丛枝菌根真菌(AMF)提高番茄耐盐性机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以“中杂9号”番茄为试材,在筛选适于番茄有机土栽培的菌种基础上,对AMF提高番茄耐盐的生理及分子机制进行了系统研究,主要结果如下:
     1.有机土上番茄接种6种不同的丛枝菌根真菌(Glomus versiforme,Glomus mosseae-2, Glomus intraradices, Glomus diaphanum, Glomus mosseae, Glomus etunicatum)均不同程度上促进了植株生长,并筛选出Glomus versiforme, Glomus mosseae-2是对番茄生长促进效果最好的菌种。接种Glomus versiforme, Glomus mosseae-2后,干物重分别比对照高75%和65%, Glomus versiforme, Glomus mosseae-2用于有机土栽培具有较大的生产潜力。
     2.用不同浓度NaCl(0.5%,1%)对接种Glomus mosseae-2和未接种番茄处理后,研究Glomus mosseae-2对番茄耐盐性的影响。结果表明,持续盐胁迫下与未接菌株相比,接菌株具有较大的叶面积、地上部茎流量和根系活力,因而表现较强的地上及地下部生长。盐胁迫虽抑制菌根的形成,但随盐浓度增加,菌根效应并未减小。在同一盐胁迫浓度下,接种AMF能提高番茄的耐盐系数,因而提高番茄的耐盐性。
     3.在0.5%和1%NaCl胁迫下,对接菌及未接菌番茄营养吸收平衡及离子毒害机制进行了分析。结果表明,番茄接种Glomus mosseae-2,显著提高了地上部及根系N、P、K~+和Ca~(2+)的含量,显著降低Na~+含量,对Cl~-含量虽有减少但无显著影响。接种AMF还显著影响盐胁迫下植株的营养吸收及平衡,增加地上部及根系K~+/ Na~+、P/ Na~+、Ca~(2+)/ Na~+及根系P/Cl~-值。这些比值与植株总干重均呈显著正相关,其中与K~+/ Na~+、P/ Na~+、Ca~(2+)/ Na~+相关性最大。接菌番茄耐盐性提高与AMF改善植株营养状况尤其是提高K、P含量,保持较高K~+/ Na~+、P/ Na~+、Ca~(2+)/ Na~+比值、降低植株Na~+含量从而降低Na~+对植株的毒害作用有关。
     4.为研究AMF降低Na~+对番茄毒害作用的分子机理。首次用RT-PCR、Realtime-PCR技术对接种Glomus mosseae-2及未接菌株叶片及根系液泡膜Na~+/H~+逆向转运蛋白基因(LeNHX1)mRNA表达进行分析。结果发现,无NaCl处理时,接菌与未接菌株LeNHX1基因表达量无显著差异。盐处理后,盐胁迫诱导接菌及未接菌株LeNHX1基因的大量表达,但接菌株LeNHX1基因的表达量低于未接菌株,AMF对LeNHX1没有显著诱导作用。说明Glomus mosseae-2能提高番茄的耐盐性与LeNHX1基因关系不大,即接菌番茄降低植株Na~+毒害作用,不是通过AMF诱导LeNHX1基因的过量表达,使Na~+区域化至液泡中这条途径来实现的。
     5.不同浓度NaCl(0.5%和1%)持续胁迫40 d过程中,对接种Glomus mosseae-2番茄有机渗透调节物质含量的研究分析表明,盐胁迫下,与未接菌番茄相比,接种AMF番茄能显著促进叶片和根系可溶性糖的积累、增加叶片可溶性蛋白含量及根系脯氨酸含量,使植株耐盐能力增强。接菌株可溶性蛋白的增加,尤其可溶性糖以及根系脯氨酸的大量积累在AMF提高番茄耐盐的渗透调节机制中具有重要的作用。
     6.在不同浓度NaCl(0.5%和1%)持续胁迫过程中,在无NaCl处理和NaCl处理下,AMF能显著提高超氧化物歧化酶(SOD)、过氧化物酶(POD)、抗坏血酸过氧化物酶(APX)及谷胱甘肽过氧化物酶(GSH-PX)活性,过氧化氢酶(CAT)活性被AMF短暂地诱导后与其相应未接菌株无显著差异;AMF能显著减小盐胁迫下番茄细胞膜透性和膜脂过氧化,因而提高了番茄的耐盐性;接菌番茄耐盐性的提高主要与AMF增强SOD、POD、APX和GSH-PX活性,进而增强清除氧自由基的能力有关,而与CAT关系不大。
     7.在0.3%,0.6%,1%NaCl持续胁迫下,盐胁迫降低了番茄净光合速率和光饱和点,AMF虽然未提高番茄的光饱和点,但能提高叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(gs)、表观量子产量(AQY)、CO_2羧化效率(CE),同时提高了叶绿体光合磷酸化活性,有利于维持叶绿体吸收光能的能力,因此,接种AMF能提高番茄光能转化效率及CO_2的利用效率;接菌与未接菌株在0.3-0.6%盐浓度处理时,光合作用下降主要受气孔限制,1%NaCl处理28 d后,光合作用下降主要受非气孔因素影响,而接种AMF能提高盐胁迫下番茄的光合作用,增强植株生长及耐盐性。
     8.在0.3%,0.6%,1%NaCl胁迫下,生长促进物质IAA、GA3和Zeatin含量下降,生长抑制物质ABA含量增加,而接种Glomus mosseae-2增加了这些激素的含量。菌根形成过程中AMF参与调节内源激素平衡,同一盐浓度下与未接菌株相比,AMF降低叶片ABA/IAA、ABA/GA3、ABA/Zeatin及ABA/ (IAA+GA3+Zeatin)的比值。通过gs与ABA/Zeatin比值的相关分析,gs和ABA/Zeatin值呈极显著负相关。同一盐浓度下,接菌株有较高gs和较低的ABA/Zeatin值,而未接菌株有较高的ABA/Zeatin值和较低的gs。与未接菌株相比,接菌株较高ABA含量并没导致较小的气孔导度,ABA和Zeatin共同调节气孔对盐胁迫的响应,维持接菌株较高的气孔导度,从而维持较高的光合作用,增强番茄的耐盐性。
     通过外源IAA、GA3对番茄相关耐盐指标(植株干物重、可溶性糖、可溶性蛋白等)的影响研究发现,外源IAA、GA3能增强番茄的耐盐性,由AMF诱导的内源IAA、GA3可起到类似的作用,与AMF提高番茄耐盐性密切相关。
     9.在0.5%、1%NaCl胁迫下,随盐浓度增加和盐胁迫持续番茄叶片相对含水量、叶片水势及叶片水分利用率、根系水导均不同程度降低,接种AMF番茄能显著提高这些指标的值。接种AMF后具有减缓番茄受盐害而失水的作用,这种作用在较高盐浓度下表现得更为明显。为进一步研究盐胁迫下AMF促进番茄水分吸收的分子机制,用RT-PCR、Realtime-PCR技术分析了盐胁迫下接菌及未接菌番茄叶片及根系中的LePIP1,LePIP2, LeTRAMP,LeAQP2(质膜水孔蛋白基因),LeTIP(液泡膜水孔蛋白基因)5种水孔蛋白基因mRNA的表达量。结果发现,AMF及盐胁迫均在转录水平上调控了这5个基因的表达。AMF及盐胁迫对以上各基因的调控表达在叶片和根系中有很大差异即表现出组织表达差异性。盐胁迫下,与未接菌株相比,这5个基因在叶片中均过量表达,说明这些水孔蛋白基因参与了水分的跨膜转运,有利于水分在叶片中快速转运,因此利于维持接菌株较高的叶片水势。而在根部,与未接菌株相比,LePIP1、LePIP2、LeTRAMP、LeTIP基因表达下调, LeAQP2则上调,因此, LeAQP2基因在接菌株根中的过量表达与盐胁迫下AMF提高番茄根系水导有关。盐胁迫下,其它基因在接菌或未接菌株根系中的表达,由于AMF与盐胁迫共同对其基因表达的上调或下调以不同调控方式参与了渗透调节。
In this thesis, on the bases of studies on selecting AMF strains to suit to organic culture, a series of studies had been conducted on physiological and molecular mechanisms of salt tolerance improved by arbuscular mycorrhizal fungi in tomato (Lycopersicon esculentum L. Var. zhongza 9). The main results were as follows:
     1. when tomato seedlings inoculated with six AMF strains ( Glomus versiforme, Glomus mosseae-2, Glomus intraradices, Glomus diaphanum, Glomus mosseae, Glomus etunicatum1) under organic culture, positive effect on growth in AM plants was observed compared to CK and Glomus versiforme, and Glomus mosseae-2 were screened out as the best strains for tomato growth. Glomus versiforme, and Glomus mosseae-2 increased dry weight by 75% and 65% respectively which indicated that the two AMF strains may be potential in organic culture.
