多元样条与分片代数簇计算的若干研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对多元样条与分片代数簇计算展开若干研究。一方面,我们对多元样条函数在数值分析中的若干应用进行了讨论,主要包括二元样条在有限元,二维奇异积分的计算,以及近似隐式化中的应用。另一方面,我们讨论了分片代数簇计算的某些问题,主要包括零维分片代数簇的区间迭代算法和实根分离算法。主要工作如下:
     首先,我们讨论了二元B-样条有限元方法。在有限元方法中,多元样条函数主要用来构造各种类型的模型函数。本章我们主要构造了一类均匀(非均匀)2-型三角剖分下的二元样条基函数组用以插值于边界函数,并且结合均匀(非均匀)2-型三角剖分下带齐次边界条件的样条空间S_2~(1,0)(△_(mn)~(2)),利用有限元方法来求解椭圆型偏微分方程;而后,我们研究了二元样条函数在二维奇异积分中的应用。近年来国内外许多学者都采用多元样条函数来求解数值积分。特别地,拟插值算子常被应用于各种奇异积分,包括Cauchy主值积分和有限部分积分以及振荡积分的计算上。它们在奇异积分方程的求解中有着重要的应用。由于2-型三角剖分下的二元B-样条基函数具有结构简单,对称性好,并且具有良好逼近性质的拟插值算子,因此它在实际应用中有广泛的应用。本章我们利用均匀2-型三角剖分下样条空间S_4~(2,3)(△_(mn)~(2))上的两类具有良好逼近性质的拟插值算子,构造了具有更高精度的数值积分公式并且将其应用到Hadamard有限部分和的计算上。
     然后,我们讨论了三次代数样条在参数曲线近似隐式化中的应用。由于参数曲线曲面的精确隐式化不一定可以实现。即使可以实现,许多情形下我们也不必这么做。这主要由于精确隐式化的计算很复杂并且系数很大,以及隐式曲线曲面具有不希望的自交奇异点和多余分支。这就引起了计算的不稳定性和几何造型中拓扑结构的不一致性,从而大大限制了隐式化在实际问题中的运用。与三次参数曲线类似,三次代数曲线成为人们广泛研究和应用的代数曲线。因此,我们构造了整体G~2-连续的三次代数样条来逼近参数曲线以实现近似隐式化。
     最后,我们讨论了分片代数簇计算中的某些问题。分片代数簇作为多元样条组的公共零点集合,是经典代数簇的推广,丰富和发展。它不仅和许多实际问题如多元样条插值,代数簇的光滑拼接,CAD和CAGD等有关,而且还为研究经典代数几何提供了理论依据。CAGD中大量的曲线曲面类型是样条曲线曲面。因此给出样条曲线曲面的求交算法是CAGD中的重要问题之一,而这一问题的本质可以归结为分片代数簇的计算。因此,研究分片代数簇的计算是十分重要的。针对分片代数簇的计算,我们做了以下两方面的工作:一方面,我们讨论了任意剖分下分片代数簇的区间迭代解法,主要将代数簇的区间迭代算法有效应用到分片代数簇的计算上。该算法主要通过引入ε-偏差解和给出区域内极值的有效估计来实现。另一方面,我们给出了零维分片代数簇实根简单而有效的分离算法。该算法主要基于凸多面体内代数簇的计算和一元区间多项式实根的计算来实现。
In this thesis, we mainly study some applications of multivariate splines and computation of piecewise algebraic varieties. On one hand, we study the applications of multivariate splines, primarily including finite element method, singular integral and approximate implicitization with bivariate splines; On the other hand, we study the computation of piecewise algebraic varieties, mainly including the interval iterative algorithm for computing the zero-dimensional piecewise algebraic variety and the real root isolation of zero-dimensional piecewise algebraic variety. Our primary work is organized as follows:
     Firstly, we discuss the bivariate B-spline finite element methods. In finite element methods, multivariate splines are mainly used to construct all kinds of model functions. A kind of quadratic B-spline bases which interpolate the boundary function on uniform (non-uniform) type-2 triangulations is constructed. Therefore, the Poisson's equation on any rectangular or parallelogram region is solved with combination of spline space S_2~(1,0)(△_(mn)~((2))) satisfying homogeneous boundary condition and the constructed B-spline bases by using bivariate B-spline finite element methods. Moreover, we discuss the applications of bivariate splines on two-dimensional singular integral. In recent years, many researchers study the numerical integration by using multivariate splines. In particular, bivariate spline quasi-interpolation operators are used to solve all types of singular integral, mainly including Cauchy singular integral and singular integral defined in the Hadamard finite part sense etc. It has been widely used in solving singular integral equations. Since the bivariate B-splines on type-2 triangulations have the advantages of simple configuration, good symmetry and quasi-interpolation operators, it has wide use in practical fields. Using two kinds of quasi-interpolation operators possessing good approximation behavior on spline space S_4~(2,3)(△_(mn)~((2))) , we construct the integration formulas and their applications on the evaluation of 2-D singular integral defined in the Hadamard finite part sense.
