nutr 2002; 87(suppl 2):S247-53.
    57. Katsurada A, Iritani N, Fukuda H, Matsumura Y, Nishimoto N, Noguchi T, et al. Effects of nutrients and hormones on transcriptionaland post-transcriptional regulation of acetyl-CoA carboxylase in rat liver, Eur J Biochem 1990; 190 (2):435-441.
    58. Katsurada A, Iritani N, Fukuda H, Matsumura Y, Nishimoto N, Noguchi T, et al. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver, Eur J Biochem 1990; 190 (2):427-433.
    59. Dietschy, JM, Siperstein MD. Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J Lipid Res 1967; 8:97-104.
    60. Spady DK, Dietschy JM. Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res 1983; 24:303-315.
    1. Marx JL. Oxygen free radicals linked to many diseases. Science 1987; 235(4788): 529-31.
    2. Marfella R,Quagliaro L, Nappo F, Ceriello A, Giugliano D. Acute hyperglycemia induces an oxidative stress in healthy subjects. J Clin Invest 2001; 108(4):635-36.
    3. Stentz FB, Umpierrez GE, Cuervo R, Kitabchi AE.Proinflammatory cytokines, markers of cardiovascular risks, oxidative stress; and lipid peroxidation in patients with hyperglycemic crises.Diabetes 2004; 53(8):2079-86.
    4. Vincent AM, Russell JW, Low P, Feldman EL.Oxidative stress in the pathogenesis of diabetic neuropathy.Endocr Rev.2004 Aug;25(4):612-28. Review.
    5. Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, Rajala MW, Du X, Rollman B, Li W, Hawkins M, Barzilai N, Rhodes CJ, Fantus IG, Brownlee M, Scherer PE.The hyperglycemia-induced inflammatory response in adipocytes:the role of reactive oxygen species. Biol Chem.2005 Feb 11; 280(6):4617-26.
    6. Kawahito S, Kitahata H, Oshita S.Problems associated with glucose toxicity:role of hyperglycemia-induced oxidative stress. World J Gastroenterol.2009 Sep 7; 15(33):4137-42.
    7.焦艳娜,任晓蓉,马红琼,李晖,庞国伟。流动注射化学发光法快速测定中药黄芪中的痕量铬.现代仪器2008年第二期.
    8.杨季东,石文兵,黄玉明。逆胶束介导的化学发光测定过氧化氢.广西师范大学学报2003 21 (z3)
    1. Jenkins DJA, Wolever TMS, Taylor RH, et al. Glycemic index of foods:a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34:362-6.
    2. Roberts SB. High-glycemic index foods, hunger and obesity:is there a connection? Nutr Rev 2000; 58:163-9.
    3. Frost G, Leeds A, Trew G, Margara R, Dornhorst A. Insulin sensi-tivity in women at risk of coronary heart disease and the effect of a low glycemic diet. Metabolism 1998; 47:1245-51.
    4. Salmeron J,Ascherio A, Rimm E, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997; 20:545-50.
    5. Liu S, Manson J, Stampfer MJ, et al. Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density-lipoprotein cholesterol and fasting plasma triacyglycerols in post-menopausal women. Am J Clin Nutr 2001; 73:560-6.
    6. Oh K, Willett WC, Fuchs CS, Giovannucci EL. Glycemic index, glycemic load, and carbohydrate intake in relation to risk of distal colorectal adenoma in women. Cancer Epidemiol Biomarkers Prev.2004; 13(7):1192-8.
    7. Augustin LS, Gallus S, Neqri E, La Vecchia C. Glycemic index, glycemic load and risk of gastric cancer. Ann Oncol.2004; 15(4):581-4.
    8. Sies H. Oxidative stress:oxidants and antioxidants. Exp Physiol.1997; 82:291-295.
    9. Hu Y, Block G, Norkus EP, Morrow JD, Dietrich M, Hudes M. Relations of glucemic index and glycemic load with plasma oxidative stress markers. Am J Clin Nutr.2006; 84(1):70-6.