     2. The effects of Glomus mosseae-2 on salt tolerance of tomato were studied under 0.5% and 1% NaCl stress. The results showed that higher leaf area, root activity and stem sap flow were detected in AM tomato than corresponding non-AM plants under continuous salt stress which lead to higher shoot and root growth. Although formation of mycorrhizae was restrained by salt stress, the mycorrhizal benefit still increased with salt concentration increasing. Under the same NaCl concentration, coefficient of salt tolerance was improved , and so salt tolerance was enhanced.
     3. Nutrition absorbing in AM and non-AM tomato and mechanisms of ion damage to plant were studied under 0.5% and 1% NaCl stress. N, P, K +and Ca+ content improved and Na~+ decreased significantly, but Cl~- content decreased indistinctively after AMF inoculation. Under the same salt stress, higher K~+/ Na~+, P/ Na~+, Ca~(2+)/ Na~+ and P/Cl~- ratio were observed in AM plants compared to corresponding non-AM plants. These values of ratio had significantly positive relation with dry weight and K~+/ Na~+, P/ Na~+, Ca~(2+)/ Na~+ were more closely related with dry weight. So enhanced salt tolerance in AM tomato were related with improved nutrition condition, especially higher K, P content, K~+/ Na~+、P/ Na~+ and lower Na~+ content which reduced Na~+ damage to plant.
     4. To study mechanisms of the reduced Na~+ damage to plant induced by AMF under salt stress, RT-PCR, Realtime-PCR were performed to assay the vacuolar Na~+/H~+ antiporter (LeNHX1) mRNA level in leaves and roots of AM and non-AM tomato. The results showed that expression of LeNHX1 gene in AM tomato was similar to that of non-AM plant under non- NaCl condition. Expression of LeNHX1 gene was induced by NaCl stress in AM and non-AM plants, but AMF had no significant effect on LeNHX1 mRNA level and lower expression was observed in AM tomato. So mechanisms of the reduced Na~+ damage to plant induced by AMF was in little relation to LeNHX1 which can export Na~+ from the cytosol to the vacuole across the tonoplast.
     5. The effects of AMF (Glomus mosseae-2) on osmotic adjustment matter content of tomato were studied under continuous NaCl stress (0.5% and 1%) for 40 days. The results showed that AMF-inoculation significantly promoted the accumulation of soluble sugar in leaves and roots, increased soluble protein in leaves and proline content in roots under salt stress, so salt tolerance of tomato was improved . The accumulation of soluble protein, soluble sugar and root proline induced by AMF played an important role in osmotic adjustment mechanism of enhanced salt tolerance in AM tomato.
     6. The effect of Glomus mosseae-2 on cell membrane damage and the antioxidants responses in leaves and roots of AM tomato and control were examined under different NaCl stress ( 0.5% and 1%) for 40 days. The results indicated that superoxide-dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), Glutathione peroxidase (GSH-PX) activity in leaves and roots of AM symbiosis were significantly higher than corresponding non-AM plants under NaCl stress or non- NaCl condition. However, CAT activity was transient significantly induced by AMF and then suppressed to a level similar with non-AM seedlings. AMF significantly reduced cell membrane osmosis and membrane peroxidation in leaves and roots in salinity. So, the salt tolerance of tomato was enhanced by AMF. This research suggested that the enhanced salt tolerance in AM symbiosis was mainly related with the elevated SOD, POD, APX and GSH-PX activity by AMF which degraded reactive oxygen species and so alleviated the cell membrane damages under salt stress.
     7. Under 0.3%, 0.6%, 1%NaCl stress, the net photosynthetic rate (Pn), light saturation point (LSP) was decreased in salinity, whereas AMF improved Pn, stomatal conductance (gs), transpiration rate (Tr), apparent quanturn yield (AQY), and carboxylation efficiency (CE) remarkly, although LSP in AM plants was not increased. At the same time, AMF improved photosphorylation activity in chloroplast which was favour to keeping higher ability to absorb light energy. So, AM tomato had higher capacity of CO_2 fixation and light energy exchange compared to corresponding non-AM tomato. Under 0.3-0.6% NaCl stress, the decline of Pn was caused mainly by stomatal factors, but under1% NaCl stress for 28 d, the decline of Pn was caused mainly by non-stomatal factors, whereas AMF improved photosynthesis in AM tomato and consequently improved plant growth and enhanced salt tolerance.
     8. Under 0.3%, 0.6%, 1%NaCl stress, the content of endogenous IAA, GA3, Zeatin in leaves and roots of AM and non-AM decreased and the content of ABA increased, whereas AMF inoculation improved the content of these endogenous hormones. AMF adjusted the balance of endogenous hormones and decreased the ratio of ABA/IAA、ABA/GA3、ABA/Zeatin and ABA/(IAA+GA3+Zeatin) compared to corresponding non-AM plants. The correlation analysis showed a significant reverse relation between gs and the ratio of ABA/Zeatin. AM tomato had higher gs and lower ratio of ABA/Zeatin than that of corresponding non-AM plants. So, higher ABA content did not led to lower gs compared to non-AM plants and ABA and Zeatin adjusted response of stoma to salt stress jointly and kept higher gs than non-AM ones which lead to higher photosynthesis. Studies on plant growth, dry weight, and other physiological item (soluble sugar, soluble protein and MDA content) when exdohormones (IAA, GA3) applied showed that IAA, GA3 improved salt tolerance of AM or non-AM tomato. Similarly, it also indicated that IAA, GA3 induced by AMF can also enhanced salt tolerance of AM tomato.
     9. Relative water content (RWC), water potential and water use efficient (WUE) in leaves of AM and non-AM tomato were examined under NaCl (0.5%, 1%) stress. The results showed that RWC,water potential,WUE declined with NaCl concentration increasing under continuous salt stress, however, AMF improved the value of these parameters. Water absence due to salt stress can be alleviated in AM tomato and the positive effect of AMF on water absorb was more obvious compared to non-AM plants especially under high NaCl (1%) stress. Consequently, AM tomato had higher capability to keep the water balance in plant under salt stress. At the same time, water condunce affected by AMF and salinity jointly. Salt stress decreased Lp and higher Lp in roots of AM plants also observed.
     To study molecular mechanism of water absorbing enhanced by AMF deeply, RT-PCR and Realtime-PCR was firstly used to study mRNA levels of five aquaporin genes (LePIP1, LePIP2, LeTRAMP, LeAQP2 and LeTIP)in leaves and roots of AM and non-AM tomato under 1% NaCl stress. The results indicated that the five aquaporin genes were all regulated at transcriptional level by AM fungi and salt stress. The expression of the five genes adjusted by AMF or salt stress was significantly different in leaves and roots. Higher level of the five genes mRNAs were observed in leaves compared to corresponding non-AM tomato under salt stress which indicated that overexpression of the five genes facilitated water transport across biomembranes, thus AM tomato can transport water faster and keep higher leaf water potential. However, LePIP1, LePIP2, LeTRAMP, LeTIP were down-regulated in roots of AM tomato in salinity compared to that of non-AM ones, but expression of LeAQP2 gene in AM tomato roots was higher than corresponding non-AM plants. Accordingly, overexpression of LeAQP2 gene in roots may be relation to enhanced root conductivity due to AMF. Under salt stress, other genes (LePIP1, LePIP2, LeTRAMP, LeTIP) in roots of AM or non-AM tomato may involve in osmosis adjustment in different ways by up-regulating or down-regulating the expression of these genes by salt stress and AMF jointly
引文
[1] 弓明钦, 陈应龙, 仲崇禄. 菌根研究及应用[M]. 北京: 中国林业出版社, 1997.
    [2] 刘润进, 李晓林. 丛枝菌根及其应用[M]. 北京: 科学出版社, 2000.
    [3] Morton J B, Benny G L. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders. Glomineae and Gigasporineae, and two families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomacea[J]. Mycotaxon, 1990, 37(37): 471-491.
    [4] 盖京苹, 蒋家慧, 刘培利. AM真菌资源及生态学研究进展[J]. 莱阳农学院学报, 1998, 15(2): 135-140.
    [5] Hawksworth D L , Kirk P M, Sutton B C, et al. Ainsworth & Bisby's Dictionary of the Fungi[M]. Londen: Cambridge University Press, 1995.
    [6] Lambais M R, Mebdy M C. Differential expression of defense –related gene in arbuscular mycorrhizal[J]. Canadian Journal of Botany, 1995, 73: 533-540.
    [7] Van Buuren M L, Maldonado-Mendoza I E, Trieu A T. Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus vesiforme[J]. Mol Plant Microbe Interact, 1992, 12(3): 171-181.
    [8] Raush C, Daram P, Brunner S. A phosphate transporter expressed in arbuscule containing cell in potato[J]. Nature, 2001, 414(6862): 462-470.
    [9] 李晓林, 冯固. 丛枝菌根生态生理[M]. 北京: 华文出版社,2001.
