3-(N,N-二甲基十二烷基胺)-2-羟基—丙基磺酸溶液性质、模拟及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂是一类分子中同时含有亲水部分和疏水部分的特殊物质,其疏水部分通常是由长链碳氢化合物构成,而亲水部分是由离子或强的极性基团组成。如果按表面活性剂亲水基团的种类加以分类,表面活性剂可以分为阴离子型、阳离子型、非离子型和两性表面活性剂,分别对应于其亲水基团为带电的阴离子、带电的阳离子、不带电的强极性基团以及同时具有一个阴离子和阳离子的两性离子。表面活性剂这种双亲(亲油亲水)特性,使得这类化合物具有与其它有机化合物所不同的独特的性能,即在表面活性剂溶液体中,表现为两种重要的基本性质:溶液表(界)面的吸附与溶液内部的有序组合体形成。溶液表(界)面吸附的性质使得表面活性剂能够极其有效地改变表(界)面的表面张力,而形成分子有序组合体使得表面活性剂溶液能够成为具有实际意义的功能体系。表面活性剂溶液中的有序组合体(缔合结构)可进一步分为几个子类,包括胶束、囊泡、微乳液、双层膜等等。其中胶束是其中最简单的聚集结构。胶束的形态除球形之外,另外还可以是椭圆形、盘状、棒状、蠕虫状胶束,等等,这取决于表面活性剂本身的结构、浓度和添加剂的影响。
     近些年来,表面活性剂工业和研究发展迅猛。表面活性剂基础研究与其应用开发日趋结合,“绿色化学”的概念渗透进表面活性剂研发、生产和应用过程,其它如物理等专业学科亦介入表面活性剂研究,既引入了新的现代化测试手段,又提出了新的模型和新的方法,使表面活性剂研究进入分子水平的新阶段。新型结构的表面活性剂,特别是含有多个功能基团如Gemini型、Bola型表面活性剂的合成和性能研究非常引人注目。
     3-(N,N-二甲基十二烷基胺)-2-羟基-丙基磺酸内盐(以下简称DSB)是一个两性离子型表面活性剂,其结构是一个含多个极性基团的长链烷基甜菜碱分子骨架。DSB分子结构中既具有一个阳离子季胺基团,又同时具有一个强酸根的磺酸根基团,是一种集典型的阴离子性和阳离子性极性基于一身的季胺内盐型两性表面活性剂,它几乎在任何环境下都呈现两性离子型的特性。故DSB性能全面,具有耐高浓度酸、碱、盐等优良特性。
     尽管已经有很多先进的实验方法用于表面活性剂溶液盼研究,但表(界)面张力法仍然是最典型和普遍的研究方法。采用计算机对表面活性剂溶液进行分子动力学模拟是近些年来迅速发展起来的用以弥补实验研究不足的一种研究方法,它可以在分子水平上加深我们对表面活性剂聚集体结构和聚集过程的理解。
     山东大学在“八五”、“九五”国家攻关项目期间,开发出以天然混合羧酸盐为主表面活性剂的驱油体系配方,为三次采油工艺提供了一个价廉质优、环境友好和原料再生的绿色化途径。当在高矿化度油田应用时,通过加入两性表面活性剂DSB的方法,以提高烷基羧酸盐的抗高浓度Ca~(2+)、Mg~(2+)能力,其抗Ca~(2+)、Mg~(2+)能力可达到3000~5000mg/L,满足了高矿化油田三元复合驱的需要。在油田工业中,对于这种天然羧酸盐与DSB复配后,能抗高浓度Ca~(2+)、Mg~(2+)的现象,尤其是对于DSB能够显著提高天然羧酸盐驱油体系抗Ca~(2+)、Mg~(2+)的机理研究,研究文献报道甚少。本论文是在以前积累的工作基础上,通过研究DSB这种具有特殊结构的新型表面活性剂与烷基羧酸盐混合体系的溶液性质和相互作用,利用计算机分子动力学模拟这个最新方法研究胶束结构,进一步探讨DSB与天然羧酸盐驱油体系抗高浓度Ca~(2+)、Mg~(2+)能力的机理,这将有可能为天然羧酸盐驱油体系应用于不同水质、不同地质情况的三次采油实践提供理论基础,也有助我们更深入了解两性表面活性剂及其混合体系的溶液性质。本论文的主要工作简述如下。
     首先,研究了两性表面活性剂DSB的合成、提纯与表征。应用唯象动力学研究方法,研究了反应物的浓度与时间的关系,确认了3-氯-2-羟基丙烷磺酸钠(ECHS)与长链烷烃叔胺(ADA)的季胺化反应属于二级动力学反应。反应的速度快慢决定于两个反应物ECHS和ADA在溶液中的碰撞机率大小。
     其次,对DSB、十二烷基羧酸钠及它们的混合溶液进行了表面张力测定,确定了各自的临界胶束浓度cmc值。当DSB与烷基羧酸钠复配后,在很大的比例范围里,都使得混合体系的cmc值大幅下降,各个混合体系的最低表面张力也比各自单独的表面活性剂溶液要低,混合体系的表面吸附排列程度等同于单独的阴离子表面活性剂烷基羧酸盐在表面上吸附的紧密程度。采用以规则溶液理论为基础导出的混合胶束相互作用之公式,计算出混合胶束中两种表面活性剂的配比和相互作用参数。通过计算了解到,尽管在溶液中十二烷基羧酸钠占了较大的比重(α=0.8),但是在DSB/十二烷基羧酸钠的混合胶束中,两者的组成比例几乎等于1:1(x~m=0.51)。DSB与十二烷基羧酸钠在形成的混合胶束中的相互作用参数β~M值为-3.11,反映了两者有较好的协同效应。
     再次,应用Marrink模型对DSB及DSB/十二烷基磺酸钠(SAS)电解质溶液进行分子动力学模拟。模拟将从DSB分子随机分布于氯化钠水溶液中的状态为起始点。模拟结果显示,两性表面活性剂DSB溶液的胶束生长以聚集体-聚集体之间发生融合-分裂的形式(cluster-cluster coalescence and break up)进行。在形成胶束之前经历了一个相对较长的中间过程,这个过程可以认为是DSB溶液的预胶束聚集过程。DSB溶液的预胶束现象,可以与DSB在不同浓度下测定的表面张力值的结果相对应,但DSB溶液的预胶束现象目前还缺乏更加直接明确的实验证据。DSB/SAS混合体系的模拟结果显示,DSB与阴离子表面活性剂的混合体系,能够在溶液中快速形成缔合结构并以球状胶束的形式存在,混合胶束的形成和生长以“逐个方式”(stepwise manner)进行,DSB/SAS混合溶液体系处于单体.缔合体的动态平衡之中。另外,从混合胶束的轨迹图上,可以观察到,混合胶束中的DSB分子结构中的两个阴、阳离子极性基团在其球状胶束的最外层组成了一个双极性层区。
     通过进一步的平衡模拟计算,表明DSB在氯化钠水溶液自发形成的球状胶束,并不是一个标准完美的球形,而是一个有点扁平的椭球型胶束,其中DSB分子中的两个正负极性基团是伸展张开的,并相对垂直于胶束表面。这些极性头基的分布状态使DSB胶束的界面形成一个双极性层区域。系统中的氯化钠和水分子可以渗透进这个区域,氯离子和钠离子在双极性区域中的区域密度高出其平均密度。水分子虽然也渗入两性离子DSB胶束的双极性区,但没有明显的水化层。这些模拟结果与文献中报道的实验结果相吻合。
     最后,测定了各个驱油剂样品在不同钙镁离子浓度下的表面张力和原油,水界面张力值,比较了钙镁离子对各个样品的界(表)面张力的影响,以此评价了不同配方的抗钙镁离子能力。然后,采用密度泛函理论,应用Gaussian 03量子化学计算软件,对一个十二烷基羧酸和一个DSB及一个二价钙离子组成的模型复合物,进行了能量和电荷分布计算。此模型复合物可以认为是DSB/十二烷基羧酸盐混合胶束的一个局部。由量子化学计算的结果表明,此复合物具有一个稳定的能量点,并由电荷的布居结果得出,钙离子与羧酸基上的氧原子和DSB磺酸基上的氧原子已经形成了类似配位键的作用,而不是单纯的静电相互作用。另外,在形成的复合物中,与钙离子产生作用的几个氧原子所带的负电荷均较多,因此,可以认为DSB/长链羧酸钠混合胶束的界面上存在着负电荷空穴,这种由多个氧相互作用形成的“负电集团”效应使得Ca~(2+)、Mg~(2+)二价阳离子被有效地络合在胶束界面的双极性层区内。