    10. Diniz YS, Rocha KK, Souza GA, Galhardi CM, Ebaid GM, Rodrigues HG, Novelli Filho JL, Cicoqna AC, Novelli EL. Effects of N-acetylcysteine on sucrose-rich diet-induced hyperglycaemia, dyslipidemia and oxidative stress in rats. Eur J Pharmacol.2006; 543(1-3):151-7.
    11. Diaz EO, Galqani JE, Aquirre CA, Atwater IJ, Burrows R. Effect of glycemic index on whole-body substrate in obese women. Int J Obes (Lond).2005; 29 (1):108-14.
    12. Keshavarzian A, Sedghi S, Kanofsky J, List T, Robinson C, Ibrahim C, Winship D. Excessive production of reactive oxygen metabolites by inflamed colon:analysis by chemiluminescence probe. Gastroenterology.1992; 103:177-185.
    13. Davies GR, Simmonds NJ, Stevens TR, Grandison A, Blake DR, Rampton DS. Mucosal reactive oxygen metabolite production in duodenal ulcer disease. Gut.1992; 33:1467-1472.
    14. Tutar E, Ertem D, Unluguzel G, Tanrikulu S, Haklar G, Celikel C, Ademoglu E, Pehlivanoglu E. Reactive oxygen species and chemokines:are they elevated in the esophageal mucosa of children with gastroesophageal reflux disease? World J Gastroenterol.2008 May 28; 14 (20):3218-23.
    15. Sakurai T, He G, Matsuzawa A, Yu GY, Maeda S, Hardiman G, Karin M. Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell.2008 Aug 12; 14(2):156-65.
    16. Tang C, Han P, Oprescu AI, Lee SC, Gyulkhandanyan AV, Chan GN, Wheeler MB, Giacca A. Evidence for a role of superoxide generation in glucose-induced beta-cell dysfunction in vivo.2007 Nov; 56(11):2722-31.
    17. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem 1951; 193:265-75.
    18. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990; 186:421-31.
    19. Beers RF, Jr and Sizer IW. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem.1952:195:276-285.
    20. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "Antioxidant Power":The FRAP Assay. Anal Chem 1996; 239:70-6.
    21. Hafner SM, Kennedy E, Gonzalez C, et al. A prospective analysis of the HOMA model. Mexico City Diabetes Study Diabetes Care,1996,19:1138
    22. Duseja A,Thumburu KK, Das A, et al. Insulin tolerance test is comparable to homeostasis model assessment for insulin resistance in patients with nonalcoholic fatty liver disease[J]. Indian J Gastroenterol,2007,26(4):170-173
    23. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzai GJ, Stocker R, Van Remmen H, Kraegen EW, Gooney GJ, Richardson AR, James DE. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 2009; 106(42): 17787-92.
    1. Roberts SB. High-glycemic index foods, hunger and obesity:is there a connection? Nutr Rev 2000; 58:163-9.
    2. Frost G, Leeds A, Trew G, Margara R, Dornhorst A. Insulin sensi-tivity in women at risk of coronary heart disease and the effect of a low glycemic diet. Metabolism 1998; 47:1245-51.
    3. Salmeron J,Ascherio A, Rimm E, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997; 20:545-50.
    4. Liu S, Manson J, Stampfer MJ, et al. Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density-lipoprotein cholesterol and fasting plasma triacyglycerols in post-menopausal women. Am J Clin Nutr 2001; 73:560-6.
    5. Oh K, Willett WC, Fuchs CS, Giovannucci EL. Glycemic index, glycemic load, and carbohydrate intake in relation to risk of distal colorectal adenoma in women. Cancer Epidemiol Biomarkers Prev.2004; 13(7):1192-8.
    6. Augustin LS, Gallus S, Neqri E, La Vecchia C. Glycemic index, glycemic load and risk of gastric cancer. Ann Oncol.2004; 15(4):581-4.