    [10] Trimble M R, Knowles N R. Influence of vesicular arbuscular mycorrhizal fungi and phosphorus on growth, carbohydrate partitioning and mineral nutrition of greenhouse cucumber (Cucurnis sativus L.) plants during establishment[J]. Can J. Plant Sci., 1995, 75: 239-250.
    [11] 李敏, 辛华, 郭绍霞等. 丛枝菌根真菌对盐渍土中番茄和辣椒生长及矿质元素吸收的影响[J]. 莱阳农学院学报, 2005, 22(1): 38-41.
    [12] AL-Karaki G N. Growth and mineral acquisition by mycorrhizal tomato grown under salt stress[J]. Mycorrhiza, 2000, 10: 51-54.
    [13] Kaya C, Higgs D, Kirnak H, et al. Mycorrhizal colonization improves fruit yield and water use defficiency in water melon (Citrullus lanatus Thunb) grown under well-watered and water-stressed conditions[J]. Plant Soil, 2003, 253(2): 287-292.
    [14] Duke E R, Johnson C R, Koch K E. Accumulation of phosphorus, dry matter and betaine during NaCl stress of split-root cirtus seedlings colonized with vesicular-arbuscular mycorrhizal fungi on zero, one or two halves[J]. New Phytol, 1986, 104: 583-590.
    [15] 李树林, 赵士杰. VA 菌根对马铃薯生长的影响[J]. 土壤学报, 1994, 31(supp): 100-105.
    [16] 贺学礼, 李斌. VA 菌根对植物选择性研究[J]. 西北植物学报, 1999, 19(3): 471-475.
    [17] 程永雄, 庄明富, 杜金池. 甜瓜接种内生菌根(Glomus clarum)的效益评价[J]. 中华农业研究, 1993, 42(1): 74-84.
    [18] Lindennan R G. Role of VAM fungi in biocontrol[A]. In: Mycorrhiza and plant health[C]. Pfleger FL, Linderman RG (eds.). The American Phytopathological Society, 1994. 1-25.
    [19] Cooper K E, Grandison G S. Effects of vesicular-arbuscular mycorrhizal fungi on infection of tamarillo (Cyphomandra betcea) by meloidogyne incognita in fumigated soil[J]. Plant Disease, 1987, 71(12): 1101-1106.
    [20] Jothi G. Rajeshwari S, Sundarababu R. Interaction of vesicular- arbuscular mycorrhizae with reniform nematode. Rotylenchulus reniformis on ragi[J]. Indian Journal of Nematology 1998.28(2): 145-149.
    [21] 张其德. 盐胁迫对植物及其光合作用的影响[J]. 植物杂志, 2000, 1: 28-29.
    [22] 余叔文, 汤章城. 植物生理与分子生物学[M]. 北京: 科学技术出版社, 1998.
    [23] Fowers T J. Chloride as a nutrient and as an osmoticum.[A]. In: Advanced in plant nutrition[C] Tinker B, Luuchli A(eds.). New York: Praeger, 1988, 3: 55-78.
    [24] Tester M, Davenport R. Na+ tolerance and Na+ transport in higher plants[J]. Annals of Botany, 2003, 91: 503-527.
    [25] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annu. Rev. Plant Physiol, 1980, 31: 149-190.
    [26] Munns R, Termaat A. Whole-plant responses to salinity[J]. Aust. J. Plant Physiol, 1986, 13: 143-160.
    [27] Munns R, Guo J, Passioura J B, et al. Leaf water status controls day-time but not daily rates of leaf expansion in salt-treated barley[J]. Australian Journal of Plant Physiology, 2000, 27: 949-957.
    [28] Munns R. Comparative physiology of salt and water stress[J]. Plant Cell and Environment, 2002, 25: 239-250.
    [29] Kavi-Kishor P M, Hong Z, Miao G H, et al. Overexpression of Delta 1-pyrroline-5 一 carboxylate synthesis increases proline production and confers osmosis tolerance in transgenetic plants[J]. Plant Physiol, 1996, 108: 1387-1394.
    [30] Yeo A. Molecularbiology of salt to tolerance in the context of whole plant physiology[J]. J. Exp. Bot., 1998, 49: 915-929.
    [31] Zhu J K. Plant salt tolerance[J]. Trends Plant Sci., 2001, 6: 66-71.
    [32] Zhu J K, Hasegawa P M, Bressan R A. Molecular aspects of osmotic stress in plants[J].Crit. Rev. Plant Sci., 1996, 16: 253-277.
    [33] Hasegawa P M, Bressan R A, Hanada A K. Cellular mechanisms of salinity tolerance[J]. HortScience, 1986, 21: 1317-1325.
    [34] Solomon A, Beer S, Waisel Y. Effects of NaCl on the Carboxylating activity of Rubisco fromTamarix jordanis in the presence and absence of proline-related compatible solutes[J]. Plant Physiol, 1994, 90: 198-204
    [35] Rubio F, Gassmann W, Schroeder J I. Sodium driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance[J]. Science, 1995,270: 1660-1663.
    [36] 王宝山, 邹琦, 赵可夫. 液泡膜转运蛋白与植物耐盐性研究进展 [J]. 植物学通报, 1996, 13 (3): 30-36.
    [37] Zhao F Y, Guo S L, Wang Z L, et al. Recent advances in study on transgenic plants for salt tolerance[J]. Plant Physiol Mol Biol, 2003, 29(3): 171-178.
    [38] Shi H, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOSI encodes a putative Na+/H+ antiporter[J]. PNAS, 2000; 97: 6896-6901.
    [39] Apse M P, Blumwald E. Engineering salt tolerance in plants[J]. Current Opinion In Biotechnology, 2002, 13: 146-150.
    [40] Shi H, Lee B H, Wu S J, et al. Overexpression of plasma membrane Na+/H+antiporter gene improves salt tolerance in Arabidopsis thaliana[J]. Nat Biotechnol, 2003, 21(1): 81-85.
    [41] Wang B S, Luttge U, Ratajczak R. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa[J]. J. Exp. Bot., 2001, 52: 2355-6555.
    [42] Davies J M, Poole R J, Rea P A, et al. Potassium transport into vacuoles energized directly by a proton-pumping inorganic pytophosphatase[J]. PNAS, 1992, 89:11701-11705.
    [43] Blummwal D E,Aharon G S,Apse M P. Sodium transport in plant cells[J]. Biochim Biophys Acta, 2000, 1465: 140-151.
    [44] 俞仁培, 陈德明. 我国盐渍土资源及其开发利用[J]. 土壤通报, 1999, 30 (4): 158-159.
    [45] Xu D, Duan X, Wang B , et al. Expression of alate embryo genes is abundant prote in gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice[J]. Plant Physiology, 1996, 110: 249-257.
    [46] Kermode A R. Approaches to elucidate the basis of desiccation-tolerance in seed[J]. Seed Science Research, 1997, 7: 75-95.
    [47] Tyerman S D, niemietz C M, Bramley H. Plant aquaporins: multifuntional water solute channels with expanding roles[J]. Plants, Cell and Environment, 2002, 25: 173-174.
    [48] Santoni V, Gerbeau P, Javot H, et al. The High Diversity of Aquaporins Reveals Novel Facets of Plant Membrane Functions[J].Curr Opin Plant Biol, 2000, 3(6): 476-481.
    [49] Johansson L, Karlsson M, Shukla VK, et al. Water tranport activity of the plama membrane aquaporin PM28A is regulated by phosphorylation at two different sites[J]. Plant Cell, 1998, 10: 451-460.
    [50] Steudle E. Water uptake by roots: Effect of water deficit[J]. Journal of Experimental Botany, 2000, 51:1531-1542.
    [51] Maurel, C. Aquaporins and water permeability of membranes[J]. Annu.Rev.Plant Physiol. Plant Mol.Biol., 1997, 48: 399-429.
    [52] Evlgon D, Ravina Y, Neumann P M. Interactive effects of salinity and calcium on hydraulic conductivity, osmotic adjustment and growth in primary roots of maize seedings[J]. Israel Journal of Botany, 1990, 39: 239-247.
    [53] Carvajal M, Martinez V, Alcaraz C F.Physiological function of water-channels, as affected by salinity in roots of paprika pepper[J]. Physiologia Plantarum, 1999, l05: 95-101.
    [54] North G B, Nobel P S. Heterogeneity in water availability alters cellular development and hydraulic conductivity along roots of a desert succulent[J]. Annals of Botany, 2000, 85: 247-255.
    [55] Yamada S, Komori T, Myers PN, et al. Expression of plasma membrane water channel genes under water stress in Nicotiana excelsior[J]. Plant and Cell Physiology, 1997, 38: 1226-1231.
    [56] Aliasgha R N, Rastin N S, Towfighi H, et al. Occurence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil[J]. Mycorrhiza, 2001, 11: 119-122.
    [57] Wang F Y, Liu R J, Lin X G, et al. Arbuscular mycorrhizal status of wild plants in saline-alkaline soils of the Yellow River Delta [J]. Mycorrhiza , 2004, 14: 133-137.