     Secondly, we discuss the approximate implicitization of parametric curves by using cubic algebraic splines. For a general parametric curve/surface, we usually cannot compute its exact implicit form. Even if the exact form can be computed, it is not necessary to do in many cases. This is partly due to the fact that the exact implicitization always involves relatively complicated computation and the resulted implicit form might have large number of coefficients. Another difficulty is that implicit curves/surfaces may have unwanted components and self-intersections which lead to computational instability and topological inconsistency in geometric modeling. All these unsatisfied properties limit the applications of the exact implicitization in practical fields. Similar to the cubic parametric curves, cubic algebraic curves become the most widely used algebraic curves. In order to solve it, we use a piecewise cubic algebraic curve to give a global G~2 continuity approximation to the original parametric curve.
     Lastly, we discuss several computation problems on piecewise algebraic varieties. As the zeros of multivariate splines, the piecewise algebraic variety is a generalization of the classical algebraic variety. The intersection of spline curves/surfaces becomes an important problem in CAGD. However, this problem boils down to the computation of piecewise algebraic varieties. Hence, it is important to study the piecewise algebraic variety. As to it, we mainly do the following two items of work. On one hand, we discuss the interval iterative algorithm for computing the piecewise algebraic variety. The approach presented here is primarily based on the introduction to a concept ofε-deviation solutions and the effective evaluation the bound on the value of the derivative of the function on a given region. On the other hand, we give the effective and fast algorithm of real root isolation for zero-dimensional piecewise algebraic variety. It is primarily based on the computation of algebraic variety on a given convex polyhedron and the real roots of the univariate interval polynomial.
引文
[1]Schoenberg I J.Contribution to the problem of application of equidistant data by analytic functions.Quart.Appl.Math.,1946,4:45-99;112-141.
    [2]Wang R H.Multivariate Spline Functions and Their Applications.Science Press/K-luwer Pub.,Beijing/New York,2001.
    [3]de Boor C.A Practical Guide to Splines.New York:Springer,1978.
    [4]Schumaker L L.Spline Functions:Basic Theory.NewYork:Wiley,1981.
    [5]王仁宏.多元齿的结构与插值.数学学报,1975,18:91-106.
    [6]王仁宏.任意剖分下的多元样条分析.中国科学,数学专辑Ⅰ,1979,215-226.
    [7]Chui C.K,Wang R H.On smooth multivariate spline functions.Math.Comp.,1983,41:131-142.
    [8]Chui C.K,Wang R H.Multivariate spline spaces.J.Math.Anal.Appl.,1983,94:197-221.
    [9]Wang R H.The dimension and basis of spaces of multivariate spline.Journal of Computational and Applied Mathematics,1985,12:163-177
    [10]Wang R H.He T X.On multivariate spline basis functions over quasi-cross-cut partitions.Scientia Sinica,1986,1:19-25.
    [11]Wang R H.On the dimension of multivariate spline spaces.Kexue Tongbao,1988,6:473-474.
    [12]Farin G.Triangular Bernstein-Bezier patches.CAGD,1986,3:83-127.
    [13]Farin G.Curves and Surfaces for Computer Aided Geometry Design,A practical Guide,4th edition.New York:Academic Press,1997.
    [14]Lorentz G G.Bernstein Polynommials.Torento,1953.
    [15]de Boor C.B-form basics,in "Geometric Modelling".G.Farin(ed.)SIAM Philadel-phia,131-148.
    [16]Guo Z R,Jia R Q.B-net methods in multivariate splines research.Math.Perspec-tives,1990,19:83-127.
