细胞色素b_6f蛋白复合体中叶绿素a的性质和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞色素b6f蛋白复合体(Cytochrome b6f complex, Cyt b6f)是光合膜上参与光合作用原初反应过程的主要膜蛋白超分子复合体之一。莱茵衣藻和嗜热蓝细菌的Cyt b6f三维晶体结构均显示,每Cyt b6f单体分子含有1分子Chlorophyll a (Chl a ),充分肯定了Chl a是Cyt b6f天然成分的观点(Kurisu et al,2003;Stroebel et al,2003)。研究表明不同来源的Cyt b6f中Chla单线激发态寿命(或荧光寿命)并不一样,多数的研究结果认为Cyt b6f中Chla单线激发态寿命只有200ps左右,但是也有Cyt b6f中Chla单线激发态寿命为~600ps的报道;而甲醇中游离Chl a的单线激发态寿命为4ns左右。针对Cyt b6f中Chla单线激发态寿命快速淬灭的现象,Dashdorj等(2005)根据晶体结构推测Cyt b6f中Chla单线激发态和邻近的Cyt b6亚基上Tyr105残基发生电子交换传递,从而快速淬灭Chla单线激发态,减少了三线态Chl a和单线态氧的产生,并且认为这是Cyt b6f保护自身不受单线态氧破坏的一种机制,但是这一推测缺乏有力的证据。另外,Cyt b6f中Chla的功能仍然未知。本文以菠菜Cyt b6f为对象,结合多种实验手段,测定了菠菜Cyt b6f中Chl a单线激发态寿命,并对复合体中Chl a单线激发态淬灭的机理进行了深入研究。此外,我们还对复合体中Chl a可能的功能进行了初步地探讨。获得了如下的结果:
     1.针对不同来源的Cyt b6f中Chla单线激发态寿命(或荧光寿命)测定结果不同的报道,仔细分析了其中的原因,发现除了样品来源的差异外,使用不同的去垢剂可能是一个不可忽视的因素。在实验中,不同的研究者分别采用了十二烷基麦芽糖苷(n-Dodecylβ-D-maltoside,DDM,)和八烷基葡萄糖苷(n-Octylβ-D-glucopyranoside,β-OG)作为溶解样品的去垢剂。因此,本文借助稳态吸收和稳态荧光光谱、瞬态光散射技术,CD光谱和亚皮秒时间分辨吸收光谱等技术,分别研究了这两种去垢剂对Cyt b6f结构和功能的不同影响。结果表明,DDM去垢剂能使Cyt b6f处于较好的分散体系中,其中血红素和Chl a分子处于特定的蛋白环境中,不会导致Cyt b6f变性;而β-OG去垢剂会使Cyt b6f产生聚合现象,其中的血红素和Chl a与蛋白环境的相互作用减弱,和DDM相比其电子传递活性显著降低,Chl a单线激发态寿命延长,Chl a更容易被光
The cytochrome b6f (Cyt b6f) complex is one of the three integrate membrane protein complex in the photosynthetic electron transport chain. According to the X-ray structure analysis (Kurisu et al, 2003; Stroebel et al, 2003), one chlorophyll a (Chl a ) molecule is bound between helices F and G of subunit IV of this complex. The Chl a in the complex, however, has a smaller excited-state life time, most probably dued to quenching by the electron exchange between the Chl a and nearby amino acid(Tyr105 of Cyt b6), than that of free Chl a in methanol(~4ns), and thus reduces the formation of the Chl a triplet state (Dashdorj et al, 2005). This is considered as one kind of protection mechanism of the Chl a against singlet oxygen in the complex although there are not any evidences for the mechanism still. Also, the role(s) of this Chl a remains unclear. In this work, the excited-state life time of Chl a in the Cyt b6f from spinach was determined, the quenching mechanism of the excited state of Chl a in the complex was investigated, and the function of the Chl a was also proposed based on some experiments data.
