βγ-晶状体蛋白与三叶因子复合物生物化学特性与作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
βγ-CAT是一个从中国特有的两栖动物大蹼铃蟾(Bombina maxima)皮肤分泌物中分离得到的,由非晶状体βγ-晶状体蛋白(α-亚基, CAT-α)和三叶因子蛋白(β-亚基, CAT-β)天然结合在一起形成的复合物,α-亚基与β-亚基通过非共价的方式交联形成αβ_2,分子量为72-kDa。CAT-α的N-末端部分(CAT-αN, 1-170氨基酸残基)是两个βγ-晶状体结构域,C-末端部分(CAT-αC)与产气荚膜梭菌ε毒素的膜插入结构域有序列同源性。为了分析βγ-CAT的βγ-晶状体蛋白结构域的生物化学特性,我们在大肠杆菌中分别表达了CAT-αN, CAT-αC和CAT-β。对天然纯化的βγ-CAT的免疫共沉淀实验表明CAT-α与CAT-β形成了一个紧密的复合物。Pull-down实验进一步证明重组表达的CAT-β能结合在重组表达的CAT-αN上。此外,我们还发现CAT-αΝ具有钙离子结合模体,存在于其β-折叠构象上。重组的CAT-αΝ可以结合钙离子探针铽离子,而且CAT-αΝ在结合钙离子后构象没有发生明显的改变。
     近年来,研究发现血小板也会发生凋亡,并且这个凋亡过程可能在血小板清除中起作用。βγ-CAT在哺乳动物中体内会引起很多毒理学作用,通过血液学分析发现βγ-CAT会引起兔子体内血小板数量发生显著的下降。因此,为了研究βγ-CAT对血小板的作用,我们将洗涤后的人血小板与不同浓度的βγ-CAT孵育30分钟,我们发现βγ-CAT使人血小板表现出了多种凋亡特征,如caspase-3的激活,磷脂酰丝氨酸外翻,线粒体膜电位去极化,细胞色素c的释放以及促凋亡蛋白Bax和Bak的表达上调。同时,通过血小板激活检测实验,如P-选择素在人血小板表面的表达,GPIIb/Ⅲa的激活和血小板聚集等,发现βγ-CAT在引起人血小板凋亡的同时并不引起血小板的激活。
     前期的研究表明,βγ-CAT可以在人红细胞上形成寡聚体并具有很强的溶血活性。我们通过实验进一步发现βγ-CAT (1 nM)可以引起红细胞内钙离子浓度急剧升高从而引起溶血。
     然而,在没有细胞外钙离子存在的情况下(反应体系中加入20 mM EGTA),虽然βγ-CAT引起的溶血得到显著抑制,但是βγ-CAT仍然可以结合在红细胞膜上并寡聚化。另外,我们发现βγ-CAT在人血小板上引起的磷脂酰丝氨酸外翻和线粒体膜电位的下降也是钙离子依赖的。综上所述,我们的数据表明CAT-β(三叶因子蛋白)和CAT-αN(βγ-晶状体结构域)在体外可以相互结合,这为βγ-晶状体蛋白与三叶因子的蛋白在体外形成复合物形成了结构基础。此外,CAT-αN具有钙离子结合活性,而且βγ-CAT引起的溶血和血小板凋亡都是钙离子依赖的,这为进一步研究βγ-CAT生物学活性的作用机制提供了一个新的线索。
βγ-CAT is a naturally existing 72-kDa complex of non-lensβγ-crystallin (α-subunit, CAT-α) and trefoil factor (β-subunit, CAT-β), with a non-covalently linked form ofαβ_2, identified from frog Bombina maxima skin secretions. The N-terminal part (CAT-αN, 1-170 residues) of CAT-αare twoβγ-crystallin domains, while the rest C-terminal part (CAT-αC) shows sequence homology to membrane insertion domain of Clostridium perfringens epsilon toxin. To examine the biochemical characteristics of theβγ-crystallin domains ofβγ-CAT, CAT-αN, CAT-αC and CAT-βwere expressed in Escherichia coli, respectively. Co-immunoprecipitation of naturally purifiedβγ-CAT comfirmed the constant existence of CAT-αand CAT-βcomplex. Pull-down assays showed that recombinant CAT-βcould bind to recombinant CAT-αN that is composed of twoβγ-crystallin domains. Ca~(2+) -binding motifs were found in CAT-αΝthat folds mainly inβ-sheet conformation. Recombinant CAT-αΝwas able to bind the calcium probe terbium, and the conformation of the protein is not significantly altered upon binding Ca~(2+) .
     In recent years, it has been reported that apoptosis may occur in platelets and play a role in the clearance of effete platelets.βγ-CAT caused several in vivo toxic effects on mammals. Through determined hematological parameters of rabbits, it has been found thatβγ-CAT significantly reduced the number of platelets in a time-dependent manner. Here, in order to explore the effect ofβγ-CAT on platelet, washed platelets were incubated with various concentrations ofβγ-CAT for 30 min. We found thatβγ-CAT induced several apoptosis events in human platelets, including caspase-3 activation, phosphatidylserine (PS) exposure, depolarization of mitochondrial inner transmembrane potential (ΔΨm), cytochrome c release and strong expression of pro-apoptotic Bax and Bak proteins. However,βγ-CAT did not significantly induce platelet activation as detected by P-selectin surface expression, GPIIb/IIIa activation and platelet aggregation.
     βγ-CAT protein possesses strong hemolytic activity on human erythrocytes. Treatment of the erythrocytes withβγ-CAT (1 nM) resulted in rapid Ca~(2+) influx in the cells and eventually led to hemolysis. However, in the absence of extracellular Ca~(2+) (in the presence of 20 mM EGTA), though the binding and oligomerization ofβγ-CAT in erythrocyte membranes were observed, no significant hemolysis could be detected. In addition, we observed thatβγ-CAT-induced PS exposure andΔΨm depolarization in platelets are Ca~(2+) -dependent. Taken together, our data reveal the binding capacity of CAT-β(a trefoil factor) to CAT-αN (βγ-crystallin domains), providing a basis for the formation ofβγ-crystallin and trefoil factor complex in vivo. Furthermore, theβγ-crystallin domains ofβγ-CAT are able to bind Ca~(2+) , andβγ-CAT-induced hemolysis and platelet apoptosis are Ca~(2+) -dependent.