    [58] Pande M, Tarafadar J M. Effects of phosphorus, salinity and moisture on VAM fungal association in neem (Azadirachta indica L.) [J]. Symbiosis, 2002, 32(2): 195-209.
    [59] Poss J A, Pond E, Menge J, et al. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate[J]. Plant and Soil, 1985, 88: 307-319.
    [60] Copeman R H, Martin C A, Stutz J C. Tomato growth in response to salinity and mycorrhizal fungi from saline or monsaline soil[J]. HortScience, 1996, 31: 313-318.
    [61] Rosendal C N, Rosendahl S. Influence of vesicular arbuscular mycorrhizal fungi (Glomus spp.) on response of cucumber (cucumis sativus) to salt stress[J]. Environ. Exp. Bor., 1991, 31: 313-318.
    [62] Johnso-Green P C, Kenkel N C, Booth T. The distribution and phenology of arbuscular mycorrhizae along an inland salinity gradient[J]. Can J. Bot., 1995, 73: 1318-1327.
    [63] Kim C K, Weber D J. Distribution of VA mycorrhiza on halophytes on inland salt playas[J]. Plant Soil, 1985, 83: 207- 214.
    [64] Juniper S, Abbott L K. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi[J]. Mycorrhiza, 2006, 1: 24-28.
    [65] Hirrel M C. The effect of sodium and chloride salts on the germination of Gigaspora margaria[J]. Mycologia, 1981, 43: 610-617.
    [66] Hao Z P, Christie P, Qin L, et al. Control of fusarium wilt of cucumber seedlings by inoculation with an arbuscular mycorrhical fungus[J]. Journal of Plant Nutrition, 2005, 28(11): 1961-1974.
    [67] Ruiz-Lozano J M, Azcon R, Gonez M. Alleviation of salt stress by arbuscular-mycorrhiza Glomus species in Lactuca saliva plants[J]. Physiologia plantarum, 1996, 98: 767-772.
    [68] Tobar R M, Azc N R, Barea J M . Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions[J]. New Phytol, 1994, 126: 119–122.
    [69] 冯固, 张福锁. 丛枝菌根真菌对棉花耐盐性的影响[J]. 中国农业生态学报, 2003, 11(2): 22-24.
    [70] Mass E V. Salt tolerance of plants[J]. Applied Agricultural Research, 1986, 1: 12-26.
    [71] Weissenhorn I. Mycorrhiza and Salt Tolerance of Trees[R]. EU project Mycorem QLK3-1999-00097. Scientific Report. Pius Floris Boomverzorging Nederland bv, Vught, NL.2000.
    [72] Poss J A, Pond E C, Menge J A. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate[J]. Plant and Soil, 1985, 88: 307-319.
    [73] Hajibagheri M A, Yeo A R, Flowers T J, et al. Salinity resistance in Zea mays:fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids[J]. Plant Cell Environ., 1989, 12: 753-757.
    [74] Al-Karaki G N , Rusan R H M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress[J]. Mycorrhizal, 2001, 11: 43-47.
    [75] Olan N S, Robson A D, Barrow N J. Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants[J]. Plant Soil, 1987, 22: 401-410.
    [76] Krishna H, Singh S K, Sharma R R. Biochemical changes in micropropagated grape (Vitis vinifera L.)Plantlets due to arbuscular mycorrhizal fungi (AMF) noculation during ex vitro acclimatization[J]. Scientia Horticulture, 2005, 106: 554-567.
    [77] Duma S E, Gianinazz P E, Arson V, et al. Production of new soluble proteins during VA-endomycorrhiza formation[J]. Agriculture, Ecosystems and Environment, 1989, 29(1-4): 111-114.
    [78] Ruiz-Lozano J M, Azc N R. Mycorrhizal colonization and drought stress exposition as factorsaffecting nitrate reductase activity in lettuce plants[J]. Agric. Ecosyst. Environ., 1996, 60: 175-181.
    [79] Perrin R. Interactions between mycorrhizae and diseases caused by soil-borne fungi[J]. Soil Use Manage, 1990, 6: 189-195.
    [80] Jakobsen I, Abbott L K, Robson A D. External hyphae of vesicular arbuscular mycorrhizal fungi associated with Trfolium subterraneum L.1.Spread of hyphae and phosphorus inflow into roots[J]. New Phytol, 1992, 120: 509-516.
    [81] 李登武, 王冬梅, 余仲东. AM 真菌与植物共生的生理生化影响进展[J]. 西北植物学报, 2002, 22(5): 1255-1262.
    [82] Cantrell I C, Linderman R G . Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity[J]. Plant Soil, 2001, 233: 269-281.
    [83] Feng G, Li X L, Zhang F S , et al. Effect of phosphorus and arbuscular mycorrhizal fungus on response of maize plant to saline environment[J]. Plant Resour. Environ., 2000, 9: 22-26.
    [84] Aywers R S, Westcot D W . Water quality for agriculture FAO irrigation and Drainage Paper[N]. Rome.Italy, 1985, 29: 77-81.
    [85] Bethlenfalvay G J, Brown M S, Mihara K L, et al. The Glycine-Glomus –Bradyrhizobium simbiosis. V. Effects of mycorrhizal on nodule activity and transpiration in soybean under drought stress[J]. Plant Physiol, 1987, 85: 115-119.
    [86] Allen M F. Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis Lagex Steud[J]. New Phytol, 1982, 91: 191-196.
    [87] Augé R M, Stodola A J W, Tima J E, et al. Moisture retention prosperties of a mycorrhizal soil[J]. Plant Soil, 2001, 230: 87-97.
    [88] Bernstein L, Francois L E, Clark R A. Interactive effects of salinity and fertility on yields of grains and vegetables[J]. Adv. Agron., 1974, 66: 412-421.
    [89] Jarrell W M, Beverly r B. The dilution effect in plant nutrition studies[J]. Adv. Agron., 1981, 34: 197-224.
    [90] Juniper S, Abbott L. Vesicular-arbuscular mycorrhizas and soil salinity[J]. Mycorrhiza, 1993, 4: 45-47.
    [91] Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaC1 stress environments[J]. Plant Physiol, 1995, 109:735-742.
    [92] Kishor P B K, Hong Z, Mian G H. Over expression of △ ’-pyrroline-5-carboxylate synthetase increases proline production and confer osmosis tolerance in trangeic plants[J]. Plant Physiol., 1995, 108: 1387-1394.
    [93] Hoekstra F A, Golovina E A, Buitink J. Mechanisms of plant desiccation tolerance[J]. Trends Plant Sci., 2001, 6:431-438.
    [94] Feng G, Zhang F S, Li X L, et al. Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots[J]. Mycorrhiza, 2002, 12(4): 185-90.
    [95] Porcel R, Barea J M, Ruiz-Lozano J M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence[J]. New Phytologist, 2003, 157: 135-143.
    [96] Ruiz-Lozano J M, Cómez M, Azcón R. Influence of different Glomus species on the time-course ofphysiological plant responses of lettuce to progressive drought stress periods[J]. Plant Sci., 1995, 110:37-34.
    [96] Elstner E F. Metabolism of activated oxygen species[A]. In: The Biochemistry of Plants. vol. II, Biochemistry of Metabolism[C]. Davies, D.D. (Ed.), San Diego, CA, Academic Press, 1987, 252-315.
    [97] Wojtaszek P. Oxidtive burst: An early plant response to pathogen infection[J]. Biochemical Journal, 1997, 322: 681-692.
    [98] Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science, 2002, 7: 405-410.
    [99] Ruoz-Lozano J M, Azcón R, Palma J M. Superoxide dismutase activity in arbuscular mycorrhizal Lactuca sativa L. plants subjected to drought stress[J]. New Phytol., 1996, 134: 327-333.
    [100] Ruoz-Lozano J M, Collados C, Barea J M, et al. Clonig of cDNAS encoding SODs from lettuce plants which show differential regulation by arbuscular mycorhizal symbiosis and by drought stress[J]. J. Exp. Bot., 2001, 52: 2241-2242
    [101] Pozo M J, Cordier C, Dumas-Gaudot E et al. Localized versus systemic effect of arbuscular mycorrhizal fungi on the defence responses to Phytophthora infection in tomato plants[J]. Journal of Experimental Botany, 2002, 53: 525-534.
    [102] 赵方贵, 陈丽平, 贺学礼. AM 菌根与不同施磷量对烤烟后期部分生理指标的影响[J]. 西北植物 学报, 2004, 24(11): 2122-2125.
    [103] Palma J M, Longa M A, Del L A, et al.Superoxide dismutase in vesicular-arbuscular red clover plants[J]. Physiol Plant, 1993, 87: 77-83.
    [104] Ghorbanli M, Ebrahimzadeh H, Sharifi M. Effects of NaCl and Mycorrhizal Fungi on Antioxidative Enzymes in soybean[J] Biologia Plantarum, 2004, 48( 4): 575-581.