    7. Sies H. Oxidative stress:oxidants and antioxidants. Exp Physiol.1997; 82:291-295.
    8. Vaca CE, Wilhelm J, Harms-Rihsdahl M. Interaction of lipid peroxidation product with DNA. A review. Mutat Res Rev Genet Toxicol 1998; 195:137-149
    9. Robert A.Prostaglandins:Effects on gastrtinal tract. Clin Physiol Biochem 1984; 2: 61-69.
    10. Balkan J, Kanbgli O, Hatipogiu A, Kucuk M, Cevikbas U, Aykac-Toker G, Uysal M. Improving effect of dietary taurine supplementation on the oxidative stress and lipid levels in the plasma, liver and aorta of rabbits fed on a high-cholesterol diet.Biosci Biotechnol Biochem 2002; 66(8):1755-8.
    11. Demori I, Voci A, Fugassa E, Burlando B.Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol 2006; 40(3):185-91.
    12. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzai GJ, Stocker R, Van Remmen H, Kraegen EW, Gooney GJ, Richardson AR, James DE. Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci USA 2009; 106(42): 17787-92.
    1. Livak KJ, Schmittgen TD. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402-408.
    2. Cazzaniga G, Terao M, Lo Schiavo P, Galbiati F, Segalla F, Seldin MF, Garattini E. Chromosomal mapping, isolation, and characterization of the mouse xanthine dehydrogenase gene. Genomics 1994; 23:390-402.
    3. Terao M, Cazzaniga G, Ghezzi P, Bianchi M, Falciani F, Perani P, Garattini E. Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Regulation of its transcript by interferons in vivo. Biochem J 1992; 283:863-870.
    4. Ishii T, Aoki N, Noda A, Adachi T, Nakamura R, Matsuda T. Carboxy-terminal cytoplasmic domain of mouse butyrophilin specifically associates with a 150-kDa protein of mammary epithelial cells and milk fat globule membrane. Biochim Biophys Acta 1995; 1245:285-292.
    5. Lambeth JD, Cheng G, Arnold RS, Edens WA. Novel homologs of gp91phox. Trends Biochem Sci 2000; 25(10):459-61.
    6. The MGC Project Team.The status, quality, and expansion of the NIH full-length cDNA project:the Mammalian Gene Collection (MGC).Genome Res 2004;14:2121-2127.
    7. Bjorgvinsdottir H, Zhen L, Dinauer MC. Cloning of murine gp91phox cDNA and functional expression in a human X-linked chronic granulomatous disease cell line. Blood 1196; 87:2005-2010.
    8. Mason JM, Naidu MD, Barcia M, Porti D, Chavan SS, Chu CC. IL-4-induced gene-1 is a leukocyte L-amino acid oxidase with an unusual acidic pH preference and lysosomal localization. J Immunol 2004; 173:4561-4567.
    9. Thorpe C, Hoober KL, Raje S, Glynn NM, Burnside J, Turi GK, Coppock DL. Sulfhydryl oxidases:emerging catalysts of protein disulfide bond formation in eukaryotes. Arch Biochem Biophys 2002 Sep 1; 405(1):1-12.
    10. Ishii T, Yamada M, Sato H, Matsue M, Taketani S, Nakayama K, Sugita Y, Bannai S. Cloning and characterization of a 23-kDa stress-induced mouse peritoneal macrophage protein. J Biol Chem 1993; 268:18633-18636.
    11. Neumann CA, Krause DS, Carman CV, Das S, Dubey DP, Abraham JL, Bronson RT, Fujiwara Y, Orkin SH, Van Etten RA. Essential role for the peroxiredoxin Prdxl in erythrocyte antioxidant defence and tumour suppression. Nature 2003; 24(6948):561-565.
    12. Yan Y, Sabharwal P, Rao M, Sockanathan S. The antioxidant enzyme Prdx1 controls neuronal differentiation by thiol-redox-dependent activation of GDE2. Cell 2009; 138:1209-1221.