     1. Different excited-state life times of Chl a in different Cyt b6f sources were obtained in some reports. But the two detergents, n-Dodecylβ-D-maltoside (DDM) and n-Octylβ-D-glucopyranoside (β-OG),were used respectively in the reports. So the effects of the two detergents on the structure and function of the Cyt b6f were investigated by stead-state absorption, fluorescence, CD, dynamic light scattering, and time-resolved absorption spectroscopy in this work firstly. The results are as follows: the DDM detergent dissolves the Cyt b6f better thanβ-OG detergent does; DDM can keep the Cyt b6f in native state, under which the hemes and Chl a experience specific environment, while theβ-OG make the complex in denatured state in some sort, under which the catalyzed electron transfer activity of the complex
引文
匡廷云。光合作用原初光能转化过程的原理与调控。南京:江苏科学技术出版社,2003 年
    赵南明,周海梦。生物物理学。北京:高等教育出版社;海德堡:施普林格出版社,2000年
    Allen J F. 2004. Cytochrome b6f: structure for signaling and vectorial metabolism.Trends in plant science, 9: 130-137
    Anderson J M. 1992. Cytochrome b6f complex: Dynamic molecular organization, function and acclimation. Photosyth Res, 34: 341-357
    Aubert C, Mathis P, Eker A P M, Brettel K. 1999. Intraprotein electron transfer tyrosine and tryptophan in DNA photolyase from Anacystis nidulans. PNAS, 96: 5423-5427
    Bald D, Kruip J, Boekema E J, R?gner M. 1992. Structural investigations of Cyt b6f-complex and PSI-complex from the cyanobacterium synechocystis PCC 6803, in: N. Murata (eds.), Research in Photosynthesis, Vol.I, 629-632
    Barber J. 1982. Influence of surface charges on thylakoid structure and function. An Rev Plant Physiol, 33: 261-295
    Bennett J, Shaw E K, Michel H. 1988. Cytochrome b6f complex is required for phosphorylation of light-harvesting chlorophyll a/b complex Ⅱin chloroplast photosynthetic membranes. Eur J Biochem, 171: 95-100
    Bennett J, Steinback K E, Arntzen C J. 1980. Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. PNAS, 77: 5253-52577
    Black M T, Widger W R, Cramer W A. 1987. Large-scale purification of active cytochrome b6f complex from spinach chloroplasts. Arch Biochem Biophys, 252: 655-661
    Boekema E J, Boonstra A F, Dekker J P, R?gner M.1994. Electron microscopic structural analysis of Photosystem I, Photosystem II, and the cytochrome b6/f complex from green plants and cyanobacteria. J Bioenerg Biomembr, 26: 17-29
    Bonaventura C, Myers J. 1969. Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta, 189: 366-383
    Booth P J, Flitsch S L, Stern L J, Greenhalgh D A, Kim P S, Khorana H G. 1995. Intermediates in the folding of the membrane protein bacteriorhodopsin. Nat Struct Biol, 2: 139-143
    Bowers P G, Porter G. 1967. Quantum yields of triplet formation in solutions of chlorophyll. Proc R Soc A, 296:435-441
    Breyton C, Tribet C, Olive J, Dubacq J P, Popot J L. 1997. Dimer to monomer transition of the cytochrome b6f complex: causes and consequences, J Biol Chem, 272: 21892-21900
    Breyton C. 2000. Conformational changes in the cytochrome b 6f- complexinduced by inhibitor binding. J Biol Chem, 275: 13195-13201
    Carrell C J, Schlarb B G, Bendall D S, Howe C J, Cramer W A, Smith J L. 1999. Structure of the soluble domain of cytochrome f from the cyanobacterium Phormidium laminosum. Biochemistry, 38: 9590-9599
    Carrell C J, Zhang H, Cramer W A, Smith J L. 1997. Biological identity and diversity in photosynthesis and respiration: Structure of the lumen-side domain of the chloroplast Rieske protein. Structure, 5: 1613-1625