    [17]de Boor C,Hoellig K,Riemenschneider.Box Splines.Springer-Verlag,New York,1993.
    [18]Antes H.Bicubic fundamental splines in plate bending.Int.J.Num.Meth.Eng.,1974,8:503-511.
    [19]cheri G,Cella P.Spline-blended approximation of Hartmann's flow.Int.J.Num.Meth.Eng.,1974,8:529-536.
    [20]冯康.基于变分原理的差分格式.应用数学和计算数学,1965,4:238-262.
    [21]石钟慈.样条有限元.计算数学,1979,1:50-72.
    [22]刘效尧.二元B样条有限单元法.数值计算与计算机应用.1988,3:129-138.
    [23]沈鹏程.多变量样条有限元法.北京:科学出版社,1997.
    [24]刘焕文,何登旭.解矩形薄板弯曲问题的二元B样条有限元法.广西民族学院学报(自然科学版),1998,4(1):4-8.
    [25]沈鹏程、何沛祥.计算力学中的样条有限元法的进展.力学进展,2000,30(2):191-199.
    [26]Ciarlet D G.Numerical Analysis of Finite Elements.Shanghai:Science Press,1978.
    [27]李荣华,冯果忱.微分方程数值解法.北京:高等教育出版社,1995.
    [28]王仁宏,崔锦泰.关于一个二元B样条基.中国科学,1984,9:874-795.
    [29]Chui C K,Schumaker L L,Wang R H.On spaces of piecewise polynomials with boundary conditions Ⅲ.Type-2 triangulations.Canadian Mathematical Society Conf.Proceedings,1983,3:67-80.
    [30]Wang R H,He T X.The spline spaces with boundary conditions on non-uniform type-2 triangulations.Kexue Tongbao,1985,4:249-251.
    [31]Wang R H,Zhang X L.Finite element method by using bivariate B-splines.Journal of Information and Computational Science,2006,3(4):911-918.
    [32]李崇君.特殊三角剖分上的多元样条及其应用:(博士学位论文).大连:大连理工大学,2004.
    [33]Monegato G.Numerical evaluation of hypersingular integrals.Journal of Computa-tional and Applied Mathematics,1990,33:73-83.
    [34]Monegato G.The numerical evalution of a 2-D Cauchy Principal Value integral arising in boundary integral equation methods.Math.Comp.,1994,62(206):765-777.
    [35]Santi E.On the evaluation of Cauchy principal integrals by rules based on quasi-interpolating operators.Journal of Computational and Applied Mathematics,1996,71:1-14.
    [36]Gao X W.Evaluation of regular and sigular domain integrals with boundary-only discretization-theory and Fortran code.Journal of Computational and Applied Mathematics,2005,175:265-290.
    [37]路游.计算奇异积分的多元样条方法:(博士学位论文).大连:大连理工大学,1996.
    [38]王仁宏,路游.计算二维Cauchy主值积分的多元样条方法.应用数学学报,1998,21(4):627-633.
    [39]Dagnino C,Lamberti P.Numerical evaluation of Cauchy principal integrals based on local spline approximation operators.Journal of Computational and Applied Mathematics,1996,76:232-238.
    [40]Dagnino C,Lamberti P.Numerical integration of 2-D integrals based on local bi-variate C~1 quasi-interpolating splines.Adv.Comput.Math.,1998,8:19-31.
    [41]Pittaluga G,Sacripante L.A numerical algorithm for cubature by bivariate splines on nonuniform partitions.Numerical Algorithms,2000,28:273-284.
    [42]Wang R H,Zhang X L.Numerical integration based on bivariate quartic quasi-interpolation operator.Numer.Math.J.Chinese Univ.(English Ser.),2007,16(3):226-232.
    [43]Chui C K,He T X,Wang R H.The C~2 quartic spline space on a four-directional mesh.Approx.Theory Appl.,1987,3(4):32-36.
    [44]Wang R H,Li C J.Bivariate quartic spline spaces and quasi-interpolation operators.Journal of Computational and Applied Mathematics,2006,190:325-338.
    [45]Walker R J.Algebraic Curves.Princeton:Princeton University Press,1950.
    [46]Bloomenthal J.Introduction to Implicit Surfaces.San Francisco:Morgan Kauf-mann,1997.