     因此,对DSB显著提高羧酸盐驱油体系抗钙镁离子能力这一现象,可通过分析阴离子表面活性剂和反离子的浓度积关系式来阐明,未缔合的阴离子表面活性剂和未缔合的反离子浓度的相应减少使得混合体系能够在高浓度的钙镁离子的情况下稳定存在。DSB/烷基羧酸盐双组份表面活性剂混合驱油体系中,未缔合的阴离子表面活性剂浓度和未缔合的二价反离子浓度相应减少的原因来自于以下二方面:
     1.烷基羧酸盐和DSB之间的相互作用较强,使得混合溶液的临界胶束浓度cmc值有效下降,因此,在混合溶液中的未缔合的长链羧酸钠分子的浓度比在单组份长链羧酸盐溶液中的未缔合羧酸钠的浓度要低。
     2.当长链烷基羧酸盐与DSB形成混合胶团时,在其胶束界面层中形成了双极性区,“负电集团”有效地将Ca~(2+)、Mg~(2+)络合在胶束界面层中的双极性区内,使得游离于溶液中的未缔合的Ca~(2+)、Mg~(2+)浓度减少。
Surfactants are amphiphilic substances which have their hydrophilic and hydrophobic structural parts. A surfactant can be classified by the presence of charged groups. A nonionic surfactant has no charge groups in its head. The head of an ionic surfactant carries a net charge. If the charge is negative, the surfactant is more specifically called anionic; if the charge is positive, it is called cationic. If a surfactant contains a head with two oppositely charged groups, it is termed zwitterionic.
     Solution of surfactants exhibit unusual physical properties. Adsorption of surfactants as an orientated monolayer at air-water and oil-water interfaces is one way of avoiding the entropically unfavourable contact between water and the hydrophobic part (generally one or two alkyl chains) while retaining the aqueous hydrophilic part contact. Self-association into structures with marked hydrophobe-hydrophile separation is another way of achieving this. Therefore, Surfactants reduce the surface (interfacial) tension by adsorbing at the interface, and. can also assemble in the bulk solution into a variety of aggregates. Indeed, spherical micelles, rod-like micelles, bilayers, reverse micelles, vesicles and others have all been observed. The property of these aggregates is essential in many biological processes and is used in many industrial and domestic applications.
     3-(N,N-dimethyldodecylammonio)-2-hydroxy-propanesulfonate (abbreviated as DSB) is classified as internal quaternary zwitterionic surfactant, which has been prepared from the reaction of 1-chloro-2-hydroxypropanesulfonate (ECHS) with N.N-Dimethyldodecylamine (ADA). DSB molecule contains a head with two oppositely charged groups: a quaternary ammonium cation and a strongly sulfonate anion. They have exhibited anomalous behavior, such as those of outstanding solubility in strong electrolyte aqueous solution and stability in strong acid and alkaline. DSB is now commercial and used in oil recovery and cosmetic manufacture and so on.
     The critical micelle concentration (CMC) is defined as the concentration of surfactants in free solution in equilibrium with surfactants in aggregated form. Surface tension has historically provided one of the more popular means for determining CMC. Computer simulations have proved a useful tool to explicitly understand the structure of micelles. The interfacial tension (IFT) at the oil-water interface must be ultralow if the residual crude oil is to be mobilized through the injection of surfactant solutions. Ultralow IFT is necessary for surfactant system to be applied in enhanced oil recovery.