    [105] Blilou I, Bueno P, Ocampo J A, et al. Indution of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae[J]. Mycorrhizal Research, 2000, 104: 722-725.
    [106] Barea J M, Azcón-Aguilar C. Production of plant growth regulating substances by vesicular arbuscular mycorrhizal Glomus mosseae[J]. Appl. Environ. Microbiol., 1982, 43: 810-813.
    [107] Danneberg G, Latus C, Zimmer W, et al. Influence of vesicular arbuscular mycorrhiza on phytohormeone balances in maize (Zea mays L) [J]. J. Plant Physiol., 1992, 141: 33-39.
    [108] Duan X, Newman D S, Reiber J M, et al. Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought[J]. J. Exp. Bot., 1996, 47: 1541-1550.
    [109] Hasegawa P W, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J] . Annu. Rev. Plant Physiol.Palant Mol.Biol., 2000, 51: 463-499.
    [110] Tyerman S D,Niemietz C M,Bramley H. Plant aquaporins multifunctional water solute channel CHIP28[J]. Journal of Biological Chemistry, 1992, 267: 1826-1827.
    [111] Roussel H, Bruns S, Gianinazzi-Pearson V, et al. Induction of a membrane intrinsic protein-encoding mRNA in arbuscular mycorrhiza and elicitor-stimulated cell suspension cultures of parsley[J]. Plant Sci., 1997, 126: 203-210.
    [112] Krajinski F, Biela A, Schubert D, et al. Arbuscular mycorrhiza development regulates the mRNAabundance of Mtaqp 1 encoding a mercury-insensitive aquaporin of Mmeicago truncatula[J]. Planta, 2000, 211: 85-90.
    [113] Shrestha Y H, Ishii T. Effect of vesicular-arbuscular mycorrhizal fungi on the growth, photosynthsis, transpiration and the distribution of photosynathates of bearing satsumam and arintrees[J]. Journal of Japanese Society of Horticultural Science, 1995, 65 : 517-525.
    [114] Marshchner H. Mineral nutrition of higher plants [M]. London : Academic Press, 1997.
    [115] Jastrow J D, Miller R M, Lussenhop J. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie[J]. Soil Biol. Biochem., 1998, 30: 905-916.
    [116] Rillig M C, Wright S F, Allen M F, et al. Rise in carbon dioxide changes soil structure[J]. Nature, 1999, 400-628.
    [117] Gianinazzi S, Vosatka M. Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business[J]. Can. J. Bot., 2004, 82, 1264–1271.
    [118] Leu S W, Chang D C N. Observationson mycorrhizal morphology of six host plants Inoculated with five species of arbuscular mycorrhizal fungi[J]. Trasactions of the mycological Society of Republic of China, 1994, 9(1): 59-79.
    [119] Wong J W C, Ma KK, Fang K M, et al. Utilization of a manure compost for organic farming in Hong Kong[J]. Bioresour. Technol., 1999, 67: 43–46.
    [120] Gaur A, Adholeya A. Response of three vegetable crops to VAM fungal inoculation in nutrient deficient soils amended with organic matter[J]. Symbiosis, 2000, 29: 19–31.
    [121] Sirvastava A K,Singh S, Marathe RA. Organic Citrus: soil fertility and plant nutrition[J]. Journal of Sustainable Agriculture, 2002, 19(3): 5-29.
    [122] 陈双臣, 邹志荣, 贺超兴等. 温室有机土栽培 CO2 浓度变化规律及增施 CO2 对番茄生长发育的 影响[J]. 西北植物学报,2004,24(9):1624-1629.
    [123] 张志良. 植物生理学实验指导[M](第二版). 北京: 高等教育出版社, 1990.
    [124] 刘永军, 郭守华, 杨晓玲. 植物生理生化实验技术[M]. 北京: 中国农业出版社, 2000.
    [125] Kormanik P P, McGraw A C. Quantification of VA mycorrhizae in plant roots[A]. In: Methods and principles of mycorrhizal research[C]. Schenk N C (ed.). American Phytopathological Society, St Paul, Minn.1982, 37-45.
    [126] Takacs T , Voros I. Effect of metal non-adapted arbuscular mycorrhizal fungi on Cd,Ni and Zn uptake by ryegrass[J]. Acta Agronomica Hungarica, 2003, 51(3): 347-354.
    [127] Campbell W H. Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology[J]. Annu. Rev. Plant Physiol. Mol. Biol., 1999, 50: 277-303.
    [128] Clark R B, Zeto S K. Mineral acquisition by Arbuscular Mycorrhizal Plants[J]. Journal of Plant Nutrition, 2000, 23(7): 867-902.
    [129] 李敏, 姜德锋, 孟祥霞等. 丛枝菌根菌对大田菜豆生长、产量及品质的影响[J]. 生态农业研究, 1999, 7(3): 43-46.
    [130] 杨兴洪. VA 菌根对西瓜生长、产量及品质的影响[J]. 果树科学, 1994, 11(2): 117-119
    [131] Douds D D, Reider C. Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil[J]. Biol. Agric.Hort., 2003,21: 91–102.
    [132] Duffy E M, Cassells A C. The effect of inoculation of potato (Solanum tuberosum L.) microplants with arbuscular mycorrhizal fungi on tuber yield and tuber size distribution[J]. Appl. Soil Ecol.,2000, 15: 137–144.
    [133] Copeman R H, Martin C A, Stutz J C. Tomato growth in response to salinity and mycorrhizal fungi from saline or nonsaline soils[J]. Hortscience, 1996, 31(3): 341-344.
    [134] Al-Karaki G N. Growth of mycorrhizal tomato and mineral acquisition under salt stress[J]. Mycorrhiza, 2000, 10(2): 51-54.
    [135] Al-Karaki G N,Hammad R, Rusan M. Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress[J]. Mycorrihiza, 2001, 11: 43-47.
    [136] Al-Karaki G N, Hammad R. Mycorrhizal influence on fruit yield and mineral content of tomato grown under salt stress[J].Journal of Plant Nutrition, 2001, 24(8): 1311-1323.
    [137] Wu S Q, Xia R X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions[J]. Journal of Plant Physiology, 2005, 4:1-15.
    [138] Li M, Li Y M, Liu L J. Effect of arbuscular-mycorrhizal fungi on cucumber grown in the field[J]. Journal of Shangdong Agricultural University, 1999, 30: 156-161
    [139] Gryndler M, Hrselova H, Vosatka M. Organic fertilization changes the response of mycelium of Arbuscular mycorrhizal fungi and their sporulation to mineral N, P, K supply[J]. Folia Microbiol., 2001, 46(6): 540-542
    [140] Gryndler M, Vosatke M , Hrselova H. Interaction between arbuscular mycorrhizal fungi and cellulose in growth substrate[J]. Applied Soil Ecology, 2002, 19: 279-288.
    [141] Joner E J. The effect of long-term fertilization with organic or inorganic fertilizers on mycorrhizal-mediated phosphorus uptake in subterranean clover[J]. Biol. Fertil. Soils, 2000, 210, 435-440.
    [142] Calvet C, Estaun V, Camprubi A. Germination, early mycelial growth and infectivity of a vesicular–arbuscular mycorrhizal fungus in organic substrates[J]. Symbiosis, 1992, 14: 405–411.
    [143] Avio L, Giovannetti M. Vesicular–arbuscular mycorrhizal colonisation of lucerne roots in a cellulose amended soil[J]. Plant Soil, 1988, 112: 99–104.
    [144] Mason E. Note on the presence of mycorrhizas in the root of salt marsh plants[J]. New Phytol, 1928, 27: 193-195.
    [145] Bago B, Vierheilig H, Piche Y, et al. Nitrate depletion and Ph Changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradicies grown in monoxenic culture[J]. New Phytol, 2000, 124: 949-957.
    [146] Smith S E, Read D J. Mycorrhizal symbiosios[M]. San Diego: Academic Press, 1997.
    [147] Hirrel M C. The effect of sodium and chloride salts on the germination of Gigaspora margaria[J]. Mycologia, 1981, 43: 610-617.
    [148] Ruiz-Lozano J M. Symbiotic efficiency and infectivity of an autochthonous arbuscular mycorrhizal Glomus sp from saline soils and Glomus deserticola under salinity[J]. Mycorrhiza, 2000, 10: 137-143.
    [149] 阮松林, 薛庆中. 壳聚糖包衣对杂交水稻种子发芽和幼苗耐盐性的影响[J]. 作物学报, 2002, 11:803-808.
    [150] 庞鸿宾.节水农业工程技术[M]. 郑州: 河南科学技术出版社, 2000.
    [151] Pamelal N, Edward P G, Thompson T L. Comparison of transpiration rates among saltcedar,cottonwood and willow tress by sap flow and canopy temperature methods[J]. Agri and For Meter, 2003, 116: 73-89.
