Coriolis-Stokes力在海洋数值模拟中的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由两部分组成:第一部分主要关注于海表面海水运动的速度对上层海洋现象的影响,其中包括风应力、海表面流场、海表面温度、海-气热通量、以及海表面边界层厚度;第二部分具体研究了波浪引起的大尺度Coriolis-Stokes力效应对上层海流的影响。为了完成本论文的研究目标,建立了两个耦合模式:HYCOM-WINDS风-流耦合模式,和SWAN-POM浪-流耦合模式。
     通过在基于波陡和风速的拖曳系数经验参数化方案中考虑海表面海水运动速度的影响,研究计算了1958-2001年间全球风应力拖曳系数和风应力的分布情况。计算中使用的全球海表面流场来自海洋模式HYCOM,波浪参数输出自波浪模式WW3。通过分析拖曳系数和风应力的空间变化情况得出结论;海表面海水运动速度对风应力平均能够产生5%左右的影响;同时,考虑海表面海水运动速度的影响后,海洋模拟结果将得到一定程度的提高。
     另外,本文还利用地球耦合系统框架(ESMF)、海洋模式HYCOM以及Donelan etal.(1997)提出的风应力计算关系式的改良版建立了一个风.流耦合系统。此耦合系统被应用于全球风应力和海表面流相互作用研究。在此研究中,海表面流的速度被同时考虑到风应力的计算以及海-气热通量的计算之中;包含了海表面海水运动速度影响的风应力将被用作HYCOM的驱动。结果表明:海表面海水运动速度对海表面流场、海-气热通量、和海表面边界层厚度都会产生明显影响。将模拟的海表面温度和TOGA TAO浮标资料进行对比发现,耦合模式的模拟结果要优于非耦合模式的结果,这也证实了海表面海水运动速度在海洋模拟中是一个不容忽视的物理过程。
     通过计算2000年涌浪指标(swell index)的全球分布,发现太平洋东边界赤道附近区域存在涌浪池。利用ECMWF再分析波浪资料,计算出2000年全球月平均波浪体积输运。比较2000年全球月平均波浪体积输运和2000年QUICKSCAT月平均风场,发现在赤道太平洋东边界涌浪池区域内的波浪输运方向和风向存在很大的差别,两者方向相差大约90°。这进一步验证了这个地区涌浪池存在的真实性。研究发现,赤道太平洋东边界涌浪主要来源于北太平洋和南太平洋的西风带对应的海区。在涌浪池区域内分别在2.5°S和2.5°N取两条边界(边界起点为125°W,终点为美洲大陆西边界),计算通过这两条边界进入赤道区域涌浪的Stokes体积净输运量。结果表明,不同月份通过南、北两条边界波浪的净输运量与当月南、北太平洋西风带的风浪强度密切相关。
     接下来,利用HYCOM在三个不同区域进行的六个控制性实验研究了波浪诱导的Coriolis-Stokes力对包括海洋环流、温度以及混合过程在内的海洋现象的影响。Coriolis-Stokes力是利用波浪模式WW3的模拟结果来进行计算的,并像风应力一样用做HYCOM的上边界驱动。模拟结果表明:1)在三个水平分辨率不同的区域上,HYCOM都可以成功地模拟海洋上层环流,南中国海、墨西哥湾,以及湾流区域的上层环流特征都被成功的再现出来;2)Coriolis-Stokes力并不能从根本上改变海洋上层流场结构;3)在全球海洋大部分区域上,Stokes输运的方向和Coriolis-Stokes力引起的海流深度积分输运改变量的方向是不一致的;4)月平均混合层深度积分海流输运改变量的大小和方向是逐月变化的,Coriolis-Stokes力在强涡旋区域能够产生高于其它地方的影响;5)海表面温度和混合层厚度也同时受到Coriolis-Stokes力的影响。
     最后,我们利用海洋模式POM、海浪模式SWAN以及耦合框架MCT,在前人的工作基础上建立了一套双向完全耦合浪-流耦合模型。此耦合模型被用于进一步探讨波浪驱动的海表面流及其引起的风向海洋能量输入的改变情况。大尺度波浪对海流的作用力,Coriolis-Stokes力,被直接添加于POM的动量方程之中。Coriolis-Stokes力计算所需的波浪参数来自波浪模式SWAN的模拟输出结果。实验结果表明,当浪-流系统处于平衡态时,Coriolis-Stokes力驱动的海表面流的速度能够达到0.001 m/s的量级,最大流速达到0.02 m/s。整个模拟区域内波浪引起的总能量输入达到2.8505×1010w,为总的风能量输入的14%。考虑波浪效应后,整个区域内风能量输入增加了13.96%。
This dissertation consists of two parts. The first part concentrates on the influences of ocean surface velocity (current velocity and wave-induced velocity) on the upper ocean phenomana, including wind stress, surface current field, sea surface temperature, air-sea heat flux and boundary layer thickness. The second part puts insight into the effects of large scale wave-induced Coriolis-Stokes forcing on modeling of the upper ocean currents. In order to achieve those research aims in this dissertation, two coupled models are constructed. They are coupled wind-current model (HYCOM-WINDS) and coupled wave-current model (SWAN-POM).
     By accounting for the effects of ocean surface velocity (wave-induced surface drift velocity and current velocity) on the drag coefficient, the spatial distribution of drag coefficient and wind stress are computed over the global ocean during 1958-2001, using an empirical drag coefficient parameterization formula based on wave steepness and wind speed. The global ocean current field is generated from the Hybrid Coordinate Ocean Model (HYCOM) and the waves from Wavewatch III (WW3). The spatial variability of the drag coefficient and wind stress are analyzed. Preliminary results indicate that, the ocean surface drift velocity exerts an influence on the wind stress, about 5% in average. The results also show that accounting for the effect of the ocean surface velocity on the wind stress can lead to significant improvement in the modeling of ocean circulation and air-sea interaction processes.