     This thesis reports an investigation of the properties of aqueous surfactant systems that involved DSB by means of experimental and molecular simulation techniques. Our interest in the properties of DSB aqueous solution stems from our previous work with enhanced oil recovery where the surfactant flooding generally cannot be used to effectively recover oil from reservoirs of high salinity or hardness because of the precipitation of ionic surfactants. It is the fact that the mixed DSB-carboxylates flooding system has a higher salinity and multivalent ions tolerances.
     Firstly, we have prepared zwitterionic DSB surfactant that had been purified by recrystallization and characterized by ~1H NMR. The rates of change in the concentration of reactants have been examined in different mediums of isopropanol/water. These quaternization reactions have been confirmd to fit second-order kinetics. Therefore, the rate of reaction depends on the effective collisions of 1-chloro-2-hydroxypropanesulfonate (ECHS) and N,N-Dimethyl-dodecylamine (ADA) of per unit time, which leads to an increasing reaction rate.
     Secondly, the surface tension of aqueous solutions of the systems of DSB and sodium dodecanoate have been measured as a function of the total molality of surfactants. Surface area calculations were based upon the Gibbs adsorption equation for DSB and sodium dodecanoate. Critical micelle concentrations have been determined by means of surface tension measurements. Plots of surface tension vs log concentration for the systems of DSB and sodium dodecanoate at 35℃gave sharp breaks corresponding to values of CMC respectively. Comparison of sodium dodecanoate with DSB shows that the latter is somewhat more surface active. However, the critical micelle concentration of any mixture is lower than that of either pure surfactant. The synergism in this respect is present. The value of the interaction parameterβ~m between sodium dodecanoate and DSB in mixed micelle formation can be calculated by particular expression based on the Rubingh model of nonideal multicomponent mixed micelle. The results indicated that the mixed micelle of DSB-sodium dodecanoate is about equimolarly composition.
     Thirdly, In order to obtain more details on the characters of DSB micelles and ion distributions at the interface of DSB micelles, we have performed molecular dynamics simulations on a Marrink coarse grained model of water-sodium chloride-surfactant system. We aim to perform a simulation of the spontaneous form DSB and DSB/sodium dodecane sulfonate (SAS) mixed micelles in electrolyte solution. The results, reported in this thesis, show the process of spontaneous aggregation into a roughly spherical micelle from a random solution of surfactant monomers in electrolyte solution.
     The dynamics of self-assembly process (growth and fragmentation of micelles, surfactant monomer insertion or removal) of DSB/SAS mixed micelle appears to follow that of stepwise addition or removal of surfactant monomers process. As for the pure DSB surfactant micelle, we can observe the process of spontaneous aggregation into a roughly spherical micelle from a random distribution of DSB monomers in NaCl solution undergoes two stages: initial flock together small clusters, subsequently formation of micelle with cluster-cluster coalescence manner. This appears to be due to the formation of premicellar aggregates, which need to be further verified by experiments.
     By evaluating the properties of DSB micellar structure, such as the radius of gyration, eccentricity, micelle size, NaCl ions and water distribution, radial distribution and probability distributions function of DSB micelle with respect to the center of micellar mass, we can obtain the results that the zwitterionic polar groups (SO3 and NC2 particles) in the DSB molecular structure are unfolding on the surface of the micelle forming a dipolar layer. The Na~+,Cl~- ions and water can penetrate into the micelle. Some Na~+,Cl~- ions have been restricted in the dipolar layer of zwitterionic micelle, and the concentration of NaCl ions in the dipolar region is greater than that in the bulk.
     Finally, the solubility product (K_(sp)) of fatty acid salt has been analysised to view the hardness tolerance of mixed carboxylates-DSB flooding system. The precipitation of the anionic surfactant by association with counterion can be represented by a solubility product relationship between the anionic surfactant monomer and the total unbound counterion. The concentration of free anionic surfactant monomeror is the CMC of alklycarboxylate-DSB mixture multiply the mole fractions of alkylcarboxylate in mixed solution. Therefore, we can deduce the salinity tolerance (namely counterion concentration necessary to cause precipitation) increases because of that mixed micelle formation reduces the anionic surfactant monomer concentration. On the other hand, the structure of DSB micelles has been studied by the molecular dynamics simulation. The DSB micelle was found to have a dipolar layer on surface of micelle. Some ions of NaCl have been restricted inside the dipolar layer, and the concentration of NaCl ions in the dipolar region is greater than that in the bulk. Since the ions of Na~+ have been bound in the dipolar region of micelles of zwitterionic DSB, then by inference so have multivalent ions of Ca~(2+) and Mg~(2+). By density functional theory of Gaussian programs, we have calculated the minimum energy for model compound of DSB/dodecyl acid/Ca~(2+), and obtained the charge of dominating atom in this model compound. These results indicate there are probably many "negative-charge holes" in the dipolar layer of micelle, and the ions of Ca~(2+) and Mg~(2+) in solution can be bound in the micelles. Therefore, the research in this thesis has shed new light on the causes of the Ca~(2+) and Mg~(2+) ions tolerance enhancement gained by addition of zwitterionic DSB surfactant to the alkyl carboxylates flooding system.