    Chain R K, Malkin R. 1991. The chloroplast cytochrome b6f complex can exist in monomeric and dimeric states. Photosyn Res, 28: 59-68
    Chain R K, Malkin R. 1995. Functional activities of monomeric and dimeric forms of the chloroplast cytochrome b6f complex. Photosynthe Res, 46: 419-426
    Civello P M, Martínez G A, Chaves A R, A?ón M C. 1995. Peroxidase from strawberry fruit (Fragaria ananassa Duch): partial purification and determination of some properties. J Agric ood Chem, 43: 596-2601
    Cramer W A, Black M T, Widger W R, Girvin M E. 1987. Structure and function of photosyntheitic cytochrome b-c1 and b6-f complex. In: Barber J (eds.), The light reactions. Amsterdam, Elsevier, 447-493
    Cramer W A, Furbacher P N, Szczepaniak A, Tae G S. 1991. in: C. P. Lee (eds.), Current Topics in Bioenergetics, Vol. 16, Academic Press, San Diego, pp. 179-222
    Cramer W A, Martinez S E, Huang D, Tae G-S, Everly R M, Heymann J B, Cheng R H, Baker T S, Smith J L. 1994. Structural aspects of the cytochrome b6f complex: Structure of the lumen-side domain of cytochrome f. J Bioenerg Biomembr, 26: 31-47
    Cramer W A, Yan J, Zhang H, Kurisu G. 2005. Structure of the cytochrome b6f complex: new prosthetic groups, Q-space, and the ‘hors d’oeuvres hypothesis’for assembly of the complex. Photosynthe Res, 85: 133-144
    Cramer W A, Zhang H, Yan J, Kurisu G, Smith J L. 2004. Evolution of photosynthesis: Time-independent structure of the cytochrome b6f complex. Biochemistry, 43: 5921-5928
    Crofts A R, Wang Z. 1989. How rapid are the internal reactions of the UQH2:cyt c2 oxidoreductase? Photosynth Res, 22: 69-87
    Dashdorj N, Zhang H, Kim H, Yan J, Cramer W A, Savikhin S. 2005. The single chlorophyll a molecule in the cytochrome b6f: unusual optical properties protect the complex against singlet oxygen. Biophys. J, 88: 4178-4187
    Davies T G E, Thomas H, Rogers L J. 1990(a). Immunochemical quantification of cytochrome f in leaves of a non-yellowing senescence mutant of Festuca pratensis. Photosynth Res, 24: 99-108
    Davies T G E, Thomas H, Thomas B J, Rogers L J. 1990(b). Leaf senescence in a nonyellowing mutant of Festuca pratensis: Metabolism of cytochrome f. Plant Physiol, 93: 588-595
    De Vitry C, Breyton C, Pierre Y, Popot J L. 1996. The 4-kDa nuclear-encoded PetM polypeptide of the chloroplast cytochrome b6f complex: Nucleic acid and protein sequences, targeting signals, transmembrane topology. J Biol Chem, 271: 10667-10671
    Diederix R E M, Ubbink M, Canters G W. (2001).The peroxidase activity of cytochrome c-550 from Paracoccus versutus. Eur J Biochem, 268: 4207-4216
    Dietrich J, Kühlbrandt W. 1999. Purification and two-dimensional crystallization of highly active cytochrome b6f complex from spinach. FEBS lett, 463: 97-102
    Doyle M F, Yu C A. 1985. Preparation and reconstitution of a phospholipids deficient cytochrome b6-f complex from spinach chloroplast. Biochem Biophys Res Commun, 131: 700-706
    Doyle M P, Li L-B, Yu L, Yu C A. 1989. Identification of a Mr = 17,000 protein as the plastoquinone-binding protein in the cytochrome b6f complex from spinach chloroplasts. J Biol Chem, 264: 1387-1392
    Ellefson W L, Ulrich E A, Krogmann D W. 1980. Plastocyanin. Methods in enzymology, 69: 223-228
    Fleming K G, Ackerman A L, Engelman D M. 1997. The effect of point mutations on the free energy of transmembrane alpha-helix dimerization. J Mol Biol, 272: 266-275
    Fujimori E, Livingston R. 1957. Interactions of chlorophyll in its triplet state with oxygen, carotene, etc. Nature, 180:1026-1036