    [152] Suhayda C G, Giannini J L. Briskin D P, et.al. Elestrostatic changes in Lycoperscion esculentum root plasma membrance resulting from salt stress[J]. Plant Physiol, 1990, 93: 471-478.
    [153] 冯固, 白灯莎, 杨茂秋等. 盐胁迫对 VA 菌根形成及接种 VAM 真菌对植物耐盐性的效应[J]. 应 用生态学报, 1999, 10(1): 79 -82.
    [154] Bowen G. The biology and physiology of infection and its development[A]. In: Ecophysiology of VA mycorrhizal paints Bocaraton Ela[C]. Safir GR (ed.). CRC Press, 1987, 27-57.
    [155] Estaun M V. Effect of sodium chloride and mannitol on germination and hyphal growth of vesicular-arbuscular mycorrhizal fungus Glomus mosseae [J]. Agric-Ecosys. Environ., 1989, 29: 123-129.
    [156] Daft M J, Nicolson T H. Effect of Endogone mycorrhiza on plant growth[J]. New Phytol,1966,65: 343-350.
    [157] Gerdemann J W. Vesicular arbuscular mycorrhiza and plant growth[J]. Ann.Rev. Phytopathol, 1968, 6: 397-418.
    [158] George E, Haussler K U, Vetterlein D, et al. Water and nutrient translocation by hyphae of Glomus mosseae[J].Can.J.Bot., 1992, 70: 2130-2137.
    [159] Marschner H. Mineral nutrient acquisition in nonmycorrhizak and mycorrhizal plants[J]. Phyton-Annales Rei Botanicae Austria, 1996, 36: 61-68.
    [160] Bermudez M, Azcon R. Calcium uptake by alfalfa as modified by a mycorrhizal fungus[J]. Plant Soil, 1996, 134: 189-207.
    [161] Borie F, Rubio R. Effects of arbuscular mycorrhizae and liming on growth and mineral acquisition of aluminum-tolerant and aluminum-sensitive barley cultivars[J]. J.Plant Nutr., 1999, 22: 121-137.
    [162] Pinochet J, Fernandez C, Jaizme M D, et al. Micropropagated banana infected with Meloidogyne javanica responds to Glomus intraradices and phosphorus[J]. Hortscience, 1997, 32: 101-103.
    [160] Sengupta A, Chaudhuri S. Vesicular-arbuscular mycorrhizal in pioneer saline marsh plants of the Ganges River Delta in vest Bengal (India) [J]. Plant and Soil, 1990, 122: 111-113.
    [161] Valentine A J, Osborne B A, Mitchell D T. Interaction between phosphorus supply and total nutrient availability on mycorrhizal colonization, growth and photosynthesis of cucumber[J]. Scientia Horticulture, 2001, 88: 177-189.
    [162] Chen S, Li J, Wang S, et al. Salt, nutrient uptake and transport and ABA of populus euphratica; a hybrid in response to increasing soil NaCl[J]. Trees, 2001, 15(3): 186-194.
    [163] Martinez V, Lauchli A. Salt-induced inhibition of phosphate uptake in plants of cotton (Gossypium hirsutum L.)[J]. New Phytol, 1994, 125: 609-614.
    [164] Sairam R K, Rao K V. Srivastava G C. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration[J]. Plant Sci., 2002, 163, 1037-1046.
    [165] Asch F, Dingkuhn M. Leaf K/Na ratio predicts salinity-induced yield loss in irrigated rice[J]. Euphytica, 2000, 113:109-118.
    [166] Pessarakli M, Tucker T C.Dry matter yield and nitrogen 15 uptake by tomatoes under sodiumchloride stress[J].Soil Sci. Soc. Am. J., 1988, 52: 698-700.
    [167] Suhayda C G, Giannini J L. Briskin D P, et al. Elestrostatic changes in Lycoperscion esculentum root plasma membrance resulting from salt stress[J]. Plant Physiol., 1990, 93: 471-478.
    [168] Handley L L, R Azcon J M, Ruiz Lozano, et al. Plant 15N associated with arbuscular mycorrhization, drought and nitrogen deficiency[J]. Rapid Commun. Mass Spectron. 1999, 1320-1324.
    [169] Subramanian K S, Charest C. Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions[J]. Mycorhiza, 1999, 9: 69-75.
    [170] Ames R M, Reid C P P, Porter L K. Hyphal uptake and transport of nitrogen from two 15N labeled source by Glomus mosseae a vesicular-arbuscular fungus[J]. New Phytol, 1983, 95: 381-396.
    [171] Grattan S R, Grieve M. Mineral element acquisition and growth response of plants growth in saline environments[J]. Agriculture Ecosystem and Environment.1992, 38: 275-300.
    [172] 冯固, 杨茂秋, 白灯莎. 盐胁迫下 VA 菌根真菌对无芒雀麦(Bromus inermis Leyss.)体内矿质 元素含量及组成的影响. 草业学报, 1998, 7(3): 21-28.
    [173] Hardie K. The effect of removal of extraradical hyphae on water uptake by vesicular arbuscular mycorrhizal plants[J]. New Phytol, 1985, 101: 677-684.
    [174] Gupta P K. Drought response in fungi and mycorrhizal plants[J]. Handbook of Applied Mycology, 1991, 1: 55-57.
    [175] Sánchez-Diaz M, Honrubia M. Water relations and alleviation of drought stress in myorrhizal plants[A].In: Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems[C]. Gianinazzi, S, Schüepp H (eds), Birkh ü?user, Boston, 1994, 167-178.
    [176] George E, Hauser K U, Vetterlein D, et al. Water and nutrient translocation by hyphae of Glomus mosseae[J]. Can J. Bot., 1992, 70: 2130-2137.
    [177] Faber B A, Zasoski R J, Munns D N. A method for measuring hyphal nutrient and water uptake in mycorrhizal plants[J]. Can J. Bot., 1991, 69: 87-94.
    [178] Subramanian K S, Charest C. Arbuscular mycorrhizae and nitrogen assimilation in maize after drought and recovery[J]. Physiol Plant, 1998, 102: 96-285.
    [179] Hetrick B A D, Gerschefske K, Wilson G T. Effects of drought stress on growth response in corn, sudan grass, and big bluestem to Glomus etunicatum[J]. New Phytol, 1987, 105: 10-403.
    [180] Simpson D, Daft M J. Effects of Glomus clarum and water stress on growth and nitrogen fixation in 2 genotypes of groundnut[J]. Agric. Ecosyst. Environ., 1991,47-54.
    [181] Giri B, Mukerji K G. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake[J]. Mycorrhiza, 2004, 14: 12-307.
    [182] Ben Khaled L, Gomeaz A M, Ouarraqi E M, et al. Physiological and biochemical responses to salt stress of mycorrhized and/or nodulated clover seedlings(Trifolium alexandrinum L.) [J]. Agronomie, 2003, 23: 80-571.
    [183] Martinez-Balleesta C M, Martine V, Carvajal M. Rugulation of water channel activity in while roots and in protoplasts from roots of melon plants grown under saline conditions[J]. Aiat. J.Plant Physiol., 2000, 27: 685-691.
    [184] Azaizeh H, Steudle E. Effects of salinity on water transport of Zeamays L. roots[J]. PlantPhysiol.,1991, 97: 1136-1145.
    [185] Koide R. The effect of VA mycorrhizal infection and phosphorus status on sunflower hydraulic and stomatal properties[J]. Journadl of Exp.Botany, 1985, 36(168): 1087-1089..
    [186] 王洪钢, 张美庆. VA 菌根对绿豆(Phaseolus radiatus)生长及水分利用的影响[J]. 土壤学报. 1980, 26(4): 395-400.
    [187] Cho K, Toler H, Lee J, et al. Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses[J]. Journal of Plant Physiology, 2005, 5: 45-49.
    [188] Steudle E, Frensch J. Water transport in plants: role of the apoplast[J]. Plant Soil, 1996, 187(1): 67–79.
    [189] Javot H, Maurel C. The role of aquaporins in root water uptake[J]. Ann Bot., 2002, 90: 301–313.
    [190] Steudle E. Water uptake by plant roots: effects of water deficit[J]. J. Exp. Bot., 2000, 51(350): 1531–1555.
    [191] Henzler T, Steudle E. Transport and metabolic degradation of hydrogen peroxide in Chara corallina. Model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels[J]. J. Exp. Bot., 2000, 51(353): 2053–2066.
    [192] Ruiz-Lozano J M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies[J]. Mycorrhiza, 2003, 45: 32-42.
    [193] Cram W J. Negative feedback regulation of transport in cells[A].The maintenance of turgor, volume and nutrient supply. in: Encyclopaedia of Plant Physiology[C]. U. Luttge, M.G. Pitman (Eds.), New Series, vol.2, Springer-Verlag, Berlin, 1976, 284-316.
    [194] Popp M, Smirnoff N. Polyol accumulation and metabolism during eater deficit[A]. in: Environment and Plant Metabolism: Flexibility and Acclimation,Bios Scientific[C].N Smirrnoff(Ed.), Oxford: 1995,199-215.