    [47]王东明.符号计算选讲.北京:清华大学出版社,2003.
    [48]Cox D A,Little J and O'shea D.Ideals,Varieties and Algorithms.Berlin:Springer,1992.
    [49]Cox D A,Little J and O'shea D.Using Algebraic Geometry.Berlin:Springer,1998.
    [70]Sederberg T W,Arnon D S.Implicit equation for a parametric surface by Groeb-ner basis.Proceedings of the 1984 Macsyma user's Conference.General Electric.Schenectady,New York,431-435.
    [51]Chionh E,Goldman R N.Using multivariate resultants to find the implicit equation of a rational surface.The Visual Computer,1992,8:171-180.
    [52]Chionh E,Goldman R N.Degree,multiplicity and inversion formulas for rational surfaces using u-resultants.CAGD,1992,9:93-108.
    [53]Manocha D,Canny J.Algorithm for implicitizing rational parametric surfaces.CAGD,1992,9:25-50.
    [54]Gao X S,Chou S C.Implicitization of rational parametric equations.J.Sym.Comp.,1992,14:459-470.
    [55]Sederberg T W,Chen F L.Implicitization using moving curves and surfaces.Proc.of SIGGRAPH,1995,301-308.
    [56]Gonzalez-Vega L.Implicitization of parametric curves and surfaces by using multi-dimensional Newton formulae.J.Sym.Comp.,1997,23:137-151.
    [57]Cox D A,Sederberg T W,Chen F L.The moving line ideal basis of planar rational curves.CAGD,1998,15:803-827.
    [58] Macro A, Martinez I J. Using polynomial interpolation for implicitizing algebraic curves. CAGD, 2001, 18: 309-319.
    [59] Macro A, Martinez I J. Implicitization of rational surfaces by means of polynomial interpolation. CAGD, 2002, 19: 327-344.
    [60] Vehlo L, Gomes J. Approximate conversion from parametric to implicit surfaces. Computer Graphics Forum, 1996, 15(5): 327-337.
    [61] Sederberg T W, Zheng J, Klimaszewski K, Dokken T. Approximate implicit using monoid curves and surfaces. Graphical Model and Image Processing, 1999, 61: 177-198.
    [62] Dokken T, Thomassen J B. Overview of approximate implicitization, in Topics in Algebraic Geometry anf Geometric Modeling. AMS Cont.Math., 2003, 334: 169-184.
    [63] Chen F L, Deng D. Interval implicitization of rational curves. CAGD, 2004, 21: 401-415.
    [64] Gao X S, Li M. Rational quadratic approximation to plane real algebraic curves. CAGD, 2004, 21: 805-828.
    [65] Li M, Gao X S, Chou S C. Quadratic approximationto plane parametric curves and its application in approximate implicitization. Visual Computers, 2006, 22: 906-917.
    [66] Wang R H, Wu J M. Approximation implicitization based on RBF networks and MQ quasi-interpolation. J. Comp. Math., 2007, 25(1): 97-103.
    [67] Bajaj C L, Xu G L. A-splines: Local interpolation and approximation using G~k-continuous piecewise real algebraic curves. CAGD, 1999, 16: 557-578.
    [68] Paluszny M, Patterson R. A family of tangent continuous algebraic splines. ACM Transaction on Graphics, 1993, 12: 209-232.
    [69] Paluszny M, Patterson R. Geometric control of G~2-cubic A-splines. CAGD, 1998, 15: 261-287.
    
    [70] Sederberg T. Planar piecewise algebraic curves. CAGD, 1984, 1:241-255.
    [71]Wang R H,Zhang X L.Approximate implicitization of parametric curves by using cubic A-splines.submitted.
    [72]Hartshorne R.Algebraic Geometry.New York:Springer-Verlag,1977.
    [73]苏志勋.分片代数曲线曲面及其在CAGD中的应用:(博士学位论文).大连:大连理工大学,1993.
    [74]赖义生.分片代数曲线和分片代数簇的若干研究:(博士学位论文).大连:大连理工大学,2002.
    [75]许志强.多元样条,分片代数曲线和线性丢番图方程组:(博士学位论文).大连:大连理工大学,2003.
    [76]朱春钢.分片代数曲线,分片代数簇和分片半代数集若干问题的研究:(博士学位论文).大连:大连理工大学,2005.