引文
1. Jester, J.V., Corneal crystallins and the development of cellular transparency. Semin Cell Dev Biol, 2008. 19(2): p. 82-93.
    2. Lutsch, G., et al., Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart. Circulation, 1997. 96(10): p. 3466-76.
    3. Moyano, J.V., et al., AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest, 2006. 116(1): p. 261-70.
    4. Zhang, C., et al., A potential role for beta- and gamma-crystallins in the vascular remodeling of the eye. Dev Dyn, 2005. 234(1): p. 36-47.
    5. Blundell, T., et al., The molecular structure and stability of the eye lens: x-ray analysis of gamma-crystallin II. Nature, 1981. 289(5800): p. 771-7.
    6. Bloemendal, H., et al., Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol, 2004. 86(3): p. 407-85.
    7. Clout, N.J., et al., Crystal structure of the calcium-loaded spherulin 3a dimer sheds light on the evolution of the eye lens betagamma-crystallin domain fold. Structure, 2001. 9(2): p. 115-24.
    8. Quax-Jeuken, Y., et al., Evolution of crystallins: expression of lens-specific proteins in the blind mammals mole (Talpa europaea) and mole rat (Spalax ehrenbergi). Mol Biol Evol, 1985. 2(4): p. 279-88.
    9. Lubsen, N.H., H.J. Aarts, and J.G. Schoenmakers, The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family. Prog Biophys Mol Biol, 1988. 51(1): p. 47-76.
    10. D'Alessio, G., The evolution of monomeric and oligomeric betagamma-type crystallins. Facts and hypotheses. Eur J Biochem, 2002. 269(13): p. 3122-30.
    11. Rosinke, B., et al., Ca2+-loaded spherulin 3a from Physarum polycephalum adopts the prototype gamma-crystallin fold in aqueous solution. J Mol Biol, 1997. 271(4): p. 645-55.
    12. Bagby, S., et al., Structural similarity of a developmentally regulated bacterial spore coat protein to beta gamma-crystallins of the vertebrate eye lens. Proc Natl Acad Sci U S A, 1994. 91(10): p. 4308-12.
    13. Nelson, D.R. and D.R. Zusman, Transport and localization of protein S, a spore coat protein, during fruiting body formation by Myxococcus xanthus. J Bacteriol, 1983. 154(2): p. 547-53.
    14. Wistow, G., L. Summers, and T. Blundell, Myxococcus xanthus spore coat protein S may have a similar structure to vertebrate lens beta gamma-crystallins. Nature, 1985. 315(6022): p. 771-3.
    15. Jobby, M.K. and Y. Sharma, Calcium-binding crystallins from Yersinia pestis. Characterization of two single betagamma-crystallin domains of a putative exported protein. J Biol Chem, 2005. 280(2): p. 1209-16.
    16. Wistow, G., Evolution of a protein superfamily: relationships between vertebrate lens crystallins and microorganism dormancy proteins. J Mol Evol, 1990. 30(2): p. 140-5.
    17. Ogawa, M., et al., Metamorphic change in EP37 expression: members of theβγ-crystallin superfamily in newt. Development Genes and Evolution, 1997. 206(7): p. 417-424.
    18. Liu, S.B., et al., A novel non-lens betagamma-crystallin and trefoil factor complex from amphibian skin and its functional implications. PLoS One, 2008. 3(3): p. e1770.
    19. Ray, M.E., et al., AIM1, a novel non-lens member of the betagamma-crystallin superfamily, is associated with the control of tumorigenicity in human malignant melanoma. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3229-34.
    20. Antuch, W., P. Guntert, and K. Wuthrich, Ancestral beta gamma-crystallin precursor structure in a yeast killer toxin. Nat Struct Biol, 1996. 3(8): p. 662-5.
    21. Ohno, A., et al., NMR structure of the Streptomyces metalloproteinase inhibitor, SMPI, isolated from Streptomyces nigrescens TK-23: another example of an ancestral beta gamma-crystallin precursor structure. J Mol Biol, 1998. 282(2): p. 421-33.
    22. Aravind, P., et al., Exploring the limits of sequence and structure in a variant betagamma-crystallin domain of the protein absent in melanoma-1 (AIM1). J Mol Biol, 2008. 381(3): p. 509-18.
    23. Aravind, P., et al., Three-dimensional domain swapping in nitrollin, a single-domain betagamma-crystallin from Nitrosospira multiformis, controls protein conformation and stability but not dimerization. J Mol Biol, 2009. 385(1): p. 163-77.
    24. Kretsinger, R.H., Evolution and function of calcium-binding proteins. Int Rev Cytol, 1976.
    46: p. 323-93.
    25. Weinman, S., Calcium-binding proteins: an overview. J Biol Buccale, 1991. 19(1): p. 90-8.
    26. Persechini, A., N.D. Moncrief, and R.H. Kretsinger, The EF-hand family of calcium-modulated proteins. Trends Neurosci, 1989. 12(11): p. 462-7.
    27. Moncrief, N.D., R.H. Kretsinger, and M. Goodman, Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J Mol Evol, 1990. 30(6): p. 522-62.
    28. Aravind, P., et al., The betagamma-crystallin superfamily contains a universal motif for binding calcium. Biochemistry, 2009. 48(51): p. 12180-90.
    29. Sharma, Y., et al., Binding site conformation dictates the color of the dye stains-all. A study of the binding of this dye to the eye lens proteins crystallins. J Biol Chem, 1989. 264(35): p. 20923-7.
    30. Rajini, B., et al., Calcium binding properties of gamma-crystallin: calcium ion binds at the Greek key beta gamma-crystallin fold. J Biol Chem, 2001. 276(42): p. 38464-71.
