蛋白A的重组表达及重组菌的发酵过程优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金黄色葡萄球菌蛋白A,简称蛋白A(Staphylococcus aureus protein A, SPA)能够特异性地与多种哺乳动物抗体结合,在抗体分析、分离以及医学领域有广泛的应用。但金黄色葡萄球菌为致病菌,蛋白A为细胞壁结合蛋白,因此,通过规模化培养金黄色葡萄球菌的方法获取蛋白A不仅有一定风险,且分离纯化也有一定难度。
     本论文的工作目标是研究利用基因工程技术生产重组蛋白A的方法。研究内容包括表达蛋白A的基因工程菌的构建以及培养条件(包括摇瓶和发酵罐培养)的优化。
     论文首先选择原核表达系统进行研究。选用大肠杆菌作为表达宿主菌,pET系列质粒作为表达载体,选择含有抗体结合域的不同长度的蛋白A编码基因进行基因构建。分别获得了四种不同分子量蛋白A的胞内表达,发现spa4的表达量最大,且与IgG结合活性良好,因此,选择该表达菌株进行后续研究。分别在摇瓶和发酵罐中进行了培养条件和诱导条件的优化。在摇瓶培养中,对诱导剂加入时间和加入量进行了初步优化,发现在菌体培养1~6小时时间段内,随着诱导剂加入时间的延后,工程菌的生长密度逐渐增加,但单位菌体蛋白A的表达量相差不大。诱导剂IPTG和乳糖均能有效诱导蛋白A表达,但乳糖对菌体生长的抑制作用较弱。在5 L发酵罐中,利用指数流加的补料方式,对补料速率进行优化。获得优化的培养模式为:以300 g/L的葡萄糖、50g/L的酵母提取物作为补料培养基,以0.1 h-1为理论比生长速率计算补料速率,在菌体OD600nm达到60时加入终浓度为0.5 mmol/L的IPTG。在优化的条件下,最终发酵液的菌体密度OD60nm达70以上,重组蛋白A表达量占菌体胞内总蛋白的比例约为22%,每升菌液重组蛋白A表达量约为2.6 g。
     为了简化重组蛋白A分离纯化的难度和成本,论文进一步对能够实现蛋白A外泌表达的真核表达系统进行了研究。利用毕赤酵母作为表达宿主、pPIC9K作为表达载体、选择仅含抗体结合功能区的蛋白A编码基因成功构建了外泌表达蛋白A的基因工程菌。在摇瓶培养中,考察了培养基组成,诱导剂甲醇加入量及诱导时间对重组蛋白A表达的影响。实验结果表明,利用BMGY/BMMY培养基,诱导阶段每24 h加入甲醇至终浓度0.5%,诱导84 h,目标蛋白的表达量最大。所表达的重组蛋白A与人IgG结合活性良好。
     通过本论文的研究,建立了重组蛋白A的原核和真核表达体系,对其培养和诱导条件进行了系统优化,研究结果为规模化生产重组蛋白A奠定了基础。
Staphylococcus aureus protein A (SPA) which can specifically bind a variety of mammalian antibodies has a wide range of applications in antibody analysis, bioseparation and medicine. As protein A is a cell wall binding protein of pathogenic staphylococcus aureus, producing protein A by large-scale cultivation of staphylococcus aureus is risk and the purification process is also sophisticated.
     The research aims to produce recombinant protein A by genetic engineering technology in a safe and simple way, covering the construction of genetical engineering strains for expressing protein A and the optimization of culture conditions in shake flask and fermentor.
     First, prokaryotic expression system was selected. E.coli, pET series plasmid, and different lengths of protein A coding genes containing antibody binding domain were used as expression host, expression vector and target genes, respectively. Four different lengths of intracellular protein A with molecular weights were obtained. The results showed that spa4 had the maximum expression quantity and a good IgG binding activity. This strain was selected for further optimization of the culture and induction conditions in shake flask and fermentor. The effects of inducer concentration and adding time on bacteria growth and protein A expression were preliminarily studied in shake flask. The results showed that the engineering bacteria gradually increased with the delay of inducer added in 1 h to 6 h cell culture period, and the expression quantity per mass of bacteria did not change significantly. Besides, isopropyl (3-D-thiogalactopyranoside (IPTG) and lactose could effectively induce the expression of protein A, and lactose had the weaker inhibitory effect on bacteria growth. In 5 L fermentor, feeding rate was optimized. The optimal conditions for fermentation were obtained:the feeding rate of medium contained 300 g/L glucose,50 g/L yeast extract was calculated as theoretical specific growth rate of 0.1 h-1. IPTG was added to the concentration of 0.5 mmol/L when OD600nm was up to 60. The cell density of OD600nm in the final fermentation broth could reach more than 70, and the yield of recombinant protein A could be up to 2.6 g/L broth which accounted for about 22% of the total intracellular protein.