引文
[1] 赵国玺,表面活性剂物理化学,北京大学出版社,1991,p 5
    [2] Drew Myers,表面、界面和胶体—原理及应用,化学工业出版社,2005,p 274
    [3] 张为灿,李干佐,et al.,科学通报,45(2000)1138
    [4] Gladys Massiera, Laurence Ramos, and Christian Ligoureet al., Langmuir 2002, 18 (2002) 5687
    [5] Paul Dalhaimer, Adam J. Engler, Ranganath Parthasarathy, and Dennis E. Discher, Biomacromolecules, 5 (2004) 1714
    [6] Yan Geng and Dennis E. Discher, J. AM. CHEM. SOC., 127 (2005) 12781
    [7] Qiong Zhou and Milton J. Rosen, Langmuir, 19 (2003) 4555
    [8] Holland, P. M.; Rubingh, D. N. In Mixed Surfactant Systems; Holland, P. M., Rubingh, D. N., Eds.; ACS Symposium Series 501; American Chemical Society: Washington, DC, 1992; p 1
    [9] Rosen, M. J. In Phenomena in Mixed Surfactant Systems; Scamehom, J. F., Ed.; ACS Symposium Series 311; American Chemical Society: Washington, DC, 1986; p 144
    [10] P. M. Holland and D. N. Rublngh, J. Phys. Chem. 87 (1983) 1984
    [11] 赵国玺,表面活性剂物理化学,北京大学出版社,1991,p 263
    [12] 阎云,韩峰,黄建滨,et al.,物理化学学报,18(2002)830
    [13] 王正武,李干佐,et al.,高等学校化学学报,22(2001)1225
    [14] 王仲妮,李干佐,et al.,高等学校化学学报,27(2006)314
    [15] Drew Myers,表面、界面和胶体—原理及应用,化学工业出版社,2005,p 279
    [16] F. M. Menger and C. a. Littau, J. Am. Chem. Soc. 115 (1993) 10083
    [17] S. Karaborni, K. Esselink, P. A. J. Hilbers, B. Smit, J. Karthauser, N. M. van Os, R. Zana, Science, 266 (1994) 254
    [18] Milton J. Rosen and Letian Liu, Journal of the American Oil Chemists' Society, 73 (1996) 1558
    [19] Andrey V. Peresypkin and Fredric M. Menger. ORGANIC LETTERS, 1 (1999) 1347
    [20] Fredric M. Menger and Vasily A. Migulin, J. Org. Chem., 64 (1999) 8916
    [21] Prabal K. Maiti and Kurt Kremer, Langmuir, 16 (2000) 3784
    [22] F. M. Menger, J. S. Keiper, and V. Azov, Langmuir, 16(2000) 2062
    [23] V. Seredyuk, E. Alami, M. Nyde'n, and K. Holmberg, Langmuir, 17 (2001) 5160
    [24] Fredric M. Menger and Bessie N. A. Mbadugha, J. Am. Chem. Soc., 123 (2001) 875
    [25] Esteve Vails, Antoni Solsona, and Joan Suades, Organometallics, 21(2002) 2473
    [26] David A. Jaeger, Yapin Wang, and Richard L. Pennington, Langmuir, 18 (2002) 9259
    [27] F. M. Menger and M. J. McCreery, Journal of the American Chemical Society, 96 (1974) 121
    [28] F. M. Menger and Simeon Wrenn, The Journal of Physical Chemistry, 78 (1974) 1387
    [29] Yoshio Okahata and Toyoki Kunitake, Journal of the American Chemical Society, 101 (1979) 5231
    [30] Jurgen-Hinrich Fuhrhop, Hans-Hermann David, Joachim Mathieu, Ulrich Liman, Hans-Jorg Winter, and Egbert Boekemat, J. Am. Chem. Soc., 108 (1986) 1785
    [31] Yoshikiyo Moroi, Yoshio Murata, Yuji Fukuda, Yoshifumi Kido, Wataru, and Mitsuru Tanaka, J. Phys. Chem., 96 (1992) 8610
    [32] D. DANINO, Y. TALMON, and R. ZANA, JOURNAL of COLLOID and INTERFACE SCIENCE, 185(1997) 84
    [33] Francis L. Duivenvoorde, Martinus C. Feiters, S. J. van der Gaast, and Jan B. F. N. Engberts, Langmuir, 13 (1997) 3737
    [34] Toshimi Shimizu, Satomi Ohnishi, and Masaki Kogiso, Angew. Chem. Int. Ed., 37 (1998) 3260
    [35] Peter Bohme, Ganesh Vedantham, Todd Przybycien, Georges Belfort, Langmuir, 15 (1999) 5323
    [36] Soma De, Vinod K. Aswal, Prem S. Goyal, Santanu Bhattacharya, Chemical Physics Letters 303 (1999) 295
    [37] Tim W. Davey, William A. Ducker, and Alan R. Hayman, Langmuir, 16 (2000) 2430
    [38] Juliette Sirieix, Nancy Lauth-de Viguerie, Monique Riviere, and Armand Lattes, Langmuir, 16 (2000) 9221
    [39] J Guilbot, Thierry Benvegnu, Nathalie Legros, and Daniel Plusquellec, Langmuir 17 (2001) 613
    [40] David Wintgens, Dalia G. Yablon, and George W. Flynn, J. Phys. Chem. B, 107 (2003) 173
    [41] Norio Yoshino, Katsumi Hamano, and Yota Omiya, Langmuir,11 (1996) 466-469
    [42] K. Stahler, J. Selb, P. Barthelemy, B. Pucci, and F. Candau, Langmuir, 14 (1998) 4765-4775
    [43] Katrin Stahler, Joseph Selb, and Francoise Candau, Langmuir, 15 (1999) 7565-7576