    31. Jobby, M.K. and Y. Sharma, Calcium-binding to lens betaB2- and betaA3-crystallins suggests that all beta-crystallins are calcium-binding proteins. FEBS J, 2007. 274(16): p. 4135-47.
    32. Combettes, L., B. Berthon, and M. Claret, Phospholipidic second messengers and calcium. Biochimie, 1987. 69(4): p. 281-6.
    33. Lotersztajn, S., et al., The liver plasma membrane Ca2+ pump: hormonal sensitivity. Biochimie, 1985. 67(10-11): p. 1169-76.
    34. Zschauer, A., et al., Calcium channels in thrombin-activated human platelet membrane. Nature, 1988. 334(6184): p. 703-5.
    35. Tang, D., et al., Influence of age, diabetes, and cataract on calcium, lipid-calcium, and protein-calcium relationships in human lenses. Invest Ophthalmol Vis Sci, 2003. 44(5): p. 2059-66.
    36. Wenk, M. and E.M. Mayr, Myxococcus xanthus spore coat protein S, a stress-induced member of the betagamma-crystallin superfamily, gains stability from binding of calcium ions. Eur J Biochem, 1998. 255(3): p. 604-10.
    37. Kretschmar, M., E.M. Mayr, and R. Jaenicke, Kinetic and thermodynamic stabilization of the betagamma-crystallin homolog spherulin 3a from Physarum polycephalum by calcium binding. J Mol Biol, 1999. 289(4): p. 701-5.
    38. Jobby, M.K. and Y. Sharma, Caulollins from Caulobacter crescentus, a pair of partially unstructured proteins of betagamma-crystallin superfamily, gain structure upon binding calcium. Biochemistry, 2007. 46(43): p. 12298-307.
    39. Rajini, B., et al., Stability, homodimerization, and calcium-binding properties of a single, variant betagamma-crystallin domain of the protein absent in melanoma 1 (AIM1). Biochemistry, 2003. 42(15): p. 4552-9.
    40. Giancola, C., et al., Preparation and characterization of geodin. A betagamma-crystallin-type protein from a sponge. FEBS J, 2005. 272(4): p. 1023-35.
    41. Thim, L., A new family of growth factor-like peptides. 'Trefoil' disulphide loop structures as a common feature in breast cancer associated peptide (pS2), pancreatic spasmolytic polypeptide(PSP), and frog skin peptides (spasmolysins). FEBS Lett, 1989. 250(1): p. 85-90.
    42. Sands, B.E. and D.K. Podolsky, The trefoil peptide family. Annu Rev Physiol, 1996. 58: p. 253-73.
    43. Jorgensen, K.H., L. Thim, and H.E. Jacobsen, Pancreatic spasmolytic polypeptide (PSP): I. Preparation and initial chemical characterization of a new polypeptide from porcine pancreas. Regul Pept, 1982. 3(3-4): p. 207-19.
    44. Thim, L., K.H. Jorgensen, and K.D. Jorgensen, Pancreatic spasmolytic polypeptide (PSP): II. Radioimmunological determination of PSP in porcine tissues, plasma and pancreatic juice. Regul Pept, 1982. 3(3-4): p. 221-30.
    45. Podolsky, D.K., et al., Identification of human intestinal trefoil factor. Goblet cell-specific expression of a peptide targeted for apical secretion. J Biol Chem, 1993. 268(16): p. 12230.
    46. Hoffmann, W. and F. Hauser, The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia? Trends Biochem Sci, 1993. 18(7): p. 239-43.
    47. Podolsky, D.K., Regulation of intestinal epithelial proliferation: a few answers, many questions. Am J Physiol, 1993. 264(2 Pt 1): p. G179-86.
    48. Podolsky, D.K., Healing the epithelium: solving the problem from two sides. J Gastroenterol, 1997. 32(1): p. 122-6.
    49. Goke, M. and D.K. Podolsky, Regulation of the mucosal epithelial barrier. Baillieres Clin Gastroenterol, 1996. 10(3): p. 393-405.
    50. Chinery, R. and R.J. Coffey, Trefoil peptides: less clandestine in the intestine. Science, 1996. 274(5285): p. 204.
    51. Featherstone, C., Soothing the troubled gut with trefoil factors. Lancet, 1997. 349(9053): p.
    706.
    52. Masiakowski, P., et al., Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res, 1982. 10(24): p. 7895-903.
    53. Jakowlew, S.B., et al., Sequence of the pS2 mRNA induced by estrogen in the human breast cancer cell line MCF-7. Nucleic Acids Res, 1984. 12(6): p. 2861-78.
    54. Thim, L., A surprising sequence homology. Biochem J, 1988. 253(1): p. 309.
    55. Hoffmann, W., A new repetitive protein from Xenopus laevis skin highly homologous to pancreatic spasmolytic polypeptide. J Biol Chem, 1988. 263(16): p. 7686-90.
    56. Chadwick, M.P., B.R. Westley, and F.E. May, Homodimerization and hetero-oligomerization of the single-domain trefoil protein pNR-2/pS2 through cysteine 58. Biochem J, 1997. 327 ( Pt 1): p. 117-23.
    57. Polshakov, V.I., et al., High-resolution solution structure of human pNR-2/pS2: a singletrefoil motif protein. J Mol Biol, 1997. 267(2): p. 418-32.
    58. Carr, M.D., et al., Solution structure of a trefoil-motif-containing cell growth factor, porcine spasmolytic protein. Proc Natl Acad Sci U S A, 1994. 91(6): p. 2206-10.
    59. Taupin, D. and D.K. Podolsky, Trefoil factors: initiators of mucosal healing. Nat Rev Mol Cell Biol, 2003. 4(9): p. 721-32.
    60. Tomasetto, C., et al., The gene encoding the human spasmolytic protein (SML1/hSP) is in 21q 22.3, physically linked to the homologous breast cancer marker gene BCEI/pS2. Genomics, 1992. 13(4): p. 1328-30.
    61. Chinery, R., J. Williamson, and R. Poulsom, The gene encoding human intestinal trefoil factor (TFF3) is located on chromosome 21q22.3 clustered with other members of the trefoil peptide family. Genomics, 1996. 32(2): p. 281-4.