     In order to simplify the purification process of recombinant protein A and reduce its cost, eukaryotic expression system was studied further to realize the excretion of recombinant protein A. Genetic engineering yeast that could excrete recombinant protein A was successfully constructed by using Pichia pastoris GS115, pPIC9K and protein A coding genes containing only antibody binding domain as expression host, vector and target gene, respectively. In shake flask, effects of medium composition, concentration of methanol as the inducer and induction time on the expression of protein A were investigated. The results turned out that the optimal conditions were using BMGY/BMMY as medium and adding methanol to 0.5% every 24 h during the induction time of 84 h. The recombinant protein A had a good IgG binding activity.
     In this paper prokaryotic and eukaryotic expression system of recombinant protein A was established and culture and induction conditions were optimized. The results laid the foundation for large-scale production of recombinant protein A.
引文
[1]Colbert DA, Anilionis A, Cloned genes encoding recombinant protein A[P]. US,5151350, 1992,09,29.
    [2]Peyser JR, Nucleic Acids Encoding Recombinant Protein A[P]. US,7691608,2010.06.04.
    [3]逄少堃,梁浩,宋淑亮等.葡萄球菌蛋白A活性机制与现代应用[J].生命的化学,2008,28(6):748-751.
    [4]Verwey WF. A type-specific antigenic protein derived from the staphylococcus[J]. The Journal of Experimental Medicine,1940,71(5):635-644.
    [5]Jensen K. The toxic effect of a staphylococcal polysaccharide on isolated guinea-pig ileum and the antitoxic effect of normal human serum[J]. Allergy,1959, 13(1):89-100.
    [6]张修彦.金黄色葡萄球菌蛋白A及其应用[J].日本医学介绍,1983,4:21-22.
    [7]徐军,吴凡,韩琳等.金黄色葡萄球菌SPA基因的克隆,表达及纯化[J].细胞与分子免疫学杂志,2006,22(6):816-818.
    [8]范子文.葡萄球菌A蛋白的基本特性和应用范围[J].铁道医学,1982,(1):49-51.
    [9]Sjodahl J. Structural Studies on the Four Repetitive Fc-Binding Regions in Protein A from Staphylococcus aureus[J]. European Journal of Biochemistry,1977,78(2):471-490.
    [10]Sjodahl J. Repetitive sequences in protein A from Staphylococcus aureus[J]. European Journal of Biochemistry,1977,73(2):343-351.
    [11]Moks T, Abrahmsen L, Nilson B, et al. Staphylococcal protein A consists of five IgG-binding domains[J]. European Journal of Biochemistry,1986,156(3):637-643.
    [12]李节,邱平.金黄色葡萄球菌蛋白A (Staphylococcal Protein A, SPA)分泌型融合表达系统[J].生物工程进展,1994,(5):31-34.
    [13]Starovasnik MA, o'connell MP, Fairbrother WJ, et al. Antibody variable region binding by Staphylococcal protein A:thermodynamic analysis and location of the Fv binding site on E-domain[J]. Protein Science,1999,8(7):1423-1431.
    [14]Deisenhofer J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9-and 2.8-A resolution[J]. Biochemistry,1981,20(9):2361-2370.
    [15]Kato K, Gouda H, Takaha W, et al.13C NMR study of the mode of interaction in solution of the B fragment of staphylococcal protein A and the Fc fragments of mouse immunoglobulin G[J]. FEBS letters,1993,328(1-2):49-54.
    [16]Tashiro M, Montelione GT. Structures of bacterial immunoglobulin-binding domains and their complexes with immunoglobulins[J]. Current Opinion in Structural Biology,1995, 5(4):471-481.
    [17]张颖悟,董阳达,崔丕业.含A蛋白金黄色葡萄球菌在抗原抗体反应中的一些试验方法[J].遵义医学院学报,1980,(2):73-56.