    [44] Reiko Oda, Ivan Huc, Dganit Danino, and Yashayahu Talmon, Langmuir, 16 (2000) 9759-9769
    [45] A. Kotzev, A. Laschewsky, P. Adriaensens, and J. Gelan, Macromolecules, 35 (2002) 1091-1101
    [46] Matthew T. Stone, Sandro R. P. da Rocha, Peter J. Rossky, and Keith P. Johnston, J. Phys. Chem. B, 107 (2003) 10185-10192
    [47] Nihal Aydogan, Nihan Aldis, and Ozge Guvenir, Langmuir, 19 (2003) 10726-10731
    [48] Steven R. Kline, Langmuir, 15 (1999) 2726-2732
    [49] Andrew B. Lowe, and Charles L. McCormick, Chem. Rev., 102 (2002) 4177-4189
    [50] F. M. Menger and C. A. Littau, J. Am. Chem. SOC., 113 (1991) 1451-1452
    [51] Dipti Shukla and V. K. Tyagi, J. Oleo Sci., 55 (2006) 381
    [52] Rosen, M. J., Zhu, Z. H., Gao, T. J. Colloid Interface Sci., 157 (1993) 2547257;
    [53] Rosen, M. J., Zhu, Z. H., Hua, X. Y. JAOCS,, 69 (1992) 30-33
    [54] Oswald; Thomas, Robson; Ian A., United States Patent, 4,860,828 (1989)
    [55] Dawe; Robert D., Oswald; Thomas, Robson; Ian A., United States Patent, 5,203,411(1993)
    [56] Raymond M. Fuoss and David Edelson, Bolaform electrolytes, J. Am. Chem. Soc., 73 (1951) 269-273
    [57] Zhao D Y, Huo Q S, Feng J L et al., Chem. Mater. 1999,11,2668-2672
    [58] 徐如人,庞文琴 等箸,分子筛与多孔材料化学,科学出版社,2004,p598-605
    [59] Zou Aihua, Gu Qiang, Xu Jun, Yuan Chunwei, Chemistry and Physics of Lipids 123 (2003) 245-254
    [60] Jolanda M. Pestman, K. Ronald Terpstra, Marc C. A. Stuart, Henk A. van Doren, Alain Brisson, Richard M. Kellogg, and Jan B. F. N. Engberts, Langmuir, 13 (1997) 6857-6860
    [61] Ikuo Nakazawa, Mitsutoshi Masuda, Yuji Okada, Takeshi Hanada, Kiyoshi Yase, Michihiko Asai, and Toshimi Shimizu, Langmuir, 15 (1999) 4757-4764
    [62] Ciro Di Meglio, Shankar B. Rananavare, So"nke Svenson, and David H. Thompson, Bolaamphiphilic Phosphocholines: Structure and Phase Behavior in Aqueous Media, Langmuir, 16 (2000) 128-133
    [63] Jiirgen-Hinrich Fuhrhop, Dragan Spiroski, and Christoph Boettche, J. Am. Chem. SOC., 115 (1993) 1600-1601
    [64] Peter Bohme, Hans-Georg Hicke, Christoph Boettcher, and Jurgen-Hinrich Fuhrhop, J. Am. Chem. SOC.,117 (1995) 5824-5828
    [65] Robert A. MOSS and Jong-Ming Li, J. Am. Chem. SOC., 114 (1992) 9227-9229
    [66] 赵小莉,黄建滨*,李子臣,朱步瑶,日用化学工业,5(2000)26-29
    [67] Zana. R., Yiv. S., Kale, K. M., J. Colloid Interface Sci., 77 (1980), 456-465
    [68] A. F. Steinhauer, M. Midland, USP 2854477, (1958)
    [69] 张高勇,王军,纪学通报,2(2002)73
    [70] Pochard; Guy, Steiner; Creighton, USP 4, 878, 951,(1989)
    [71] 李一鸣,苑世领,徐桂英,物理化学学报,19(2003)986-992
    [72] Leach, A. R. Molecular Modelling Principles and Applications, Second edition,Pearson Education Limited, 2001
    [73] 李维,韩永才,张金利,化学进展,16(2004)431
    [74] 李有勇,郭森立,王凯旋,徐筱杰,化学进展,12(2000)361
    [75] 陈正隆,“分子模拟的理论与实践”讲习班教材,山东大学,2002
    [76] G. SRINIVAS DENNIS, E. DISCHER and M. L. KLEIN, Nature Materials, 3 (2004) 638
    [77] John C. Shelley, Mee Y. Shelley, et al., J. Phys. Chem. B, 105 (2001) 4464-4470
    [78] Siewert J. Marrink, Alex H. de Vries, and Alan E. Mark, J. Phys. Chem. B, 108 (2004) 750-760
    [79] Siewert J. Marrink and Alan E. Mark, J. AM. CHEM. SOC. 125 (2003) 15233-15242
    [80] Jason de Joannis, Frank Y. Jiang, and James T. Kindt, Langmuir, 22 (2006) 998-1005,
    [81] Peter J. Bond, Jonathan M. Cuthbertson, Sundeep S. Deol, and Mark S. P. Sansom, J. AM. CHEM. SOC., 126 (2004)15948-15949,
    [82] Hector Dominguez and Margarita Rivera, Langmuir, 21 (2005) 7257-7262
    [83] Lanyuan Lu and Max L. Berkowitz, J. AM. CHEM. SOC. 126 (2004) 10254-10255
    [84] Chrystal D. Bruce, Sanjib Senapati, Max L. Berkowitz, et al., J. Phys. Chem. B, 106 (2002,) 10902-10907
    [85] Siewert J. Marrink, Erik Lindahl, Olle Edholm, and Alan E. Mark, J. Am. Chem. Soc., 123 (2001) 8638-8639
    [86] Michael R. Harpham, Branka M. Ladanyi, and Nancy E. Levinger, J. Phys. Chem. B, 109 (2005) 16891-16900
    [87] John C. Shelleya, Mee Y. Shelley, Current Opinion in Colloid & Interface Science, 5 (2000) 101-110