    62. Schmitt, H., et al., A third P-domain peptide gene (TFF3), human intestinal trefoil factor, maps to 21q22.3. Cytogenet Cell Genet, 1996. 72(4): p. 299-302.
    63. Beck, S., et al., Cloning of contiguous genomic fragments from human chromosome 21 harbouring three trefoil peptide genes. Hum Genet, 1996. 98(2): p. 233-5.
    64. Mashimo, H., et al., Impaired defense of intestinal mucosa in mice lacking intestinal trefoil factor. Science, 1996. 274(5285): p. 262-5.
    65. Lefebvre, O., et al., Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil protein. Science, 1996. 274(5285): p. 259-62.
    66. Wang, T.C. and J.R. Goldenring, Inflammation intersection: gp130 balances gut irritation and stomach cancer. Nat Med, 2002. 8(10): p. 1080-2.
    67. Rio, M.C., et al., Breast cancer-associated pS2 protein: synthesis and secretion by normal stomach mucosa. Science, 1988. 241(4866): p. 705-8.
    68. Nunez, A.M., et al., The 5' flanking region of the pS2 gene contains a complex enhancer region responsive to oestrogens, epidermal growth factor, a tumour promoter (TPA), the c-Ha-ras oncoprotein and the c-jun protein. EMBO J, 1989. 8(3): p. 823-9.
    69. Luqmani, Y., et al., Expression of the pS2 gene in normal, benign and neoplastic human stomach. Int J Cancer, 1989. 44(5): p. 806-12.
    70. Taupin, D., et al., Augmented intestinal trefoil factor (TFF3) and loss of pS2 (TFF1) expression precedes metaplastic differentiation of gastric epithelium. Lab Invest, 2001. 81(3): p. 397-408.
    71. Park, W.S., et al., Somatic mutations of the trefoil factor family 1 gene in gastric cancer. Gastroenterology, 2000. 119(3): p. 691-8.
    72. Lefebvre, O., et al., The mouse one P-domain (pS2) and two P-domain (mSP) genes exhibitdistinct patterns of expression. J Cell Biol, 1993. 122(1): p. 191-8.
    73. Jorgensen, K.D., et al., Pancreatic spasmolytic polypeptide (PSP): III. Pharmacology of a new porcine pancreatic polypeptide with spasmolytic and gastric acid secretion inhibitory effects. Regul Pept, 1982. 3(3-4): p. 231-43.
    74. Sands, B.E., et al., Molecular cloning of the rat intestinal trefoil factor gene. Characterization of an intestinal goblet cell-associated promoter. J Biol Chem, 1995. 270(16): p. 9353-61.
    75. Podolsky, D.K., Mucosal immunity and inflammation. V. Innate mechanisms of mucosal defense and repair: the best offense is a good defense. Am J Physiol, 1999. 277(3 Pt 1): p. G495-9.
    76. Yamaguchi, Y. and K. Yoshikawa, Cutaneous wound healing: an update. J Dermatol, 2001. 28(10): p. 521-34.
    77. Hoffmann, W., W. Jagla, and A. Wiede, Molecular medicine of TFF-peptides: from gut to brain. Histol Histopathol, 2001. 16(1): p. 319-34.
    78. Williams, R., et al., pS2 transfection of murine adenocarcinoma cell line 410.4 enhances dispersed growth pattern in a 3-D collagen gel. J Cell Sci, 1996. 109 ( Pt 1): p. 63-71.
    79. Uchino, H., et al., Overexpression of intestinal trefoil factor in human colon carcinoma cells reduces cellular growth in vitro and in vivo. Gastroenterology, 2000. 118(1): p. 60-9.
    80. Emami, S., et al., Induction of scattering and cellular invasion by trefoil peptides in src- and RhoA-transformed kidney and colonic epithelial cells. FASEB J, 2001. 15(2): p. 351-61.
    81. Savagner, P., Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays, 2001. 23(10): p. 912-23.
    82. Liu, D., et al., Phosphorylation of beta-catenin and epidermal growth factor receptor by intestinal trefoil factor. Lab Invest, 1997. 77(6): p. 557-63.
    83. Prest, S.J., F.E. May, and B.R. Westley, The estrogen-regulated protein, TFF1, stimulates migration of human breast cancer cells. FASEB J, 2002. 16(6): p. 592-4.
    84. Oertel, M., et al., Trefoil factor family-peptides promote migration of human bronchial epithelial cells: synergistic effect with epidermal growth factor. Am J Respir Cell Mol Biol, 2001. 25(4): p. 418-24.
    85. Kinoshita, K., et al., Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Mol Cell Biol, 2000. 20(13): p. 4680-90.
    86. Taupin, D., et al., The trefoil gene family are coordinately expressed immediate-early genes: EGF receptor- and MAP kinase-dependent interregulation. J Clin Invest, 1999. 103(9): p. R31-8.
    87. Graness, A., et al., Protein kinase C and ERK activation are required for TFF-peptide-stimulated bronchial epithelial cell migration and tumor necrosisfactor-alpha-induced interleukin-6 (IL-6) and IL-8 secretion. J Biol Chem, 2002. 277(21): p. 18440-6.
    88. Klemke, R.L., et al., Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol, 1997. 137(2): p. 481-92.
    89. Chwieralski, C.E., et al., Epidermal growth factor and trefoil factor family 2 synergistically trigger chemotaxis on BEAS-2B cells via different signaling cascades. Am J Respir Cell Mol Biol, 2004. 31(5): p. 528-37.
    90. Klemke, R.L., et al., CAS/Crk coupling serves as a "molecular switch" for induction of cell migration. J Cell Biol, 1998. 140(4): p. 961-72.
    91. Rodrigues, S., et al., Activation of cellular invasion by trefoil peptides and src is mediated by cyclooxygenase- and thromboxane A2 receptor-dependent signaling pathways. FASEB J, 2001. 15(9): p. 1517-28.