    [195] Porcel R, Ruiz-Lozano. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress[J]. Journal of Experimental Botany, 2004, 55(403): 1743-1750.
    [196] Lone M I J, Kueh S H, Wyn J R G, et al. Influence of proline and glycinebetaine on salt tolerance of cultured barley embryos[J]. J. Exp. Bot., 1987, 38: 479-490.
    [197] Lee, T M, Liu, C H. Correlation of decreases calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater[J]. J. Exp.Bot., 1999, 50: 1855-1862.
    [198] Mansour, M M F. Nitrogen containing compounds and adaptation of plants to salinity stress[J]. Biol. Plant., 2000, 43: 491-500.
    [199] 潘瑞炽, 董愚得. 植物生理学[M]. 北京: 高等教育出版社, 1995.
    [200] Luttus S, Kinet J M, Bouharmont J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L) cultivars differing in salinity tolerance[J]. Plant Growth Regul., 1996, 19: 207-218.
    [201] Ashraf M, Leary J W O. Changes in soluble proteins in spring wheat stressed with sodium chloride[J]. Biol. Plant., 1999, 42: 113–117.
    [202] Ashraf M, Fatima H. Responses of some salt tolerant and salt sensitive lines of sunflower (Carthamus tinctorius L.) [J]. Acta Physiol Plant, 1995, 17: 61–71.
    [203] Ashraf M, Waheed A. Responses of some local/exotic accessions of lentil (Lens culinaris Medic.) to salt stress[J]. J. Agron. Soil Sci., 1993, 170: 103–112.
    [204] Fridovich I, Biological N . Effects of the superoxide radical[J]. Arch.. Biochem. Biophys., 1986, 247: 1-11.
    [205] Imlay J A, Linn S. DNA damage and oxygen radical toxicity[J]. Science, 1988, 240: 1302-1309.
    [206] Giannopolitis C N, Ries S. Superoxide dismutases Ⅰ. Occurrence in higer plants[J]. Plant Physiol, 1997, 59(2): 309-314.
    [207] 李合生. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社, 2002.
    [208] Amako K, Chen G, Asada K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chioroplastic and cytosolic isozymes of ascorbate peroxidase in plants[J]. Plant Cell Physiol, 1994, 35: 497-504.
    [209] Klapheck S, Zimmer I, Coose H. Scavenging of hydrogen peroxide in the enobspern of Ricinus communisbg ascorbate peroxidase[J]. Plant Cell Physiol, 1990, 11:1005-1013.
    [210] 黄爱缨, 吴珍玲. 水稻谷光甘肽过氧化物酶的测定法[J]. 西南农业大学学报, 1999, 21(4): 323-327.
    [211] Gossett D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress in salt tolerant and salt sensitive cultivars of cotton[J]. Crop Sci., 1994, 34: 706-714.
    [212] Hernandez J A, Olmos E, Corpas F J, et al. Salt-induced oxidative stress in chloroplasts of pea plants[J]. Plant Sci., 1995, 105: 151-167.
    [213] Niki T, Mitsuhara I, Ohtsubo S, et al. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves[J]. Plant Cell Physiol, 1998, 39: 500-507.
    [214] Davies H A, Dow J M. Induction of extracellular matrix glycoproteins in Brassica petioles by wounding and in response to Xanthomonas campestris[J]. Mol Plant-Microbe Interact, 1997, 10: 812-820.
    [215] Azcón R, Tobar R M. Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa. Effect of drought stress studies[J]. Plant science, 1998, 133: 1-8.
    [216] Eshdat Y, Holland D, Faltin Z, et al. Plant glutathione peroxidases[J]. Physiol Plant, 1997, 100: 234-240.
    [217] Mittova V, TAL M, Volokita M, et al. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species[J]. Physiol. Plant, 2002, 35: 41-47.
    [218] Asada K. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess pho-tons, Annu. Rev. Plant Physiol[J]. Plant Mol Biol, 1999, 50: 601-639.
    [219] Mittova V, Guy M, Tal M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: increased adtivities of antioxidant enzymes in root plastids[J]. Free Radic, 2002, 36: 195-202.
    [220] Garratt L C, Janagoudar B S, Lowe K C, et al . Salinity tolerance and antioxidant status in cotton cultures[J]. Free Radic. Biol. Med., 2002, 33: 502-511.
    [221] Ben-Hayyim G, Faltin Z, Gepstein S, et al. Isolation and characterization of salt-associated protein in Citrus[J]. Plant Sci., 1993, 88: 129-140.
    [222] 赵可夫. 植物抗盐生理[M]. 北京: 中国科学技术出版社, 1993.
    [223] Mavrogianopoulos G N, Spanadis J, Tsikalas P. Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon[J]. Scientia Horticulture, 1999, 79: 51-63.
    [224] 朱新广, 张其德. NaCl 对光合作用影响的研究进展[J]. 植物学通报, 1999, 16(4): 332-338.
    [225] Brown M S and Bethlenfalway G J. Glycine-Glomus-Rhizobium symbiosis. Photosynthesis in nodulated, mycorrhizal, or N-and P-fertilized soybean plants[J]. Plant Physiol, 1988, 86: 1292-1297.
    [226] Eissenstat D M,Graham J M,Syvertsen J P, et al. Carton economy of sour orange in relation to mycorrhizal colonization and phosphorus status[J]. Ann. Bot., 1993, 71: 1-10.
    [227] Shrestha Y H, Ishii T,Kadoya K. Effect of vesicular-arbuscular mycorrhizal fungi on the growth, photosynthesis, transpiration and the distribution of photosynthates of bearing Satsuma mandarin trees[J]. J. Japan. Soc. Hort. Sci., 1995, 64: 517-525.
    [228] Syvertsen J P and Graham J H. Influence of vesicular-arbuscular mycorrhizae and leaf age on net gas exchange of Citrus leaves[J]. Plant Physiol, 1990, 94: 1424-1428.
    [229] 波钦诺克著. 植物生物化学分析方法. 荆家海, 丁钟荣译[M]. 北京: 科学出版社, 1976.
    [230] 郭延平, 张良诚, 沈允钢. 低温胁迫对温州蜜柑光合作用的影响[J]. 园艺学报. 1998, 25(2): 111-116.
    [231] 许大全, 徐宝基, 沈允钢. C3 作物光合效率的日变化[J]. 植物生理学报.1990, 161(1): 1-5.
    [232] 叶济宇, 米华玲. 完整叶绿体的制备.中国科学院上海植物生理研究所上海市植物生理学会编, 现代植物生理学实验指南[M]. 北京: 科学出版社, 1999.
    [233] 陈沁, 刘友良, 陈亚华. 盐胁迫下大麦叶片的活性氧伤害与液泡膜H+-ATPase活性的关系[J]. 南京农业大学学报, 1998, 21(3): 21-25.
    [234] Salisbury F R, Ross C. Plant Physiology[M]. New York: Wadsworth Publishing Company, 1969.
    [235] 廖祥儒, 贺普超, 朱新产. 盐渍对葡萄光合色素含量的影响[J]. 园艺学报, 1996, 23(3): 300-302.
    [236] Munns R. Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses[J]. Plant Cell Environ., 1993, 16: 15-24.
    [237] Solomon A, Beer S, Waiser Y, et al. Effect of NaCl on the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-relatedcompatible solutes[J]. Physiol Plant, 1994, 90: 198-204.
    [238] Farqhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345.
    [239] Acosta-Avalos D, Alvarado-Gil J J, Vargasb H, et al. Photoacoustic monitoring of the influeqce of arbuscular mycorrhizal infection on the photosynthesis of corn(Zea mays L.) [J]. Plant Science, 1996, 119: 183-190.
    [240] Wright D P, Read D J ,Scholes J P. Mycorrhizal sink strength influences whole plant balance of Trifolium repens L[J]. Plant Cell Environ., 1998, 21: 881-891.
    [241] Wright D P, Read D J, Scholes J P. Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L[J]. Plant Cell Environ., 1998, 21: 209-216.
    [242] Cui M, Nobel P S. Nutrient status, water uptake and gas exchange for desert succulents infected with mycorrhizal fungi[J]. New Phytol, 1992, 122: 643-649.
    [243] Augé R M, Duan X, Ebel R C. Nonhydraulic signaling of soil drying[J]. Plant Physiol, 1994, 193: 74-82.
    [244] Green C D, Stodola A, Augé R M.Transpiration of detached leaves from mycorrhizal and nonmycorrhizal cowpea and rose plants given varying abscisic acid, pH, calcium and phosphorus[J].Mycorrhiza, 1998, 8: 93-99.
    [245] Ebel R C, Welbaum G E, Gunatilaka M, et al. Arbuscular mycorrhizal symbiosis and nonhydraulic signaling of soil drying in Vigna unguiculata(L.) [J]. Walp Mycorrhiza, 1996, 6: 119-127.