    [18]Goding JW. Use of staphylococcal protein A as an immunological reagent[J]. Journal of Immunological Methods,1978,20:241-253.
    [19]Hallgren R, Wide L. Detection of circulating IgG aggregates and immune complexes using 1251 protein A from Staphylococcus aureus[J]. British Medical Journal,1976, 35(4):306.
    [20]Biberfeld P, Ghetie V, Sj quist J. Demonstration and assaying of IgG antibodies in tissues and on cells by labeled staphylococcal protein A[J]. Journal of Immunological Methods,1975,6(3):249-259.
    [21]Romano EL, Romano M. Staphylococcal protein A bound to colloidal gold:a useful reagent to label antigen-antibody sites in electron microscopy[J]. Immunochemistry,1977, 14(9-10):711-715.
    [22]周杰,廖玉学,陈忠等.SPA-ELISA检测棕果蝠血清冠状病毒抗体的研究[J].南方医科大学学报,2008,28(5):736-738.
    [23]尚葛峰.应用酶联葡萄球菌A蛋白法检测狂犬病抗体[J].中国兽医杂志,1991,17(6):32-33.
    [24]Benny WB, Sutton DMC, Oger J, et al. Clinical evaluation of a staphylococcal protein A immunoadsorption system in the treatment of myasthenia gravis patients[J]. Transfusion,1999,39(7):682-687.
    [25]Jia L, Yang L, Zou H, et al. Protein A tangential flow affinity membrane cartridge for extracorporeal immunoadsorption therapy[J]. Biomedical Chromatography,1999, 13(7):472-477.
    [26]Charcosset C, Su Z, Karoor S, et al. Protein A immunoaffinity hollow fiber membranes for immunoglobulin G purification:Experimental characterization[J]. Biotechnology and bioengineering,1995,48(4):415-427.
    [27]Braun N, Erley C, Klein R, et al. Immunoadsorption onto protein A induces remission in severe systemic lupus erythematosus[J]. Nephrology Dialysis Transplantation,2000, 15(9):1367.
    [28]季大玺,龚德华,任冰等.免疫吸附的临床应用及疗效[J].肾脏病与透析肾移植杂志,2004,13(5):408-413.
    [29]Wiesenhutter CW, Irish BL, Bertram JH. Treatment of patients with refractory rheumatoid arthritis with extracorporeal protein A immunoadsorption columns:a pilot trial[J]. Journal of rheumatology,1994,21(5):804-812.
    [30]Caldwell J, Gendreau RM, Furst D. A pilot study using a staph protein A column (Prosorba(R)) to treat refractory rheumatoid arthritis[J]. Journal of rheumatology, 1999,26 (8):1657-1662.
    [31]Paulus HE, Egger MJ, Ward JR, et al. Analysis of improvement in individual rheumatoid arthritis patients treated with disease-modifying antirheumatic drugs, based on the findings in patients treated with placebo[J]. Arthritis & Rheumatism,1990, 33(4):477-484.
    [32]Scroggie D, Harris MD, Abel M, et al. Vasculitis following treatment of rheumatoid arthritis with extracorporeal staphylococcal protein A immunoadsorption column (Prosorba)[J]. JCR: Journal of Clinical Rheumatology,2001,7(4):238-241.
    [33]Snyder Jr HW, Cochran SK, Balint Jr JP, et al. Experience with protein A-immunoadsorption in treatment-resistant adult immune thrombocytopenic purpura[J]. Blood,1992,79(9):2237-2245.
    [34]Guthrie Jr TH, Oral A. Immune thrombocytopenia purpura:a pilot study of staphylococcal protein A immunomodulation in refractory patients[J].1989,26(2 Suppl 1):3-9.
    [35]Lorenz M, Regele H, Schillinger M, et al. Peritransplant immunoadsorption:a strategy enabling transplantation in highly sensitized crossmatch-positive cadaveric kidney allograft recipients[J]. Transplantation,2005,79(6):696-701.
    [36]Zeigler ZR, Shadduck RK, Nath R, et al. Pilot study of combined cryosupernatant and protein A immunoadsorption exchange in the treatment of grade 3-4 bone marrow transplant-associated thrombotic microangiography[J]. Bone marrow transplantation, 1996,17(1):81-86.