    92. Hafizi, S., F. Ibraimi, and B. Dahlback, C1-TEN is a negative regulator of the Akt/PKB signal transduction pathway and inhibits cell survival, proliferation, and migration. FASEB J, 2005. 19(8): p. 971-3.
    93. Chen, Y.H., et al., Transcription factor NF-kappaB signals antianoikic function of trefoil factor 3 on intestinal epithelial cells. Biochem Biophys Res Commun, 2000. 274(3): p. 576-82.
    94. Zhang, J., et al., Bm-TFF2, a trefoil factor protein with platelet activation activity from frog Bombina maxima skin secretions. Biochem Biophys Res Commun, 2005. 330(4): p. 1027-33.
    95. Yu, G., et al., Cell migration-promoting and apoptosis-inhibiting activities of Bm-TFF2 require distinct structure basis. Biochem Biophys Res Commun, 2010. 400(4): p. 724-8.
    96. Zhang, Y., et al., Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing. Biochem Biophys Res Commun, 2010. 398(3): p. 559-64.
    97. He, Y.Y., et al., Melanoma cell growth inhibition by betagamma-CAT, which is a novel non-lens betagamma-crystallin and trefoil factor complex from frog Bombina maxima skin. Toxicon, 2008. 52(2): p. 341-7.
    98. Clarke, B.T., The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc, 1997. 72(3): p. 365-79.
    99. Bevins, C.L. and M. Zasloff, Peptides from frog skin. Annu Rev Biochem, 1990. 59: p. 395-414.
    100. Menestrina, G., et al., Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett, 2003. 552(1): p. 54-60.
    101. Pany, S., R. Vijayvargia, and M.V. Krishnasastry, Caveolin-1 binding motif of alpha-hemolysin: its role in stability and pore formation. Biochem Biophys Res Commun, 2004.322(1): p. 29-36.
    102. Song, L., et al., Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science, 1996. 274(5294): p. 1859-66.
    103. Solovyova, A.S., et al., The solution structure and oligomerization behavior of two bacterial toxins: pneumolysin and perfringolysin O. Biophys J, 2004. 87(1): p. 540-52.
    104. Abrami, L., N. Reig, and F.G. van der Goot, Anthrax toxin: the long and winding road that leads to the kill. Trends Microbiol, 2005. 13(2): p. 72-8.
    105. Polekhina, G., et al., Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proc Natl Acad Sci U S A, 2005. 102(3): p. 600-5.
    106. Harder, T. and K. Simons, Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol, 1997. 9(4): p. 534-42.
    107. Abrami, L., M. Fivaz, and F.G. van der Goot, Adventures of a pore-forming toxin at the target cell surface. Trends Microbiol, 2000. 8(4): p. 168-72.
    108. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
    109. Qian, J.Q., et al., Acute toxicity of betagamma-CAT, a naturally existing non-lens betagamma-crystallin and trefoil factor complex from frog Bombina maxima skin secretions. Toxicon, 2008. 52(1): p. 22-31.
    110. Qian, J.Q., et al., Betagamma-CAT, a non-lens betagamma-crystallin and trefoil factor complex from amphibian skin secretions, caused endothelium-dependent myocardial depression in isolated rabbit hearts. Toxicon, 2008. 52(2): p. 285-92.
    111. Bick, R.L., Platelet function defects: a clinical review. Semin Thromb Hemost, 1992. 18(2): p. 167-85.
    112. Bick, R.L., Acquired platelet function defects. Hematol Oncol Clin North Am, 1992. 6(6): p. 1203-28.
    113. Bick, R.L., Platelet function defects associated with hemorrhage or thrombosis. Med Clin North Am, 1994. 78(3): p. 577-607.
    114. De Botton, S., et al., Platelet formation is the consequence of caspase activation within megakaryocytes. Blood, 2002. 100(4): p. 1310-7.
    115. Bick, R., Vascular thrombohemorrhagic disorders: hereditary and acquired. Clin Appl Thromb Hemost, 2001. 7(3): p. 178-94.
    116. Tinaztepe, K., et al., Apoptosis in renal disease: a brief review of the literature and report of preliminary findings in childhood lupus nephritis. Turk J Pediatr, 2001. 43(2): p. 133-8.
    117. Faurschou, M., et al., Renal cell apoptosis in human lupus nephritis: a histological study.Lupus, 2009. 18(11): p. 994-9.
    118. Vanags, D.M., S. Orrenius, and M. Aguilar-Santelises, Alterations in Bcl-2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis. Br J Haematol, 1997. 99(4): p. 824-31.
    119. Leytin, V., et al., Thrombin-triggered platelet apoptosis. J Thromb Haemost, 2006. 4(12): p. 2656-63.
    120. Leytin, V. and J. Freedman, Platelet apoptosis in stored platelet concentrates and other models. Transfus Apher Sci, 2003. 28(3): p. 285-95.
    121. Leytin, V., et al., Pathologic high shear stress induces apoptosis events in human platelets. Biochem Biophys Res Commun, 2004. 320(2): p. 303-10.
    122.Lin, K.H., et al., Mechanisms of resveratrol-induced platelet apoptosis. Cardiovasc Res, 2009. 83(3): p. 575-85.
    123.Wang, Z., et al., Calmodulin antagonists induce platelet apoptosis. Thromb Res, 2010. 125(4): p. 340-50.
    124. Brown, S.B., et al., Constitutive death of platelets leading to scavenger receptor-mediated phagocytosis. A caspase-independent cell clearance program. J Biol Chem, 2000. 275(8): p. 5987-96.
    125. Augereau, O., et al., Apoptotic-like mitochondrial events associated to phosphatidylserine exposure in blood platelets induced by local anaesthetics. Thromb Haemost, 2004. 92(1): p. 104-13.
    126. Lopez, J.J., et al., N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine induces apoptosis through the activation of caspases-3 and -8 in human platelets. A role for endoplasmic reticulum stress. J Thromb Haemost, 2009. 7(6): p. 992-9.
    127. van der Wal, D.E., et al., Platelet apoptosis by cold-induced glycoprotein Ibalpha clustering. J Thromb Haemost, 2010.