    [88] Kyoko Watanabe, Mauro Ferrario, and Michael L. Klein, J. Phys. Chem. 1988, 92 (1988) 819-821
    [89] 李干佐,徐军,精细石油化工进展,5(2004)1-6
    [90] Da-Kuang Han, Cheng-Zhi Yang, Zheng-Qing Zhang, et al., Journal of Petroleum Science and Engineering, 22 (1999) 181-188
    [91] 李干佐,翟利民,郑立强,徐桂英,毛宏志,日用化学品科学,增刊(1999) 1-9
    [92] Milton J. Rosen, Hongzhuang Wang, Pingping Shen, and Youyi Zhu, Langmuir, 21 (2005) 3749-3756
    [93] Donaldson,E.C.,等主编,闫熙照等译,石油科学进展17B,提高石油采收率,M.K.Sharma and D.O.Shah,第十章,表面活性剂在采油中的应用,石油工业出版社,1992,p 183
    [94] 李干佐,沈强,郑立强,毛宏志,油田化学,16(1999)58-63
    [95] James E. Shaw, Surfactants & Detergents, 61 (1984) 1389
    [96] James E. Shaw, JAOCS, 61 (1984) 1395
    [97] Mankin Chan, Mukul M. Sharma, and T. F. Yen, Ind. Eng. Chem. Process Des. Dev. 1982, 21 (1982) 580-583
    [98] 黄宏度,吴一慧。et al.,油田化学,17(2000)69-72
    [99] 黄宏度,何涛,et al.,油田化学,21(2004)361-371
    [100] 李干佐,毛宏志,et al.,驱油剂及其制备方法,CN,1147007,(1997)
    [101] 徐军,周其南,精细石油化工进展,1(2000)6-9
    [102] 于振云,化学清洗,2000,p 49
    [103] 张高勇 主编,表面活性剂/洗涤剂技术与经济进展,山西经济出版社,王红勤,徐军el al.,THE FOAM PROPERTIES OF HYDROXY SULFOBETAINE,1998,p 288-292
    [104] G. W. Fernley, JAOCS, 55(1978)98-103
    [105] 赵国玺、朱步瑶,表面活性剂作用原理,中国轻工业出版社,2003,p 1
    [106] Holmberg,K..et al.水溶液中的表面活性剂和聚合物,2005
    [107] 李干佐,肖洪地,李英,高等学校化学学报,22(2001)108-111
    [108] 张高勇,罗希权,日用化学品科学,23(2000)11-14
    [109] 李干佐,隋华,朱卫忠,日用化学工业,1(1999)24-26
    [110] Gan-Zuo Li, Jian-Hai Mu, Ying Li, Shi-Ling Yuan, Colloids and Surfaces A: Physicochem.Eng.Aspects 173(2000)219-229
    [111] 李干佐,牟建海,陈峰,徐军,石油炼制与化工,33(2002)25-28
    [112] GZ. Li, J.Xu, J.H.Mu, Jounal of Dispersion Science and Technology, 26(2006)709-717
    [113] A. J. Stirton, F. D. Smith and J. K. Well, JAOCS, 42(1965)114-117
    [114] 陈华,李干佐,et al.,精细化工,17(2000)572-575
    [115] 王志宁,李干佐,et al.,日用化学工业,34(2004)8-12
    [1] 徐军,周其南,精细石油化工进展,1(2000)6-9
    [2] 方奕文,林培鹏,卢峰,精细化工,18(2001)438
    [3] Gunter Uphues, Fett/Lipid, 100 (1998) 490-497
    [4] J. Kriwanek, et al., Polym. Adv. Technol.,14 (2003) 79-82
    [5] Hideo Sawada, Michinori Umedo, et al., Journal of Applied Polymer Science, 92 (2004) 1144-1153
    [6] Wei Wei, Huangxian Ju, Electrophoresis, 26 (2005) 586-592
    [7] 朱水平,夏纪鼎,葛保根,日用化学工业,4(1995)4-8
    [8] 李方,李干佐,汪汉卿,高等学校化学学报,19(1998)1117-1120
    [9] Fong; Dodd W., Marth; Charles F., Davis; Ronald V., United States Patent, 6, 225, 430 (2001)
    [10] 刘军,徐桂英,et al.,山东大学学的(理学版),40(2005)90-94
    [11] 于振云,化学清洗,2000,p 49
    [12] 徐军,王红勤,黄辉,周其南,精细石油化工进展,13(2000)18-19
    [13] 黄辉,徐军,林棕,王红勤,周其南,精细石油化工进展,1:5(2000)20-21
    [14] 徐军,黄辉,王红勤,周其南,精细石油化工进展,2:6(2001)12-14
    [15] 彭勤纪等,波谱分析在精细化工中的应用,中国石化出版社,2001
    [16] Ernest Hirsch, Raymond M. Fuoss, J. Am. Chem. Soc.; 77(23) (1955) 6115, J. Am. Chem. Soc.; 77(23) (1955) 6114
    [17] Masamoto Watanabe, Raymond M. Fuoss, J. Am. Chem. Soc.; 78(3) (1956) 527-529
    [18] Andre Melo, Antonio J. I. Alfaia, et al., J. Phys. Chem. B, 110 (2006) 1877-1888
    [19] More,J.W.,Pearson,R.G.,化学动力和历程,科学出版社,1987
    [20] Friedli, F. E., JAOCS, 67: 7(1990)469-471
    [1] 赵国玺,表面活性剂物理化学,北京大学出版社,1991,p 231
    [2] Qiong Zhou and Milton J. Rosen, Langmuir, 19 (2003), 4555-4562
    [3] Anat Shiloach and Daniel Blankschtein, Langmuir, 14 (1998) 1618-1636
    [4] Hiroki Matsubara, et al., Langmuir, 16 (2000) 7589-7596
    [5] Magnus Bergstrom and Jan Christer Eriksson, Langmuir, 16 (2000) 7173-7181
    [6] 徐军,许虎君,et al.日用化学品科学,23增刊1(2000)71-72
    [7] 赵国玺、朱步瑶,表面活性剂作用原理,中国轻工业出版社,2003,p 118
    [8] P. M. Holland and D. N. Rublngh, J. Phys. Chem., 87 (1983) 1984-1990
    [9] Milton J. Rosen and Qiong Zhou, Langmuir, 17(2001) 3532-3537
    [10] Fang Li, Milton J. Rosen, and Shireen B. Sulthana, Langmuir, 17 (2001) 1037-1042
    [11] 赵国玺,阳振乐,朱步瑶,物理化学学报,13(1997)773-779
    [12] M. J. Rosen, X. Y. Hua, J. Colloid. Interface Sci., 86 (1982) 164
    [13] M. J. Rosen, B. Y. Zhu, J. Colloid. Interface Sci., 99 (1984) 427
    [14] 阎云,韩峰,黄建滨等,物理化学学报,18(2002)830