    13. Wong CM, Chun AC, Kok KH, Zhou Y, Fung PC, Kung HF, Jeang K-T, Jin D-Y. Characterization of human and mouse peroxiredoxin IV:evidence for inhibition by Prx-IV of epidermal growth factor- and p53-induced reactive oxygen species. Antioxid. Redox Signal 2000; 2:507-518.
    14. Veal EA, DayAM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell 2007; 26:1-14.
    15. Olahova M, Taylor SR, Khazaipoul S, Wang J, Morgan BA, Matsumoto K, Blackwell TK, Veal EA. A redox-sensitive peroxiredoxin that is important for longevity has tissue- and stress-specific roles in stress resistance.Proc Natl Acad Sci U S A 2008; 105(50): 19839-19844.
    16. Wen ST, Van Etten RA. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Gene Dev 1997; 11:2456-2467.
    17. Veal EA, et al. A 2-Cys peroxiredoxin regulates peroxide-induced oxidation and activation of a stress-activated MAP kinase. Mol Cell 2004; 15:129-139.
    18. Kim YJ, et al. Prxl suppresses radiation-induced c-Jun NH2-terminal kinase signaling in lung cancer cells through interaction with the glutathione S-transferase Pi/c-Jun NH2-terminal kinase complex. Cancer Res 2006; 66:7136-7142.
    19. Jang HH, et al. Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching froma peroxidase to amolecular chaperone function. Cell 2004; 117:625-635.
    20. Moon JC, et al. Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype Ⅱ that enhances HeLa cell resistance to H2O2-induced cell death. J Biol Chem 2005; 280:28775-28784.
    21. Burmester T, Ebner B, Weich B, Hankeln T. Cytoglobin:a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 2002; 19:416-421.
    1. Parks EJ. Dietary carbohydrate's effects on lipogenesis and the relationship of lipogenesis to blood insulin and glucose concentrations. Br J Nutr 2002; 87(suppl 2):S247-53.
    2. Katan MB. Effect of low-fat diets on plasma high-density lipoprotein concentrations. Am J Clin Nutr 1998; 6 7 (suppl):573-6.
    3. Ornish D. Low-fat diet. N Engl J Med 1998; 338:128.
    4. Sies H. Oxidative stress:oxidants and antioxidants. Exp Physiol.1997; 82:291-295.
    5. Balkan J, Kanbgli O, Hatipogiu A, Kucuk M, Cevikbas U, Aykac-Toker G, Uysal M. Improving effect of dietary taurine supplementation on the oxidative stress and lipid levels in the plasma, liver and aorta of rabbits fed on a high-cholesterol diet.Biosci Biotechnol Biochem 2002; 66(8):1755-8.
    6. Oliveira CP, da Costa Gayotto LC, Tatai C, Della Bina BI, Janiszewski M, Lima ES, Abdalla DS, Lopasso FP, Laurindo FR, Laudanna AA. Oxidative stress in the pathogenesis of nonalcoholic fatty liver disease in rats fed with a choline-deficient diet. J cell Mol Med 2002;6(3):399-406.
    7. Demori I, Voci A, Fugassa E, Burlando B.Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. Alcohol 2006; 40(3):185-91.
    8. Polacow VO, Lancha Junior AH. High-carbohydrate diets:effects on lipid metabolism, body adiposity and its association with physical activity and caridovascular disease risk. Araq Bras Endocrinol Metabol 2007; 51(3):389-400.
    9. The MGC Project Team.The status, quality, and expansion of the NIH full-length cDNA project:the Mammalian Gene Collection (MGC).Genome Res 2004; 14:2121-2127.
    10. Raza H, Robin MA, Fang JK, Avadhani NG (2002) Mutiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem J 366:45-55
    11. McLellan LI, Kerr LA, Cronshaw AD, Hayes JD. Regulation of mouse glutathione S-transferases by chemoprotectors. Molecular evidence for the existence of three distinct alpha-class glutathione S-transferase subunits, Ya1, Ya2, and Ya3, in mouse liver. Biochem J 1991; 276:461-469.