    128. Cookson, P., et al., Platelet apoptosis and activation in platelet concentrates stored for up to 12 days in plasma or additive solution. Transfus Med, 2010.
    129. Kile, B.T., The role of the intrinsic apoptosis pathway in platelet life and death. J Thromb Haemost, 2009. 7 Suppl 1: p. 214-7.
    130. Bertino, A.M., et al., Apoptotic markers are increased in platelets stored at 37 degrees C. Transfusion, 2003. 43(7): p. 857-66.
    131. Wachowicz, B., J.Z. Rywaniak, and P. Nowak, Apoptotic markers in human blood platelets treated with peroxynitrite. Platelets, 2008. 19(8): p. 624-35.
    132. Perrotta, P.L., C.L. Perrotta, and E.L. Snyder, Apoptotic activity in stored human platelets.Transfusion, 2003. 43(4): p. 526-35.
    133. Wolf, B.B., et al., Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood, 1999. 94(5): p. 1683-92.
    134. Mason, K.D., et al., Programmed anuclear cell death delimits platelet life span. Cell, 2007. 128(6): p. 1173-86.
    135. Shcherbina, A. and E. Remold-O'Donnell, Role of caspase in a subset of human platelet activation responses. Blood, 1999. 93(12): p. 4222-31.
    136. Schoenwaelder, S.M., et al., Two distinct pathways regulate platelet phosphatidylserine exposure and procoagulant function. Blood, 2009. 114(3): p. 663-6.
    137. Leytin, V., et al., Platelet activation and apoptosis are different phenomena: evidence from the sequential dynamics and the magnitude of responses during platelet storage. British journal of haematology, 2008. 142(3): p. 494-497.
    138. Leytin, V., et al., Higher thrombin concentrations are required to induce platelet apoptosis than to induce platelet activation. Br J Haematol, 2007. 136(5): p. 762-4.
    139. Danial, N.N. and S.J. Korsmeyer, Cell death: critical control points. Cell, 2004. 116(2): p. 205-19.
    140. Kroemer, G. and J.C. Reed, Mitochondrial control of cell death. Nat Med, 2000. 6(5): p. 513-9.
    141. Ishida, H., [The research method for investigating the role of the mitochondrial permeability transition pore in cell death]. Nippon Yakurigaku Zasshi, 2004. 123(5): p. 329-34.
    142. Khosravi-Far, R. and M.D. Esposti, Death receptor signals to mitochondria. Cancer Biol Ther, 2004. 3(11): p. 1051-7.
    143. Leytin, V., et al., Mitochondrial control of platelet apoptosis: effect of cyclosporin A, an inhibitor of the mitochondrial permeability transition pore. Lab Invest, 2009. 89(4): p. 374-84.
    144. Zhang, H., et al., Bcl-2 family proteins are essential for platelet survival. Cell Death Differ, 2007. 14(5): p. 943-51.
    145. Lu, J., et al., Platelet-activating factor-induced apoptosis is blocked by Bcl-2 in rat intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol, 2004. 286(2): p. G340-50.
    146.Jackson, S.P. and S.M. Schoenwaelder, Procoagulant platelets: are they necrotic? Blood, 2010. 116(12): p. 2011-8.
    1. Liu, S.B., et al., A novel non-lens betagamma-crystallin and trefoil factor complex from amphibian skin and its functional implications. PLoS One, 2008. 3(3): p. e1770.
    2. He, Y.Y., et al., Melanoma cell growth inhibition by betagamma-CAT, which is a novel non-lens betagamma-crystallin and trefoil factor complex from frog Bombina maxima skin. Toxicon, 2008. 52(2): p. 341-7.
    3. Gu, L., et al., ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res, 1998. 26(5): p. 1173-8.
    4. Chou, W.L., et al., Identification of a novel prostaglandin reductase reveals the involvement of prostaglandin E2 catabolism in regulation of peroxisome proliferator-activated receptor gamma activation. J Biol Chem, 2007. 282(25): p. 18162-72.
    5. Mayer, K.M. and J. Shanklin, A structural model of the plant acyl-acyl carrier protein thioesterase FatB comprises two helix/4-stranded sheet domains, the N-terminal domain containing residues that affect specificity and the C-terminal domain containing catalytic residues. J Biol Chem, 2005. 280(5): p. 3621-7.
    6. Bevivino, A.E. and P.J. Loll, An expanded glutamine repeat destabilizes native ataxin-3 structure and mediates formation of parallel beta -fibrils. Proc Natl Acad Sci U S A, 2001. 98(21): p. 11955-60.
    7. Jaenicke, R. and C. Slingsby, Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol, 2001. 36(5): p. 435-99.
    8. Aravind, P., et al., The betagamma-crystallin superfamily contains a universal motif for binding calcium. Biochemistry, 2009. 48(51): p. 12180-90.
    9. Giancola, C., et al., Preparation and characterization of geodin. A betagamma-crystallin-type protein from a sponge. FEBS J, 2005. 272(4): p. 1023-35.
    10. Bagby, S., et al., Structural similarity of a developmentally regulated bacterial spore coat protein to beta gamma-crystallins of the vertebrate eye lens. Proc Natl Acad Sci U S A, 1994. 91(10): p. 4308-12.
    11. Jobby, M.K. and Y. Sharma, Calcium-binding crystallins from Yersinia pestis. Characterization of two single betagamma-crystallin domains of a putative exported protein. J Biol Chem, 2005. 280(2): p. 1209-16.
    12. Rajini, B., et al., Stability, homodimerization, and calcium-binding properties of a single, variant betagamma-crystallin domain of the protein absent in melanoma 1 (AIM1). Biochemistry, 2003. 42(15): p. 4552-9.
    13. Ogawa, M., et al., Metamorphic change in EP37 expression: members of theβγ-crystallin superfamily in newt. Development Genes and Evolution, 1997. 206(7): p. 417-424.
    14. Teichmann, U., et al., Cloning and tissue expression of the mouse ortholog of AIM1, a betagamma-crystallin superfamily member. Mamm Genome, 1998. 9(9): p. 715-20.