    [15] R.Zana.表面活性剂研究新方法,石油工人出版社,1992
    [16] Dieter Balzer, Langmuir,, 9 (1993)3375—3384
    [17] Rosen M. J., Hua X. Y., J. Colloid Inter. Sci., 139(1990)397—407
    [18] C. Marcus Persson and Per M. Claesson, Langmuir, 16 (2000) 10227—10235
    [19] 王仲妮,李干佐,et al.,高等学校化学学报,27(2006)314-318
    [20] 柴金岭,徐军,李干佐,et al.,高等学校化学学报,23(2002)1915—1920
    [21] M. J. Rosen, Z. H. Zhu, JAOCS, 65(1988)663-667
    [22] 常文保,李克安,简明分析化学手册,北京大学出版社,1981,pp 39-55
    [23] 周祖康,顾惕人,马季铭,胶体化学基础,北京大学出版社,1991,pp 66
    [24] 赵国玺,表面活性剂物理化学,北京大学出版社,1991,pp 70
    [25] 赵国玺,黄建滨,日用化学工业,5(1992)7-10
    [26] Li D. Song and Milton J. Rosen, Langmuir, 12 (1996) 1149-1153
    [27] Fredric M. Menger, Ashley L. Galloway, and Mary E. Chlebowski, Langmuir, 21 (2005)9010-9012
    [1] Josef Bocker and Jiirgen Brickmann, J. Phys. Chem., 98 (1994) 712-711
    [2] S. J. Marrink, D. P. Tieleman, A. E. Mark, J. Phys. Chem. B 104 (2000) 12165-12173
    [3] D. P. Tieleman, D. van der Spoel and H. J. C. Berendsen, J. Phys. Chem. B, 104 (2000) 6380-6388
    [4] Chrystal D. Bruce, Sanjib Senapati, Max L. Berkowitz, J. Phys. Chem. B, 106(2002)10902-10907
    [5] B. Smit, P. A. J. Hilbers, K. Esselink, Nature 348 (1990) 624-625
    [6] S. Karabomi, K. Esselink, P. A. J. Hilbers, B. Smit, Science, 266 (1994) 254-256
    [7] Siewert J. Marrink and Alan E. Mark, J. AM. CHEM. SOC., 125 (2003) 15233-15242
    [8] Siewert J. Marrink, Alex H. de Vries, and Alan E. Mark, J. Phys. Chem. B, 108 (2004) 750-760
    [9] Alex H. de Vries, Alan E. Mark, and Siewert J. Marrink, J. AM. CHEM. SOC., 126.(2004) 4488-4489
    [10] Herman Berendsens group (department of Biophysical Chemistry of Groningen University), h ttp://www.gromacs.org/
    [11] David van der Spoel, Erik Lindahl, Berk Hess, Journal of Computational Chemistry, 26 (2005) 1701-1714
    [12] Erik Lindahl. Berk Hess. David van der Spoel, J Mol Model., 7 (2001) 306-317
    [13] Taeho Kim, Alexander Rhee, and Christopher M. Yip, J. AM. CHEM. SOC. 128 (2006) 5330-5331
    [14] Csaba Hetenyi, Gabor Paragi, et al., J. AM. CHEM. SOC., 128 (2006) 1233-1239
    [15] P. Thomas Vernier, et al J. AM. CHEM. SOC., 128 (2006) 6288-6289
    [16] Nathalie Basdevant, Harel Weinstein, and Marco Ceruso, J. AM. CHEM. SOC., 128 (2006) 12766-12777
    [17] Sunnie Myung, et al., J. AM. CHEM. SOC., 128 (2006) 10833-10839
    [18] Hari Leontiadou, Alan E. Mark, and Siewert J. Marrink, J. AM. CHEM. SOC., 128 (2006) 12156-12161
    [19] Stewart A. Adcock and J. Andrew McCammon, Chemical Reviews,, 106 (2006) 1589-1615
    [20] David van der Spoel, Erik Lindahl, Berk Hess, Aldert R. van Buuren, Emile Apol, Pieter J. Meulenhoff, D. Peter Tieleman, Alfons L. T. M. Sijbers, K. Anton Feenstra, Rudi van Drunen, Herman J. C. Berendsen, GROMACS USER MANUAl., version 3. 2, pp53 http://www.gromacs.org/grcmacs/documentation/paper-manuals.html
    [21] 徐军,孙文起,李干佐 et al.,高等学校化学学报,28 (2007) 496-501
    [22] K. W. Herrmann, J. Colloid and Interface Sci., 22 (1966) 352
    [23] Takaya Sakai, Youhei Kaneko, and Kaoru Tsujii, Langmuir, 22(2006) 2039-2044
    [24] Joann H. Mathias, Langmuir, 17 (2001)6148-6154
    [25] Angela Cuenca, Langmuir, 16(2000) 72-75
    [26] Li D. Song and Milton J. Rosen, Langmuir, 12 (1996) 1149-1153
    [27] E. A. G. Aniansson and S. N. Wali, The Journal of Physical Chemistry, 78 (1973) 7974
    [28] M. Teubner, The Journal of Physical Chemistry, 83 (1979) 2917
    [29] Th. F. Tadros, Surfactants, B. Lindman, in "Structural Aspects of Surfactant Micellar Systems", Academic Press London, 1984, pp 86
    [30] R. Polacek and U. Kaatze, J. Phys. Chem. B, 111 (2007) 1625-1631
    [31] J.-B. Maillet, V. Lachet and Peter V. Coveney, Phys. Chem. Chem. Phys., 1 (1999) 5277-5290
    [32] Angela Cuenca, Langmuir, 16 (2000) 72-75
    [1] K. L. Mittal and B. Lindman, Surfactants in solution, Vols. 1 to 3, Plenum Press, New York, 1984
    [2] Th. F. Tadros, Surfactants, R. H. Ottewill, in "Introduction", Academic Press London, 1984, pp 11