    12. Janiszewski M, Lopes LR, Carmo AO, Pedro MA, Brandes RP, Santos CX, Laurindo FR Regultion of NAD(P)H oxidase by associated protein disulfide isomerase in vascular smooth muscle cells. J Biol Chem 2005; 280:40813-40819.
    13. Huang IY, Kimura M, Hata A, Tsunoo H, Yoshida A. Complete amino acid sequence of mouse liver metallothionein-II. J Biochem 1981; 89:1839-1845.
    14. Thornalley PJ, Vasak M. Possible role for metallothionein in protection against radiation-induced oxidative stress:kinetics and mechanism of its reaction with superoxide and hydroxyl readicals. Biocbim Biophbys Acta 1985; 827:36-44.
    15. Bremner I. Nutritional and physiologic significance of metallothionein. Experientia Suppl 1987; 52:81-107.
    16. Suemori S, Sbimazawa M, Kawase K, Satob M, Nagase H, Yamamoto T, Hara H. Metallothionein, an endogenous antioxidant, protects against retinal neuron damage in mice. Invest Opbtbalmol Vis Sci 2006; 47:3975-3982.
    17. Eriksson JW. Metabolic stress in insulin's target cells leads to ROS accumulation-a hypothetical common pathway causing insulin resistance. FEBS Lett 2007; 581:3734-3742.
    18. Johnson EF, Palmer GN, Griffin KJ and Hsu MH (1996) Role of the peroxisome proliferator-activated receptor in cytochrome P450 4A gene regulation. FASEB J 10:1241-1248.
    19. Mannaerts GP, Van Veldhoven PP, Gastells M (2000) Peroxisome lipid degradation via β-and a-oxidation in mammals. Cell Biochem Biophys 32:73-87
    20. Reddy JK and Hshimoto T (2001) Peroxisomal β-oxidation and peroxisome proliferator-activated receptor:an adaptive metabolic system. Annu Rev Nutr 21:193-230.
    21. Li X, Baumqart E, Donq GX, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD, Gould SJ. PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 2002; 22:8226-8240.
    22. Lieber CS. Cytochrome P-4502E1:its physiological and pathological role. Physiol Rev 1997; 77:517-544.
    23. Ejstrom G and Ingelman-Sundberg M. Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450ⅡE1). Biochem Pharmacol 1989; 38:1313-1319.
    24. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR (2000) CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 105:1067-1075
    1. Austin MA. Epidemiology of hypertriglyceridemia and cardiovascu-lar disease. Am J Cardiol 1999;83:13F-6F.2.
    2. Austin MA, Hokanson JE, Edwards KL. Hypertriglyceridemia as acardiovascular risk factor. Am J Cardiol 1998; 81:7B-12B.
    3. Feinman RD, Volek JS. Low carbohydrate diets improve atherogenic dyslipidemia even in the absence of weight loss. Nutr Metab (London) 2006; 3:24.
    4. Krauss RM, Blanche PJ, Rawlings RS, Fernstrom HS, Williams PT. Separate effects of reduced carbohydrate intake and weight loss on atherogenic dyslipidemia. Am J Clin Nutr 2006; 83:1025-31.
    5. Volek JS, Feinman RD. Carbohydrate restriction improves the features of metabolic syndrome. Metabolic syndrome may be defined by the response to carbohydrate restriction. Nutr Metab (London) 2005; 2:31.
    6. Sies H. Oxidative stress:oxidants and antioxidants. Exp Physiol1997; 82:291-295
    7. Katsurada A, Iritani N, Fukuda H, Matsumura Y, Nishimoto N, Noguchi T, et al. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of acetyl-CoA carboxylase in rat liver, Eur J Biochem 1990;190 (2):435-441.
    8. Katsurada A, Iritani N, Fukuda H, Matsumura Y, Nishimoto N, Noguchi T, et al. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver, Eur J Biochem 1990; 190 (2):427-433.