    15. Sands, B.E. and D.K. Podolsky, The trefoil peptide family. Annu Rev Physiol, 1996. 58: p. 253-73.
    16. Oertel, M., et al., Trefoil factor family-peptides promote migration of human bronchial epithelial cells: synergistic effect with epidermal growth factor. Am J Respir Cell Mol Biol, 2001. 25(4): p. 418-24.
    17. Regalo, G., N.A. Wright, and J.C. Machado, Trefoil factors: from ulceration to neoplasia. Cell Mol Life Sci, 2005. 62(24): p. 2910-5.
    18. Qian, J.Q., et al., Acute toxicity of betagamma-CAT, a naturally existing non-lens betagamma-crystallin and trefoil factor complex from frog Bombina maxima skin secretions. Toxicon, 2008. 52(1): p. 22-31.
    19. Qian, J.Q., et al., Betagamma-CAT, a non-lens betagamma-crystallin and trefoil factor complex from amphibian skin secretions, caused endothelium-dependent myocardial depression in isolated rabbit hearts. Toxicon, 2008. 52(2): p. 285-92.
    20. Rajini, B., et al., Calcium binding properties of gamma-crystallin: calcium ion binds at the Greek key beta gamma-crystallin fold. J Biol Chem, 2001. 276(42): p. 38464-71.
    21. Rosinke, B., et al., Ca2+-loaded spherulin 3a from Physarum polycephalum adopts the prototype gamma-crystallin fold in aqueous solution. J Mol Biol, 1997. 271(4): p. 645-55.
    1. Munnix, I.C., et al., Platelet response heterogeneity in thrombus formation. Thromb Haemost, 2009. 102(6): p. 1149-56.
    2. Jaenicke, R. and C. Slingsby, Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol, 2001. 36(5): p. 435-99.
    3. Thim, L. and F.E. May, Structure of mammalian trefoil factors and functional insights. Cell Mol Life Sci, 2005. 62(24): p. 2956-73.
    4. Liu, S.B., et al., A novel non-lens betagamma-crystallin and trefoil factor complex from amphibian skin and its functional implications. PLoS One, 2008. 3(3): p. e1770.
    5. Perrotta, P.L., C.L. Perrotta, and E.L. Snyder, Apoptotic activity in stored human platelets. Transfusion, 2003. 43(4): p. 526-35.
    6. Riedl, S.J. and Y. Shi, Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol, 2004. 5(11): p. 897-907.
    7. Kroemer, G. and J.C. Reed, Mitochondrial control of cell death. Nat Med, 2000. 6(5): p. 513-9.
    8. Muhlestein, J.B., Effect of antiplatelet therapy on inflammatory markers in atherothrombotic patients. Thromb Haemost, 2010. 103(1): p. 71-82.
    9. Bergmeier, W., et al., Flow cytometric detection of activated mouse integrin alphaIIbbeta3 with a novel monoclonal antibody. Cytometry, 2002. 48(2): p. 80-6.
    10. Bevins, C.L. and M. Zasloff, Peptides from frog skin. Annu Rev Biochem, 1990. 59: p. 395-414.
    11. Clarke, B.T., The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biol Rev Camb Philos Soc, 1997. 72(3): p. 365-79.
    12. Zhang, J., et al., Bm-TFF2, a trefoil factor protein with platelet activation activity from frog Bombina maxima skin secretions. Biochem Biophys Res Commun, 2005. 330(4): p. 1027-33.
    13. Yu, G., et al., Cell migration-promoting and apoptosis-inhibiting activities of Bm-TFF2 require distinct structure basis. Biochem Biophys Res Commun, 2010. 400(4): p. 724-8.
    14. Zhang, Y., et al., Bm-TFF2, a toad trefoil factor, promotes cell migration, survival and wound healing. Biochem Biophys Res Commun, 2010. 398(3): p. 559-64.
    15. Vanags, D.M., S. Orrenius, and M. Aguilar-Santelises, Alterations in Bcl-2/Bax protein levels in platelets form part of an ionomycin-induced process that resembles apoptosis. Br J Haematol, 1997. 99(4): p. 824-31.
    16. Lopez, J.J., et al., N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine induces apoptosis through the activation of caspases-3 and -8 in human platelets. A role for endoplasmic reticulum stress. J Thromb Haemost, 2009. 7(6): p. 992-9.
    17. van der Wal, D.E., et al., Platelet apoptosis by cold-induced glycoprotein Ibalpha clustering. J Thromb Haemost, 2010.
    18. Lopez, J.J., et al., Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost, 2008. 6(10): p. 1780-8.
    19. Leytin, V., et al., Thrombin-triggered platelet apoptosis. J Thromb Haemost, 2006. 4(12): p. 2656-63.
    20. Lin, K.H., et al., Mechanisms of resveratrol-induced platelet apoptosis. Cardiovasc Res, 2009. 83(3): p. 575-85.
    21. Mason, K.D., et al., Programmed anuclear cell death delimits platelet life span. Cell, 2007. 128(6): p. 1173-86.
    22. Zhang, H., et al., Bcl-2 family proteins are essential for platelet survival. Cell Death Differ, 2007. 14(5): p. 943-51.
    23. Augereau, O., et al., Apoptotic-like mitochondrial events associated to phosphatidylserine exposure in blood platelets induced by local anaesthetics. Thromb Haemost, 2004. 92(1): p. 104-13.
    24. Bertino, A.M., et al., Apoptotic markers are increased in platelets stored at 37 degrees C. Transfusion, 2003. 43(7): p. 857-66.
    25. Gwozdz, A.M., et al., Calpain inhibition by calpeptin does not prevent APLT activity reduction in PS-exposing platelets, but calpeptin has independent pro-apoptotic effects. Thromb Haemost, 2010. 103(6): p. 1218-27.
    26. Wolf, B.B., et al., Calpain functions in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood, 1999. 94(5): p. 1683-92.