    Fujita I, Davis M S, Fajer J. 1978. Anion radicals of pheophytin and chlorophyll a: Their role in the primary charge separations of plant photosynthesis. J Am Chem Soci, 100:6280-6282
    Gal A, Herrmann R G, Lottspeich F, Ohad I. 1992. Phosphorylation of cytochrome b6 by the LHC II kinase associated with the cytochrome complex. FEBS Lett, 298: 33-35
    Gal A, Schuster G, Frid D, Canaani O, Schwieger H G, Ohad I. 1988. Role of the cytochrome b6f complex in the redox-controlled activity of Acetabularia thylakoid protein kinase. J Biol Chem, 263: 7785-7791
    Garavito R M, Ferguson-Miller S. 2001. Detergents as tools in membrane biochemistry. J Biol Chem, 276: 32403-32406
    Hager M, Biehler K, Illerhaus J, Ruf S, Bock R. 1999. Targeted inactivation of the smallest plastid genome-encoded open reading frame reveals a novel and essential subunit of the cytochrome b6f complex. EMBO J, 18: 5834-5842
    Haley J, Bogorad L. 1989. A 4-kDa maize chloroplast polypeptide associated with the cytochrome b6f complex: subunit 5, encoded by the chloroplst petE gene. PNAS, 86: 1534-1538
    Hamel P, Olive J, Pierre Y, Wollman F A, de Vitry C. 2001. A new subunit of cytochrome b6f complex undergoes reversible phosphorylation upon state transition. J Biol Chem, 275: 17072-17079
    Hauska G. 1986. Preparation of electronic proton-transporting cytochrome complexes of b6f-type (Chloroplasts and Cyanobacterial) and bc1-type (Rhodopseudomonas sphaeroides). Methods in Enzymology, 126: 271-285
    Heimann S, Ponamarev M V, Cramer W A. 2000. Movement of the Rieske iron-sulfur protein in the p-slide bulk aqueous phase: Effect of lumenal viscosity on redox reactions of the cytochrome b(6)f complex. Biochemistry, 39: 2692-2699
    Hope A B. 1993.The chloroplasts cytochrome b6f complex: a critical focus on function. Biochim Biophys Acta, 1143: 1-22
    Huang D, Everly R M, Cheng R H, Heymann J B, Sch?gger H, Sled V, Ohnishi T, Baker T S, Cramer W A. 1994. Characterization of the chloroplast cytochrome b6f complex as a structural and functional dimmer. Biochemistry, 33: 4401-4409
    Huang D, Zhang H, Soriano G M, Dahms T E S, Krahn J M, Smith J L, Cramer W A. 1999. in:G. Garab, J. Pusztai (eds.), Proceedings of the XIth International Congress on Photosynthesis,The Netherlands,Kluwer, Dordrecht, pp. 1577-1580
    Huang D, Zhang H, Soriano G M, Dahms T, Krahn J M, Smith J L, Cramer W A. 1998. Characterization and crystallization of an active cytochrome b6f complex from the thermophilic cyanobacterium mastigocladus laminosus. Ⅺth international congress on photosynthesis
    Hurt E, Hauska G. 1982. Identification of the polypeptides in the cytochrome b6/f complex from spinach chloroplasts with redox-center-carrying subunits. J Bioenerg Biomembr, 14: 405 –424
    Hurt E, Hauska G. A. 1981. Cytocrome f/b6 complex of five polypeptides with plastoquinol- plastocyanin-oxidoreductase activity from spinach chloroplasts. Eur J Biochem, 117: 591-595
    Iwata S, Lee J W, Okada K, Lee J K, Iwata M, Rasmussen B, Link T A, Ramaswamy S, Jap B K. 1998. Complete structure of the bovine mitochondrial cytochrome bc1 complex. Science, 281: 64-71
    Izawa S, Good N E. 1966. Effect of salts and electron trans- port on the conformation of isolated chloroplasts. II. Electron microscopy. Plant Physiol, 41: 544–552
    Joliot A, Joliot P. 1995. A shift in a chlorophyll spectrum associated with electron transfer within the Cyt b/f complex, in: P. Mathis (eds.), Proceedings of the Xth International Congress on Photosynthesis: from Light to Biosphere, Kluwer Academic Publishers, Montpellier, pp. 615-618.