    [3] S. Karaborni, K. Esselink, B. Smit, R. Zana, et al., Science, 266 (1994) 254-256
    [4] Josef Biickers, Jiirgen Brickmann, Philippe Bopp, J. Phys. Chem. 98 (1994) 712-711
    [5] Chrystal D. Bruce, Sanjib Senapati, J. Phys. Chem. B, , 106 20(2002) 10902-10907
    [6] Stephen Bogusz, Richard M. Venable, and Richard W. Pastor, J. Phys. Chem. B, 104 (2000) 5462-5470
    [7] Stephen Bogusz, Richard M. Venable, and Richard W. Pastor, J. Phys. Chem. B, 105 (2001) 8312-8321
    [8] D. P. Tieleman, D. van der Spoel and H. J. C. Berendsen, J. Phys. Chem. B, 104 (2000) 6380-6388
    [9] S. J. Marrink, D. P. Tieleman, A. E. Mark, J. Phys. Chem. B 104 (2000) 12165-12173
    [10] J. Falbe, Surfactants in Consumer Products, New Yark, Springer-Verlag Berlin Heidelberg, 1987, pp 117~118
    [11] G.-Z. Li, J. Xu, et al., J. Disp. Sci. Tech., 26 (2005) 709-717
    [12] R. Ernstand, E. J. Miller, in "Amphotedc Surfactanf', Marcel Dekker Inc.,, New York, 1982, 71-173
    [13] 张高勇 主编,表面活性剂/洗涤剂技术与经济进展,山西经济出版社,王红勤,徐军et al., The foam properties of hydroxysulfobetaine, 1998, p 288-292
    [14] Siewert J. Marrink and Alan E. Mark, J. AM. CHEM. SOC. 125 (2003) 15233-15242
    [15] Siewert J. Marrink, Alex H. de Vries, and Alan E. Mark, J. Phys. Chem. B, 108 (2004) 750-760
    [16] Chrystal D. Bruce, Max L. Berkowitz, J. Phys. Chem. B, 106 (2002) 3788-3793
    [17] 赵国玺,表面活性剂物理化学,北京大学出版社,1991,p 153
    [18] 朱友益,韩冬,沈平平编译,表面活性剂结构与性能的头条,石油工业出版社,北京,2003,pp13
    [19] Y. Chevalier, R. Zana, et al. 1996, N. Kamenka, R. Zana, et al., Langmuir 11 (1996) 4234
    [20] N. Kamenka, R. Zana, et al., Langmuir, 11 (1996)4234-4240
    [21] Y. Chevalier, R. Zana, et al., Langmuir, 12 (1996) 3225-3232
    [22] Mauricio da Silva Baptista, Mario J. Politi, Wayne F. Reed, et al., J. Phys. Chem., 96 (1992) 6442-6449
    [23] Xu Jun, Sun Wenqi, Li Ganzuo, Zhang Gaoyong, Chemical Physics Letters, 438 (2007) 326-329
    [1] 李干佐,毛宏志,et al.,CN,1147007,1997
    [2] 李干佐,沈强,郑立强,et al.,油田化学,16(1999)57-59
    [3] 李干佐,徐桂英,et al.,日用化学工业,5(1998)26-30
    [4] 李干佐,牟建海,et al.,石油炼制与化工,33(2002)25-28
    [5] LI Gan-Zuo, XU Jun, et al., J Disp. Sci. Tech., 26(2005)709-717
    [6] MOU Jian-Han, U Gan-Zhuo, Science in China B, 45(2002)184-188
    [7] 李干佐,肖洪地,et al.,高等学位化学学报,22(2001)108-111
    [8] LI Gan-Zhuo, ZHAI LI-Min, et al., J. Disp. Sci. Tech., 21 (2000) 367-371
    [9] LI Gan-Zhuo, MOU Jian-Han, et al., Colloids and surfaces A, 173 (2000) 219-223
    [10] LI Gan-Zhuo, MOU Jian-Han, et al., J. Disp. Sci. Tech.,, 21 (2000) 305-310
    [11] 徐桂英,李锡忠,李干佐,et al.,化学物理学报,9(1996)77-81
    [12] 王志宁,李干佐,et al.,日用化学工业,34(2004)8-12
    [13] 朱怀江,杨普华,石油勘探与开发,21(1994)74-80
    [14] 张路,罗澜,et al.,物理化学学报,17(2001)62-65
    [15] 陈咏梅,王涵慧,俞稼镛,石油学报,22(2001)97-103
    [16] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. lyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03 [CP], Revision B.05, Gaussian, Inc., Pittsburgh PA, 2003
    [17] 张高勇 主编,表面活性阻剂/洗涤剂技术与经济进展,山西经济出版社,王红勤,徐军 et al.,THE FOAM PROPERTIES OF HYDROXYSULFOBETAINE, 1998, p 288-292
    [18] K. L. Stellner, J. F. Scamehorn, JAOCS, 63 (1986) 566
    [19] R. Ernstand, E. J. Miller, in "Amphoteric Surfactant", Marcel Dekker Inc.,, New York, 1982, 71-173
    [20] 周祖康,顾惕人,马季铭,胶体化学基础,北京大学出版社,1991, pp64
    [21] 夏纪鼎 The Assemble of 2th International Conference on Surfactant & Detergent(第二届国际表面活性剂洗涤剂研讨会论文集),Shanghai,China. 1992: 163-176
    [22] Mauricio da Silva Baptista, Iolanda Cuccovia, Hernan Chaimovich, Mario J. Polit, J. Phys. Chem., 96 (1992) 6442-6449
    [23] N. Kamenka, R. Zana, et al., Langmuir, 11 (1996) 4234-4240
    [24] Y. Chevalier, R. Zana, et al., Langmuir, 12 (1996) 3225-3232
    [25] JIN Song-Shou, ZHENG Xiao-Ming, Selective Intermolecular Force and Adaptability of Group Structure, Hangzhou: Hangzhou University Press, 1993
    [26] Y. Chevalier, N. Kamenka, Langmuir, 12 (1996) 3225-3232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700