    27. Tan, K.T. and G.Y. Lip, The potential role of platelet microparticles in atherosclerosis. Thromb Haemost, 2005. 94(3): p. 488-92.
    28. Shcherbina, A. and E. Remold-O'Donnell, Role of caspase in a subset of human platelet activation responses. Blood, 1999. 93(12): p. 4222-31.
    29. Stegner, D. and B. Nieswandt, Platelet receptor signaling in thrombus formation. J Mol Med, 2010.
    30. Leytin, V., et al., Platelet activation and apoptosis are different phenomena: evidence from the sequential dynamics and the magnitude of responses during platelet storage. Br J Haematol, 2008. 142(3): p. 494-7.
    31. Leytin, V., et al., Higher thrombin concentrations are required to induce platelet apoptosis than to induce platelet activation. Br J Haematol, 2007. 136(5): p. 762-4.
    32. Wang, Z., et al., Calmodulin antagonists induce platelet apoptosis. Thromb Res, 2010. 125(4): p. 340-50.
    33. Schubert, P. and D.V. Devine, De novo protein synthesis in mature platelets: a consideration for transfusion medicine. Vox Sang, 2010. 99(2): p. 112-22.
    1. Bloemendal, H., et al., Ageing and vision: structure, stability and function of lens crystallins. Prog Biophys Mol Biol, 2004. 86(3): p. 407-85.
    2. Liu, S.B., et al., A novel non-lens betagamma-crystallin and trefoil factor complex from amphibian skin and its functional implications. PLoS One, 2008. 3(3): p. e1770.
    3. Gao, Q., et al., betagamma-CAT, a non-lens betagamma-crystallin and trefoil factor complex, induces calcium-dependent platelet apoptosis. Thromb Haemost, 2011. 105(5).
    4. Clapham, D.E., Calcium signaling. Cell, 2007. 131(6): p. 1047-58.
    5. Aravind, P., et al., The betagamma-crystallin superfamily contains a universal motif for binding calcium. Biochemistry, 2009. 48(51): p. 12180-90.
    6. Jobby, M.K. and Y. Sharma, Calcium-binding crystallins from Yersinia pestis. Characterization of two single betagamma-crystallin domains of a putative exported protein. J Biol Chem, 2005. 280(2): p. 1209-16.
    7. Jobby, M.K. and Y. Sharma, Caulollins from Caulobacter crescentus, a pair of partially unstructured proteins of betagamma-crystallin superfamily, gain structure upon binding calcium. Biochemistry, 2007. 46(43): p. 12298-307.
    8. Wenk, M. and E.M. Mayr, Myxococcus xanthus spore coat protein S, a stress-inducedmember of the betagamma-crystallin superfamily, gains stability from binding of calcium ions. Eur J Biochem, 1998. 255(3): p. 604-10.
    9. Kretschmar, M., E.M. Mayr, and R. Jaenicke, Kinetic and thermodynamic stabilization of the betagamma-crystallin homolog spherulin 3a from Physarum polycephalum by calcium binding. J Mol Biol, 1999. 289(4): p. 701-5.
    10. Tsujimoto, Y. and S. Shimizu, The voltage-dependent anion channel: an essential player in apoptosis. Biochimie, 2002. 84(2-3): p. 187-93.
    11. Barhanin, J., et al., Biochemistry, molecular pharmacology, and functional control of Ca2+ channels. Ann N Y Acad Sci, 1989. 560: p. 15-26.
    12. Zschauer, A., et al., Calcium channels in thrombin-activated human platelet membrane. Nature, 1988. 334(6184): p. 703-5.
    13. Menestrina, G., et al., Ion channels and bacterial infection: the case of beta-barrel pore-forming protein toxins of Staphylococcus aureus. FEBS Lett, 2003. 552(1): p. 54-60.
    1. Ogawa, M., et al., Isolation and characterization of a gene expressed mainly in the gastric epithelium, a novel member of the ep37 family that belongs to the betagamma-crystallin
    2. Qian, J.Q., et al., Acute toxicity of betagamma-CAT, a naturally existing non-lens betagamma-crystallin and trefoil factor complex from frog Bombina maxima skin secretions. Toxicon, 2008. 52(1): p. 22-31.
    3. Liu, S.B., et al., A novel non-lens betagamma-crystallin and trefoil factor complex from amphibian skin and its functional implications. PLoS One, 2008. 3(3): p. e1770.
    4. He, Y.Y., et al., Melanoma cell growth inhibition by betagamma-CAT, which is a novel non-lens betagamma-crystallin and trefoil factor complex from frog Bombina maxima skin. Toxicon, 2008. 52(2): p. 341-7.
    5. Strutz, F., et al., Identification and characterization of a fibroblast marker: FSP1. J Cell Biol, 1995. 130(2): p. 393-405.
    6. Franke, W.W., et al., Different intermediate-sized filaments distinguished by immunofluorescence microscopy. Proc Natl Acad Sci U S A, 1978. 75(10): p. 5034-8.
    7. Henriquez, M., et al., Cell death by necrosis, a regulated way to go. Curr Mol Med, 2008.
    8(3): p. 187-206.
    8. Tsujimoto, Y. and S. Shimizu, Another way to die: autophagic programmed cell death. Cell Death Differ, 2005. 12 Suppl 2: p. 1528-34.
    9. He, S., et al., Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 2009. 137(6): p. 1100-11.
    10. Kim, J.S., Y. Jin, and J.J. Lemasters, Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion. Am J Physiol Heart Circ Physiol, 2006. 290(5): p. H2024-34.
    11. Trump, B.F. and I.K. Berezesky, Calcium-mediated cell injury and cell death. FASEB J, 1995. 9(2): p. 219-28.
    12. Mone, A.P., et al., Alemtuzumab induces caspase-independent cell death in human chronic lymphocytic leukemia cells through a lipid raft-dependent mechanism. Leukemia, 2006. 20(2): p. 272-9.
    13. Nonaka, T., et al., Shigella-induced necrosis and apoptosis of U937 cells and J774 macrophages. Microbiology, 2003. 149(Pt 9): p. 2513-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700