    Klimov V V, Klevanik A V, Shuvalov V A, Krasnovsky A A. 1977. Reduction of pheophytin in the primary light reaction of photosystem Ⅱ. FEBS Lett, 82:183-186
    Kurisu G, Zhang H, Smith J L, Cramer W A. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science, 2003, 302 : 1009-1014
    Laemmili U K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227: 680-685
    Li B, Mao D, Liu Y, Li L, Kuang T. 2005. Characterization of the cytochrome b6f complex from marine green alga, Bryopsis corticulans. Photosynthe Res, 83: 297-305
    Li L-B, Zou Y-P, Yu L, Yu C A. 1991. The catalytic role of subunit IV of the cytochrome b6f complex from spinach chloroplasts. Biochim Biophys Acta, 1057: 215-222
    Li Y F, Zhou W L, Blankenshio R E, Allen J P. 1997. Crystal structure of the bacteriochlorophyll a protein from Chlorobiom tepidum. J Mol Biol, 271: 456-471
    Liao T-H, Rebecca S T, Jeffery E Y. 1982. Reactivity of tyrosine in bovine pancreatic deoxyribonuclease with p-Nitrobenzenesulfonyl Fluoride. J Biologic Chem, 257: 5637-5644
    Lund S, Orlowski S, de Foresta B, Champeil P, Le Marie M, M?ller J V. 1989. Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem, 264: 4907-4915
    Malkin R. 1992. Cytochrome bc1 and b6f complexes of photosynthetic membranes. Photosynth Res, 33: 121-136
    Mao D Z, Yan J S, Zhai X J, Sun Q M, Li L B. 1998. A new method of purifying cytochrome b6f protein complex. Acta Bot Sin, 40: 1022-1027
    Mao H B, Li G F, Ruan X, Wu Q Y, Gong, Y D, Zhang X F, Zhao N M. 2002. The redox state of plastoquinone pool regulates state transitions via cytochrome b(6)f complex in Synechocystis sp PCC 6803. FEBS Lett, 519: 82-86
    Martinez S .E, Huang D, Ponomarev M, Cramer W A, Smith J L. 1996. The heme redox center of chloroplast cytochrome f is linked to a buried five-water chain. Protein Science, 5: 1081-1092
    Martinez S E, Huang D, Szczepaniak A, Cramer W A, Smith J L. 1994. Crystal structure of chloroplast cytochrome f reveals a novel cytochrome fold and unexpected heme ligation. Structure, 2: 95-105
    Mataga N, Chosrowjan H, Shibata Y, Tanaka F, Nishina Y, Shiga K. 2000. Dynamics and mechanisms of ultrafast fluorescence quenching reactions of flavin chromophores in protein nanonspace. J Phys Chem B, 104: 10667-10667
    Metzger S U, Cramer W A, Whitmarsh J. 1997. Critical analysis of the extinction coefficient of chloroplast cytochrome f. Biochim Biophys Acta, 1319: 233-241
    Mitchell P. 1975(a). Protonmotive redox mechanism of the cytochrome bc1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett, 56:1-6
    Mitchell P. 1975(b). The protonmotive Q cycle: a general formulation. FEBS Lett, 59: 137-139 Mitchell P. 1976. Possible molecular mechanisms of protonmotive function of cytochrome system. J Theor Biol, 62: 327-367
    Mosser G, Breyton C, Olofsson A, Popot J L, Rigaud J L. 1997. Projection map of cytochrome b6f complex at 8 ? resolution. Biol Chem, 272: 20263-20268
    Murata N. 1969. Control of excitation transfer in photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. Biochim Biophys Acta, 189: 171-181
    Pecora R. 1985. Dynamic light scattering: Applications of photon correlation spectroscopy. New York: Plenum Press
    Peterman E J G, Wenk S O, Pullerits T, P?lsson L O, van Grondelle R, Dekker J P, R?gner M, van Amerongen H. 1998. Fluorescence and absorption spectroscopy of weakly fluorescent chlorophyll a in cytochrome b6f of Synechocystis PCC 6803. Biophysi J, 75: 389-398
    Pierre Y, Breyton C, Cramer D, Popot J L. 1995. Purification and chatacerization of the cytochrome b6f complex from Chlamydomonas reiharditii. J Biol chem., 270: 29342-29349