    [37]Norden G, Briggs D, Cockwell P, et al. ABO-incompatible live donor renal transplantation using blood group A/B carbohydrate antigen immunoadsorption and anti-CD20 antibody treatment[J]. Xenotransplantation,2006,13(2):148-153.
    [38]哈洛E,莱恩D.抗体技术实验指南[M].科学出版社,2002.
    [39]仲人前.自身免疫性疾病研究中的挑战和机遇[J].中华检验医学杂志,2004,27(6):337-339.
    [40]林辉,刘钢,吴谨绪.造血干细胞治疗自身免疫性疾病[J].华西医学,2007,22(2):455-456.
    [41]戎晶晶,刁振宇,周国华.大肠杆菌表达系统的研究进展[J].药物生物技术,2005,12(6):416-420.
    [42]Graslund S, Nordlund P, Weigelt J, et al. Protein production and purification[J]. Nature Methods,2008,5(2):135-146.
    [43]Baneyx F. Recombinant protein expression in Escherichia coli[J]. Current Opinion in Biotechnology,1999,10(5):411-421.
    [44]Nuc P, Nuc K. Recombinant protein production in Escherichia coli[J]. Postepy biochem, 2006,52(4):448-456.
    [45]Inouye M. The discovery of mRNA interferases:implication in bacterial physiology and application to biotechnology[J]. Journal of cellular physiology,2006, 209(3):670-676.
    [46]Shine J, Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites[J]. Proceedings of the National Academy of Sciences of the United States of America,1974, 71(4):1342-1346.
    [47]尹淑琴,范艳,常泓.基因工程菌的高密度发酵研究[J].安徽农业科学,2007,35(11):3175-3176+3192.
    [48]解庭波.大肠杆菌表达系统的研究进展[J].长江大学学报(自科版)医学卷,2008,5(3):77-82.
    [49]Studier FW. Protein production by auto-induction in high-density shaking cultures [J]. Protein expression and purification,2005,41(1):207-234.
    [50]Studier F, Moffatt B. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes[J]. Journal of Molecular Biology,1986, 189(1):113-130.
    [51]吴万贵,袁俐,王仙.毕赤酵母高效表达外源基因的研究进展[J].农垦医学,2008,30(1):56-58.
    [52]龙晶,杜立新.巴斯德毕赤酵母表达外源蛋白的研究进展[J].微生物学杂志,2007,27(6):72-76.
    [53]Siegei RS, Brierley RA. Methylotroyphic yeast Pichia pastour produced in high-cell-density fermentation with high cell yields as vehicle for recombinant protein production[J]. Biotechnology and Bioegineering,1989,34:403-404.
    [54]Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris[J]. FEMS Microbiology Reviews,2000,24(1):45-66.
    [55]Cregg JM, Cereghino JL, Shi J, et al. Recombinant protein expression in Pichia pastoris[J]. Molecular biotechnology,2000,16(1):23-52.
    [56]Macauley-Patrick S, Fazenda ML, McNeil B, et al. Heterologous protein production using the Pichia pastoris expression system[J]. Yeast,2005,22(4):249-270.
    [57]罗竞红,游自立.巴斯德毕赤酵母表达系统在外源基因表达中的研究进展[J].生物技术通报,2007,(3):75-79.
    [58]余祖华,王红宁.利用巴斯德毕赤酵母表达外源蛋白的研究进展[J].生物技术通讯,2004,15(6):614-616.
    [59]王庆杰.新型毕赤酵母表面展示系统的构建及表达研究:山东大学,2008.
    [60]赵翔,霍克克,李育阳.毕赤酵母的密码子用法分析[J].生物工程学报,2000,16(3):308-311.
    [61]唐元家,余柏松.巴斯德毕赤酵母表达系统[J].国外医药:抗生素分册,2002,23(6):246-250.
    [62]Clare JJ, Romanes MA, Rayment FB, et al. Production of mouse epidermal growth factor in yeast:high-level secretion using Pichia pastoris strains containing multiple gene copies[J]. Gene,1991,105(2):205-212.
    [63]Katakura Y, Zhang W, Zhuang G, et al. Effect of methanol concentration on the production of human β2-glycoprotein/domain V by a recombinant Pichia pastoris:A simple system for the control of methanol concentration using a semiconductor gas sensor[J]. Journal of Fermentation and Bioengineering,1998,86(5):482-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700