    [246] Augé R M , Stodola J M. Apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants[J]. New Phytol, 1990, 115: 285-295.
    [247] Davies P J. Plant Hormones: Physiology, biochemistry and molecular biology[M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995.
    [248] Morris RO. Molecular aspects of hormone synthesis and action[A]. In: Plant Hormones:Physiology, Biochemistry and Molecular Biology[C]. Davies PJ(ed.), Dordrecht, The Netherlands: Kluwer Academic Publishers, 1995, 318-339.
    [249] Gianinazzi-Pearson V. Plant cell responses to arbuscular mycorrhizal fungi: getting to the roots of the symbiosis[J]. Plant Cell, 1996, 8:1871-1883.
    [250] Kapulnik Y, Douds Jr D D. Arbuscular Mycorrhizas: Physiology and Function[M]. Dordrecht Boston London: Kluwer Academic Publishers, 2000.
    [251] Allen M F, Moore T S, Christensen M. Phytohormone changes in Bouteloua gracilis infected by vesicular-arbuscular mycorrhizae. I. Cytokinin increases in the host plant[J]. Can J. Bot., 1980, 58: 371-374.
    [252] Cruz A F, Ishii T, Kadoya K. Effects of arbuscular mycorrhizal fungi on tree growth,leaf water potential, and levels of 1-aminocyclopropane-1-carboxylic acid and ethylene in the roots of papaya under water-stress conditions[J]. Mycorrhiza, 2000, 10: 121-123.
    [253] Munns R, Cramer G R. Is coordination of leaf and root growth mediated by abscisic acid opinion[J]. Plant Soil, 1996, 185:33-49.
    [254] 陈立松. 荔枝((Litchi chinensis Sonn.)对水分胁迫的生理生化反应和适应性[D]. 福建农业大学 博士学位论文,1997, 1-75.
    [255] Gilmour, S J. Thomashow M F. Cold acclimation and cold-regulated gene expression on ABA mutants of Arabidopsis thaliana[J]. Plant Mol. Biol., 1991, 17: 1233-1240.
    [256] 李延. 龙眼(Dimocarpus Longann Lour.)缺镁胁迫生理及调控技术研究[D]. 福建农业大学博士 学位论文, 1999, 1-78.
    [257] Bothe H, Klingner A, Kaldorf M, et al. Biochemical approaches to the study of plant–fungal interactions in arbuscular mycorrhiza[J]. Experientia, 1994, 50: 919–925.
    [258] Meixner C, Ludwig-Muller J, Miersch O, et al. Lack of mycorrhizal autoregulation and phytohormonal changes in the supernodulating soybean mutants1007[J]. Planta 2005, 222, 709–715.
    [259] Cramer GR, Quarrie SA. Abscsic acid is correlate with the leaf growth inhibition of four genotypes of maize differing in their response to salinity[J]. Funct. Plant Biol., 2002, 29:111-115.
    [260] 赵可夫, 范海, Harris P J C. 盐胁迫下外源ABA对玉米幼苗耐盐性的影响[J]. 植物学报, 1995, 37(4): 295-300.
    [261] Amzallag g N, Lemer H R, Polijakoff-Mayber A. Exogenous ABA as a modulator of the response of sorghum to high salinity[J]. J. Exp. Bot, 1990, 41: 1529-1534
    [262] He T, Cramer GR. Abscisic acid concentrations are correlated with leaf area reductions in two salt–stressed rapid-cycling Brassica species[J]. Plant Soil, 1996, 179: 25-23.
    [263] Dunlap J R, Binzel M L. NaCl reduces indol-3-acetil acid levels in the roots of tomato plants independent of stress-induced abscisic acid[J]. Plant Physiol., 1996, 112: 379-384.
    [264] Mulholland B J, Taylor I B, Jackson A C, et al. Can ABA mediate responses of salinity stressed tomato[J]. Enviromental and Experimental Botany, 2003, 50: 12-18.
    [265] Esch H,Hundeshagen B, Schneider-Poetsch H J, et al. Demonstration of abscisic acid in spore and hyphae of the arrbuscular mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis[J]. Plant Sci., 1994, 99: 9-16.
    [266] Goicoechea N, Antolin M C, Sanchez-Diaz M. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant, 1997, 100: 989-997.
    [267] Bryla D R, Duniway J M. Growth, phosphorus uptake, and water relations of sunflower and wheat infected with an arbuscular mycorrhizal fungus[J]. New Phytologist, 1997, 136: 581-590.
    [268] Fay P, Mitchell D T, Osborne B A. Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus[J]. New Phytol, 1996, 132: 425-433.
    [269] Osundina M. Responses of seedlings of Parkia biglobes (African locust bean) to drought and inoculation with vesicular-arbuscular mycorrhiza[J]. Nigerian J. Bot., 1995, 8: 1-10.
    [270] Dixon R K. Cytokinin activity in Citrus jambhiri seedlings colonized by mycorrhizal fungi[J].Agric. Ecosyst. Environ., 1989, 29: 103-106.
    [271] Drüge U, Sch?nbeck F. Effect of vesicular arbuscular mycorrhizal infection on transpiration, photosynthesis and growth of flax in relation to cytokinin levels[J]. J. Plant Physiol, 1992, 141: 40-48.
    [272] Bass R, Kuiper D. Effect of vesicular arbuscular mycorrhizal infection and phosphate on Plantago major ssp. Pleiosperma in relation to internal cytokinin concentrations[J]. Physiol Plant, 1989, 76: 211-215.
    [273] Suga S, Imagawa S, Maeshima M. Specificity of the accumulation of mRNAs and proteins of the plasma membrane and tonoplast aquaporins in radish organs[J]. Planta, 2001, 212: 294–304.
    [274] Hill A E, Shachar- A ill, Shachar- Hill B Y. What are Aquaporins For[J]. J. Membrane Biol., 2004, 197: 1-32.
    [275] Quintero J M,Fournier J M,Benlloch M. W ater transport in sunflower root systems effects of ABA, Ca2+ status and HgCl2[J]. J. Exp. Bot., 1999, 339: 1607-1612.
    [276] Chaudhary S, Crossland L. Identification of tissue-specific, dehydration 一 responsive elements in the Trg-31 promoter[J]. Plant Mol. Biol., 1996, 30:1247-1257.
    [277] Lopez F, BousserA, Sissoeff I, et al. Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins[J]. Plant Cell Physiol, 2003, 44(12):1384- 1395.
    [278] Yamada S, Katsuhara M, Kelly WB, et al. A family of transcripts encoding water channel proteins: tissuespecific expression in the common ice plant[J]. Plant Cell, 1995, 7, 1129–1142.
    [279] Crvajal M, Cerdad A, Martinez V. Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity[J]? New Phytol, 2000, 145: 439-447.
    [280] Gaxiola R A, Rao R, Sherman A, et al. The Arabidopsis thalina proton transporters, AtNhx1 andAvp1, can function in cation detoxification in yeast[J]. Proc. Natl. Acad. Sci.U.S.A., 1999, 96, 1480–1485.
    [281] Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa[J]. Biochim.Biophys. Acta., 1999, 1446: 149-155.
    [282] Xia T, Apse M P, Aharon G S, et al. Identification and characterization of a NaCl-inducible vacuolar Na+/H+ antiporter in Beta vulgaris[J]. Physiol Plant, 2002, 116, 206–212.
    [283] Sarda X, Tousch D, Ferrare K, et al. Characterization of closely related delta-TIP genes encoding aquaporins which are differentially expressed in sunflower upon water deprivation through exposure to air[J]. Plant Mol. Biol., 1999, 40, 179–191.
    [284] Yale J, Bohnert H J.Transcript expression in Saccharomyces cerevislae at high salinity[J]. J. Biol. Chem., 2001, 276(19): 15996-16007.
    [285] Yamaguchi-Shinozaki K, Koizumi M, Urao S, et al. Molecular cloning and characterization of 9 cDNAs for genes that are responsive to desiccation in Arabidopsis thaliana: sequence analysis of one cDNA clone that encodes a putative transmembrane channel protein[J]. Plant Cell Physiol, 1992, 33: 217–224.
    [286] Kirch H H, Vera-Estrella R, Golldack D, et al. Expression of water channel proteins in esembryanthemum orystallinum[J]. Plant Physiol, 2000, 123: 111-124.
    [287] Kawasakia S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice[J]. Plant Cell, 2001, 13: 889-906.
    [288] Duport F M. Salt induced changes in ion transport: regulation of primary pumps and secondary transporters. Cooke DT, Clarkson DT, eds. Transport and receptor proteins of plant membranes[M]. New York:Plenum Press, 1992: 91-100.
    [289] Apsem P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabdopsis[J]. Science, 1999, 285: 1256-1258.
    [290] Ohta M, Hayashi Y, Nakashma A, et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice[J]. Febs Letter, 2002, 532: 279-282.
    [291] Zhang H X, Bluumward E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology, 2001, 19: 765-768.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700