    Pierre Y, Breyton C, Lemoine Y, Robert B, Vernotte C, Popot J L. 1997. On the presence and role of a molecule of chlorophyll a in the cytochrome b6f complex. J Biol Chem, 272: 21901-21908
    Pierre Y, Popot J L. 1993. Indentification of two 4-kDa miniproteins in the cytochrome b6f complex of Chlamydomonas reinhardtii. Compt Rend de L’ Acad des Sci, 316: 1404-1409
    Poggese C, Polverino D L, Giacometti G M, Rigoni F, Barbato R. 1997. Cytochrome b6/f complex from the cyanobacterium Synechocystis 6803: evidence of dimeric organization and identification of chlorophyll-binding subunit. FEBS Lett, 414: 585-589
    Ponamarev M V, Cramer W A. 1998. Perturbation of the internal water chain in cytochrome f of oxygenic photosynthesis: loss of the concerted reduction of cytochromes f and b6. Biochemistry, 37: 17199-208
    Porra R J. 1991. in: H. Scheer(eds.),Chlorophylls, CRC Press, Boca Raton, FL, pp.31-58
    Rich P R, Heathcote P, Moss D A. 1987. Kinetic studies of electron transfer in a hybrid system constructed from the cytochrome bf complex and photosystem I. Biochim Biophys Acta, 892: 138-151
    Schmidt C L, Malkin R. 1993. Low molecular weight subunits associated with the cytochrome b6f complexes from spinach and and Chlamydomonas reinhardtii. Photosyth Res, 38: 73-81
    Schoepp B, Brugna M, Riedel A, Nitschke W, Kramer D M. 1999. The Qo-site inhibitor DBMIB favours the proximal position of the chloroplast Rieske protein and induces a pK-shift of the redox-linked proton. FEBS Lett, 450: 245-250
    Schoepp B, Chabaud E, Breyton C, Vermeglio A, Popot J L. 2000. On the spatial organization of hemes and chlorophyll in cytochrome b(6)f. A linear and circular dichroism study. J Biol Chem, 275: 5275-5283
    Seddon A M, Curnow P, Booth P J. 2004. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta, 1666: 105-117
    Seely G R, Connolly J S. 1986. Fluorescence of photosynthetic pigments in vitro. In: Light emission by plants and bacteria.Govindjee J,Amesz J,and Fork D C (eds.), Academic Press, New York.99-133
    Siefermann-Harms D. 1987. The light-harvesting and protective functions of cartenoids in photosynthetic membranes. Physiol Plantarum, 69: 561-568
    Stroebel D, Choquet Y, Popot JL, Picot D. 2003. An atypical haem in the cytochrome b6f complex. Nature, 426:413-418
    Takahashi Y, Rahire M, Breyton C, Popot J L, Joliot P, Rochaix J D. 1996. The chloroplast ycf7 (petL) open reading frame of Chlamydomonas reinhardtii encodes a small functionally important subunit of the cytochrome b6f complex. EMBO J, 15: 3498-3506
    Vallon O, Bulte L, Dainese P, Olive J J, Bassi R, Wollman F A.1991. Lateral redistribution of cytochrome b6f complex along thylakoid membranes upon state transitions. PNAS, 94: 1585-1590
    Van Aken T, Foxall-VanAken S, Castleman S, Ferguson-Miller S. 1986. Alkyl glycoside detergents: synthesis and applications to the study of membrane proteins. Methods Enzymol, 125: 27-35
    Vavilin D V, Ermakova-Gerdes S Y, Keilty A T, Vermaas W F J. 1999. Tryptophan at position 181 of the D2 protein of photosystem Ⅱ confers quenching of variable fluorescence of chlorophyll: Implications for the mechanism of energy-dependent quenching. Biochemistry, 38: 14690-14696
    Vener A, van Kan P J M, Gal A, Andersson B, Ohad I. 1995. Activation/deactivation cycle of the redox-controlled thylakoid protein phosphorylation. J Biol Chem, 270: 25225-25232
    Visser A J W G, van Hoek A, Kulinski T, Gall J L. 1987. Time-resolved fluorescence studies of flavodoxin. FEBS Lett, 224:406-410
    Visser A J W G, van Hoek A, Visser N V, Lee Y, Ghisla S. 1997. Time-resolved fluorescence study of the dissociation of FMN from the yellow fluorescence protein from Vibrio fischeri. Photochem Photobiol, 65: 570-575