    9. Dietschy, JM, Siperstein MD. Effect of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J Lipid Res 1967; 8:97-104
    10. Spady DK, Dietschy JM. Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster, and rat. J Lipid Res 1983; 24:303-315
    11. Wilson DE, Spiger MJ. A dual precipitation method for quantitative plasma lipoprotein measurement without ultracentrifugation. J Lab Clin Med 1973; 82:473-482.
    12. The MGC Project Team.The status, quality, and expansion of the NIH full-length cDNA project:the Mammalian Gene Collection (MGC).Genome Res 2004; 14:2121-2127.
    13. Warden CH, Davis RC, Yoon MY, Hui DY, Svenson K, Xia YR, Diep A, He KY, Lusis AJ. Chromosomal localization of lipolytic enzymes in the mouse:pancreatic lipase, colipase, hormone-sensitive lipase, hepatic lipase, and carboxyl ester lipase. J Lipid Res.1993 Aug; 34(8):1451-5.
    14. Mead JE, Alfin-Slater RB, Howton DR, and Pop-jak G. Lipids:Chemistry, Biochemistry and Nutrition. Plenum Press, New York,1986; 255-293.
    15. Doolittle MH, Durstenfeld A, Garfinkel AS, and Schotz MC. Triglyceride lipases, hypertriglyceridemia, and atherosclerosis. In Molecular Genetics of Coronary Artery Disease. Lusis AJ, Rotter JI, and Sparkes RS, editors. Karger Press, Basel,1992: 172-188.
    16. Murakami M, Nakashima K, Kamei D, Masuda S, Ishikawa Y, Ishii T, Ohmiya Y, Watanabe K, Kudo I. Cellular prostaglandin E2 production by membrane-bound prostaglandin E synthase-2 via both cyclooxygenases-1 and -2. J Biol Chem 2003; 278:37937-37947
    17. Bosetti F, Langenbach R, Weerasinghe GR. Prostaglandin E2 and microsomal prostaglandin E synthase-2 expression are decreased in the cyclooxygenase-2-deficient mouse brain despite compensatory induction of cyclooxygenase-1 and Ca2+-dependent phospholipase A2. J Neurochem 2004; 91:1389-1397
    18. Kuwamoto S, Inoue H, Tone Y, Izumi Y, Tanabe T. Inverse gene expression of prostacyclin and thromboxane synthases in resident and activated peritoneal macrophages. FEBS Lett 1997; 409:242-246
    19. Hunt MC, Nousiainen SEB, Huttunen MK, Orii KE, Svensson LT, Alexson SEH. Peroxisome proliferator-induced long chain acyl-CoA thioesterases comprise a highly conserved novel multi-gene family involved in lipid metabolism. J Biol Chem 1999; 274:34317-34326
    20. Huhtinen K, O'Byrne J, Lindquist PJG, Contreras JA, Alexson SEH. The peroxisome proliferator-induced cytosolic type I acyl-CoA thioesterase (CTE-I) is a serine-histidine-aspartic acid alpha/beta hydrolase. J Biol Chem 2002; 277:3424-3432
    21. Tvrdik P, Asadi A, Kozak LP, Nedergaard J, Cannon B, Jacobsson A. Cig30, a mouse member of a novel membrane protein gene family, is involved in the recruitment of brown adipose tissue. J Biol Chem 1997; 272(50):31738-46.
    22. Jakobsson A, Jorgensen JA, Jacobsson A. Differential regulation of fatty acid elongation enzymes in brown adipocytes implies a unique role for Elovl3 during increased fatty acid oxidation. Am J Physiol Endocrinol Metab.2005; 289(4):E517-26.