    [77]Shi X Q,Wang R H.The Bezout number for piecewise algebraic curves.BIT,1999,(39)2:339-349.
    [78]Wang R H.Multivariate spline and algebraic geometry.Journal of Computational and Applied Mathematics,2000,121:153-163.
    [79]Wang R H,Lai Y S.Piecewise algebraic curve.Journal of Computational and Ap-plied Mathematics,2002,144:277-289.
    [80]Wang R H,Lai Y S.Real piecewise algebraic variety.Jour.Comp.Math.,2003,21(4):473-480.
    [81]王仁宏,许志强.分片代数曲线Bezout数的估计.中国科学A辑,2003,2:185-192.
    [82]Wang R H,Zhu C G.Piecewise algebraic varieties.Progress in Natural Science (English Ed.),2004,14:568-572.
    [83]Zhu C G,Wang R H.Real piecewise algebraic curves.Journal of Information and Computational Science,2004,1:169-173.
    [84]吴文俊.吴文俊论数学机械化.济南:山东教育出版社,1996.
    [85]杨路,张景中,侯晓荣.非线性方程组与定理机器证明.上海:上海科技教育出版社,1996.
    [86]王文举,王仁宏,刘秀平.分片代数曲线交点的结式求法.数学研究与评论,1999,19(1):125-129.
    [87]刘秀平,王仁宏.分片代数簇的机械化求解.辽宁师范大学学报,2000,23:230-233.
    [88]Wang R H,Zhang X L.Interval iterative algorithm for computing piecewise algebraic variety.Computers and Mathematics with Applications,doi:10.1016/j.camwa.2008.01.036.
    [89]Wang R H,Zhang X L.Isolating the real roots for the piecewise algebraic variety.submitted.
    [90]Moore R E.Interval Analysis.Englewood Cliffs:Prentice-Hall,1966.
    [91]Wang D R et al.Interval Methods for Nonlinear Equations.Shanghai Scientific and Technical Publishers,1987.
    [92]Grandine T A.Computing zeros of spline functions.CAGD,1989,6:129-136.
    [93]Collins G E.Quantifer Elimination for Real Closed Fields by Cyclindric Algebraic Decomposition.LNCC33:Springer,1975.
    [94]Collins G E,Akritas A G.Polynomial real root isolation using Descarte's rule of signs.SYMSAC,1976,272-275.
    [95]Rouillier F,Zimmermann P.Efficient isolation of polynomial's real roots.Journal of Computational and Applied Mathematics,2004,162(1):33-50.
    [96]Xia B C,Yang L.An algorithm for isolating the realsolutions of semi-algebraic systems.J.Sym.Comp.,2002,34:461-477.
    [97]Xia B C,Zhang T.Real solution isolation using interval arithmetic.Computers and Mathematics with Applications,2006,52:853-860.
    [98]Hansen E.Interval forms of Newton's method.Computing,1978,20:153-163.
    [99]Moore R E.A test for existence of solutions to nonlinear systems.SIAM J.Numer.Anal.,1977,14:611-615.
    [100]Moore R E.Safe starting regions for iterative methods.SIAM J.Numer.Anal.,1977,14:1051-1065.
    [101]Wang R H,Wu J M.Computation of an algebraic variety on a convex polyhedron.Journal of Information and Computational Science,2006,3(4):903-911.
    [102]樊旭川.区间多项式和区间隐式化方法:(博士学位论文).合肥:中国科学技术大学,2005.
    [103]Chen F L,Yang W.Applications of inteval algorithm in solving algebraic equations with Wu's method.Science in China(Series A),2005,35:910-921.
    [104]Goodman T.New bounds on the zeros of spline functions.J.Approx.Theory,1994,76(1):123-130.
    [105]de Boor C.The multiplicity of a spline zero.Annals of Numer.Math.,1997,4:229-238.
    [106]Pedersen P.Multivariate Sturm Theory.Proceedings AAECC-9,Lecture Notes in Computer Science,1991,539:318-332.
    [107]Gonzalez-Vega L,Trujillo G.Multivariate Sturm-Habicht sequences:real root counting on n-rectange and triangles.Revista Mathematica,1997,10:119-130.
    [108]Yang L.Recent advances on determining the number of real roots of parametric polynomial.J.Symbolic Computation,1999,28:225-242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700