    Wenk S O, Boronowsky U, Peterman E J, Jaeger G C, van Amerongen H, Dekker J P, Roegner M. 1998. Isolation and characterisation of the cytochrome b6f complex from the cyanobacterium synechocystis PCC 6803, in: G. Garab, J. Pusztai (eds.), Proceedings of the XIth International congress on photosynthesis, Kluwer, Dordrecht, pp. 1537-1540
    Wenk S O, Schneider D, Boronowsky U, J?ger C, Klughammer C, de Weerd FL, van Roon H, Vermaas WFJ, Dekker JP and R?gner M. 2005. Functional implications of pigments bound to a cyanobacterial cytochrome b6f complex. FEBS J, 272: 582-592
    Widger W R, Cramer W A. in: I.K. Vasil, L. Bogorad (eds), Molecular Biology of Plastids and the Photosynthesis Apparatus, Academic Press, Orlando, FL, 1991, pp.149-176
    Wikstr?m M, Saraste M. 1984. The mitochondrial respiratory chain, in: Ernster L (eds.), New Comprehensive Biochemistry, Bioenergetics, Elsevier Biomedical Press, Amsterdam, pp. 49-94
    Xia D, Yu C A, Kim H, Xia J Z, Kachurin A M, Zhang L, Yu L, Deisenhofer J. 1997. The crystal structure of the sytochrome bc1 complex from bovine heart mitochondria. Science, 277: 60-66
    Yan J, Liu Y L, Mao D Z, Li L B, Kuang T Y. 2001. The presence of 9-cis-carotene in cytochrome b6f complex from spinach. Biochim Biophys Acta, 1506: 182-188
    Zhang H, Carrell C J, Huang D, Sled V, Ohnishi T, Smith J L, Cramer W A. 1996.
    Characterization and crystallization of the lumen side domain of the chloroplast Rieske iron-sulfur protein. J Biol Chem, 271: 31360-31366
    Zhang H, Huang D R, Cramer W A. 1999. Stiochiometrically bound β-carotene in the cytochrome b6f complex of oxygenic photosynthesis protects against oxygen damage. J Biol Chem, 274: 1581-1587
    Zhang Z, Huang L S, Shulmeister V M, Chi Y I, Kim K, Hung L, Crofts A R, Berry E A, Kim S H. 1998. Electron transfer by domain movement in cytochrome bc1. Nature, 392: 677-684
    Zhong D, Zewail A H. 2001. Femtosecond dynamics of flavoproteins : Charge sepatation and recombination in riboflavine (vitamin B2)-binding protein and in glucose oxidase enzyme. PNAS, 98: 11867-11872
    Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman F A. 1999. The Qo site of cytochrome b6f complexes controls the activation of the LHC II-kinase. EMBO J, 18:2961-2969
    Zuo P. Mechanistic studies on energy and electron transfer processes in photosynthetic organisms and dye sensitized colloidal TiO2, Dissertation for the Doctoral Degree, Beijing: Institute of Chemistry of Chinese Academy of Sciences, 2006, 50-73
    Zuo P, Li BX, Zhao XH, Wu YS, Ai XC, Zhang JP, Li LB, Kuang TY. 2006. Ultrafast Carotenoid-to-chlorophyll singlet energy transfer in the cytochrome b6f complex from Bryopsis corticulans. Biophys J, 90: 4145-54
    Asada K. in: N.R. Baker (Eds.), Photosynthesis and the Environment, Kluwer Academic, Dordrecht, 1996, pp. 123-150
    Baldwin D A, Marques H M, Pratt J M. 1987. Hemes and hemoproteins. 5: Kinetics of the peroxidatic activity of microperoxidase-8: model for the peroxidase enzymes. J Inorg. Biochem, 30: 203-217
    Civello P M, Martínez G A, Chaves A R, A?ón M C. 1995. Peroxidase from strawberry fruit (Fragaria ananassa Duch): partial purification and determination of some properties. J Agric Food Chem, 43: 596-2601
    Cornish-Bowden A. 1995. Fundamentals of Enzyme Kinetics, Portland Press, London Diederix R E M, Ubbink M, Canters G W. 2001. The peroxidase activity of cytochrome c-550 from Paracoccus versutus, Eur J Biochem, 268: 4207-4216
    Dunford H B.1991.in: J. Everse, K. E. Everse, M. B. Grisham (Eds.), Peroxidase in Chemistry and Biology (Vol II), CRC Press, Boca Raton, pp.1-24