    23. Eisinger DP, Serrero G. Structure of the gene encoding mouse adipose differentiation-related protein (ADRP). Genomics 1993; 16:638-644
    24. Gao J, Ye H, and Serrero G. Stimulation of adipose differentiation related protein (ADRP) expression in adipocyte precursors by long-chain fatty acids. J Cell Physiol 2000; 182:297-302
    25. Brasaemle DL, Barber T, Wolins NE, Serrero G, Blanchette-Mackie EJ, and Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. J Lipid Res 1997; 38:2249-2263
    26. Imamura MT, Inoguchi S Ikuyama, Taniguchi S, Kobayashi K, Nakashima N, and Nawata H. ADRP stimulates lipid accumulation and lipid droplet formation in murine fibroblasts. Am J Physiol Endocrinol Metab,2002; 283:E775-E783
    27. Motomura W, Inoue M, Ohtake T, Takahashi N, Nagamine M, Tanno S, Kohgo Y, Okumura T. Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun.2006 Feb 24;340(4):1111-1118
    28. Liu JJ, Glickman JN, Masyuk AI, Larusso NF. Cholangiocyte bile salt transporters in cholesterol gallstone-susceptible and resistant inbred mouse strains. J Gastroenterol Hepatol 2008; 23:1596-1602
    29. Labonte ED, Li Q, Kay CM, Agellon LB. The relative ligand binding preference of the murine ileal lipid binding protein. Protein Expr Purif 2003; 28:25-33
    30. Beale EG, Harvey BJ, Forest C. PCK1 and PCK2 as candidate diabetes and obesity genes. Cell Biochem Biophys 2007; 48:89-95
    31. Inoue N, Shimano H, Nakakuki M, Matsuzaka T, Nakagawa Y, Yamamoto T, Sato R, Takahashi A, Sone H, Yahagi N, Suzuki H, Toyoshima H, Yamada N. Lipid synthetic transcripiton factor SREBP-la activates p21WAF1/CIP1, a universal cyclin-dependent kinase inhibitor. Mol Cell Biol 2005; 25:8938-8947
    32. Hunt MC and Alexson SHE. The role acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog Lipid Res 2002; 41:99-130
    33. Schrauwen P, Hoeks J, Hesselink MK. Putative function and physiological relevance of the mitochondrial uncoupling protein-3:involvement in fatty acid metabolism? Prog Lipid Res 2006; 45:17-41
    34. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, and Krieger M. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. Science 1996; 271:518-520
    35. Ohgami N, Nagai R, Miyazaki A, Ikemoto M, Arai H, Horiuchi S, Nakayama H. Scavenger receptor class B type I-mediated reverse cholesterol transport is inhibited by advanced glycation end products. J Biol Chem 2001; 276:13348-13355
    36. Labonte ED, Howles PN, Granholm NA, Rojas JC, Davies JP, Loannou YA, Hui DY. Class B type I sacvenger receptor is responsible for the h igh affinity cholesterol binding activity of intestinal brush border membrane vesicles. Biochim Biophys Acta 2007; 1771:1132-1139
    37. Tso P, Balint JA. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am J Physiol 1986; 250:G715-726
    38. Valera A, Pelegrin M, Asins G, Fillat C, Sabater J, Pujol A, Hegardt FG, Bosch F. Overexpression of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase in transgenic mice causes hepatic hyperketogenesis. J Biol Chem 1994; 269:6267-6270
    39. Schwarz M, Davis DL, Vick BR, Russell DW. Genetic analysis of cholesterol accumulation in inbred mice. J Lipid Res 2001; 42:1812-1819
    40. Fong LG, Fujishima SE, Komaromy MC, Pak YK, Ellsworth JL, Cooper AD. Lcoation and regulation of low-density lipoprotein receptors in intestinal epithelium. Am J Physiol 1995; 269:G60-72
    41. Puri V, Ranjit S, Konda S, Nicoloro SM, Straubhaar J, Chawla A, Chouinard M, Lin C, Burkart A, Corvera S, Perugini RA, Czech MP. Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci USA 2008; 105:7833-7838
    42.Trostchansky A, Rubbo H. Lipid nitration and formation of lipid-protein adducts: biological insights. Amino Acids 2007; 32:517-522
    43. Blouin K, Veileux A, Luu-The V, Tchernof A. Androgen metabolism in adipose tissue: recent advances. Mol Cell Endocrinol 2009; 301:97-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700