    Hamachi I, Fujita A, Kunitake T. 1994. Enhanced N-demethylase activity of cytochrome c bound to a phosphate-bearing synthetic bilayer membrane. J Am Chem Soc, 116: 8811-8812
    Hamachi I, Fujita A, Kunitake T. 1997. Protein engineering using molecular assembly: functional conversion of cytochrome c via noncovalent interactions. J Am Chem Soc, 119: 9096-9102
    Hayashi T, Hitomi Y, Ando T, Mizutani T, Hisaeda Y, Kitagawa S, Ogoshi H. 1999. Peroxidase activity of myoglobin is enhanced by chemical mutation of heme-propionates. J Am Chem Soc, 121: 7747-7750
    Hildebrand D P, Lim K T, Rosell F I, Twitchett M B, Wan L, Mauk A G. 1998. Spectroscopic and functional studies of a novel quadruple myoglobin variant with increased peroxidase activity. J Inorg Biochem, 70: 11-16
    Hurt E, Hauska G. 1981. A cytochrome f/b6 complex of five polypetides with plastoquinol-plastocyanin-oxidoreductase activity from spinach Chloroplasts. Eur J Biochem, 117: 591-599
    Kirk J T O, Tilney-Bassett R A E. 1967. The plastids: their chemistry, structure, growth and inheritance, WH Freeman and Company, London, San Francisco
    Kramer D M, Cruz J A, Kanazawa A. 2003. Balancing the central roles of the thylakoid proton gradient. Trends in Plant Sci, 8: 27-32
    Kramer D M, Sacksteder C A, Cruz J A, 1999. How acidic is the lumen? Photosynth Res, 60: 151-163
    Kurisu G, Zhang H, Smith JL, Cramer W A.2003. Structure of the cytochrome b6f complex of oxygenic photosynthesis: tuning the cavity. Science, 302: 1009-1014
    Laemmili U K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature, 227: 680-685
    Lemaire C, Girard-Bascou J, Wollman F A, Bennoun P. 1986. Studies on the cytochrome b6/f complex.I: Characterization of the complex subunits in Chlamydomonas reinhardtii. Biochim Biophys Acta, 851: 229-238
    Mazumdar S, Springs S L, McLendon G L. 2003. Effect of redox potential of the heme on the peroxidase activity of cytochrome b 562. Biophys Chem, 105: 263-268
    Nelson D P, Kiesow L A. 1972. Enthalpy of decomposition of hydrogen peroxide by catalase at 25 °C (with molar extinction coefficients of H2O2 solutions in the UV). Anal Biochem, 49: 474-478
    Orii Y. 1982. The cytochrome c peroxidase activity of cytochrome oxidase. J Biol Chem, 257 : 9246-9248
    Polle A. in: J.G. Scandalios (Eds.), Oxidative Stress and the Molecular Biology of Antioxidant Defenses, Cold Spring Harbor Laboratory Press, New York, 1997, pp. 623-666
    Prasad S, Maiti N C, Mazumdar S, Mitra S. 2002. Reaction of hydrogen peroxide and peroxidase activity in carboxymethylated cytochrome c: spectroscopic and kinetic studies. Biochim Biophys Acta, 1596: 63-75
    Radi R, Thomson L, Rubbo H, Prodanov E. 1991. Cytchrome c-catalyzed oxidation of organic molecules by hydrogen peroxide. Arch Biochem Biophys, 288: 112-117
    Rosei M A, Blarzino C, Coccia R, Foppoli C, Mosca L, Cini C. 1998. Production of melanin pigments by cytochrome c/H2O2 system. Int J Biochem Cell Biol, 30: 457-463
    Savenkova M I, Kuo J M, Ortiz de Montellano P R. 1998. Improvement of peroxygenase activity by relocation of a catalytic histidine within the active site of horseradish peroxidase. Biochemistry, 37: 10828-10836
    Stroebel D, Choquet Y, Popot J L, Picot D. 2003. An atypical haem in the cytochrome b6f complex. Nature, 426: 413-418
    Thomas P E, Ryan D, Levin W. 1976. An improved staining procedure for the detection of the peroxidase activity of cytochrome p-450 on sodium dodecyl sulfate polyacylamide gels, Anal Biochem, 75: 168–176
    Vazquez-Duhalt R. 1999. Cytochrome c as a biocatalyst. J Mol Catal B: Enzym, 7: 241-249
    Yonetani T. 1976. Cytochrome c peroxidase (Brkers’ yeast). Method Enzymol, 10: 336-339

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700