     In additation, A Wind stress-Current Coupled System (WCCS) consisting of the HYbrid Coordinate Ocean Model (HYCOM) and an improved wind stress algorithm based on Donelan et al. (1997) is developed by using the Earth System Modeling Framework (ESMF). The WCCS is applied to the global ocean to study the interactions between the wind stress and the ocean surface currents. In this study, the ocean surface current velocity is taken into consideration in the wind stress calculation and air-sea heat flux calculation. The wind stress that contains the effect of ocean surface current velocity will be used to force the HYCOM. The results indicate that the ocean surface velocity exerts an important influence on the wind stress, which, in turn, significantly affects the global ocean surface currents, air-sea heat fluxes, and the thickness of ocean surface boundary layer. Comparison with the TOGA TAO buoy data, the sea surface temperature from the wind-current coupled simulation showed noticeable improvement over the stand-alone HYCOM simulation.
     As for investigation of the large scale wave effects on ocean modeling, first, we found a well-defined zone of swell dominance, termed "swell pool", located in the eastern areas of the Pacific by calculating the global distribution of swell index in 2000. The global monthly mean wave transport for each month of 2000 is derived by taking advantage of the ECWMF reanalysis wave products. By comparing the monthly mean wave transport and monthly mean wind field from QUICKSCAT both of 2000, large difference is found between the Stokes transport direction and the wind direction in eastern area of the Pacific, approximately 90°.This result may serve as an evidence for proving the existence of the swell pool in this region. We also found that the sources of swell in eastern tropical areas of the Pacific mainly locate in the corresponding regions of westerlies of southern and northern Pacific, respectively. A calculation area is defined with boundaries lie on 2.5°N and 2.5°S (from 125°W to the western terrestrial boundary of America) to calculate the swell-caused net Stokes transport into the tropical region. Strong relationships are found between the net Stokes transport across the two latitudinal boundaries and wind intensities, for each specific month. Finally, we summarized the main conclusion of this study.
     Then, Six experiments configured for three different domains:Global Ocean, South China Sea (SCS) and Western North Atlantic Ocean (WNA) respectively, using the Hybrid Coordinate Ocean Model (HYCOM) are designed to investigate effects of the wave-induced Coriolis-Stokes forcing (hereinafter referred to as CSF) on ocean surface phenomena including circulation, temperature and mixing processes. The CSF calculated using wave variables simulated by the Wave WatchⅢ(WW3) model is incorporated into HYCOM as a boundary condition in addition to wind stress. The results indicate:1) HYCOM is capable of reproducing the ocean circulation futures in all the three domains with different horizontal resolution. Main features of currents in SCS and WNA are successfully modeled, such as the well-known SCS upper layer circulation which subjects to the seasonally reversed monsoon system, and the loop current and eddy-shedding in WNA (Gulf of Mexico); 2) CSF does not fundamentally modify the pattern of current profile in the ocean surface mixed-layer; 3) Over most of the Global Ocean, the direction of Stokes transports are different from that of the changes in depth-integrated current transports caused by CSF; 4) The monthly-mean changes in depth-integrated current transports in the mixed-layer is changing month to month in both direction and magnitude and the CSF plays a more significant role in regions of intensive gyre presents, such as the area near Yucatan Channel; and 5) both Sea Surface Temperature (SST) and Mixed-Layer Depth (MLD) are influenced by CSF.
     Additationaly, The Stokes drift-driven ocean currents and Stokes drift-induced energy rate input to ocean have been investigated in the ideal experiments by taking advantage of a full coupled wave-current system which consists of the ocean component Princeton Ocean Model (POM), wave component Simulating WAves Nearshore (SWAN) and the coupling frame Model Coupling Toolkit (MCT). The Coriolis-Stokes forcing, which is computed by using the wave parameters from SWAN, has been incorporated into the momentum equation of POM as the core coupling process in the coupled system. Experimental results show that, under the steady state, the scale of Coriolis-Stokes forcing-driven current speed is 0.001 and the maximum current speed is 0.02 m/s. The Stokes drift-induced energy rate input into the ocean within the whole experiment domain is estimated as 2.8505×1010 w which is 14% of the direct wind energy rate input. Taking consideration of the Stokes drift effects, the total mechanical energy rate input within the simulation domain is increased by 13.96%.
引文
[1]刘斌,2007,大气-海浪耦合模式的物理基础及数值研究,中国海洋大学博士学位论文.
    [2]袁业立等,1992,LAGFD-WAM海浪数值模式,Ⅰ:基本物理模型.海洋学报,14,1-7.
    [3]——1992,LAGFD-WAM海浪数值模式,Ⅱ:区域性特征线嵌入格式及其应用.海洋学报,14,12-24.
    [4]Alford, M. H.,2003, Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophys. Res. Lett.,30,1424, doi:10.1029/2002GL016614.
    [5]Barber, B. F., and F. Ursell,1948, The generation and propagation of ocean waves and swell. Ⅰ. Wave periods and velocities. Philos.Trans. Roy. Soc. London,240A,527-560.
    [6]Bye, J. A. T.1967, The wave-drift current. J. Mar. Res.,25,95-102.
    [7]Booij, N., Ris, R. C. and Holthuijsen, L. H.,1999, A third-generation wave model for coastal regions, Part I, Model description and validation. J. Geophys. Res.,104(C4),7649-7666.
    [8]Bonekamp, H., G. J. Komen, A. Sterl, P. A. E. M. Janssen, P. K. Taylor, and M. J. Yelland,2002, Statistical comparisons of observed and ECMWF modeled open ocean surface drag, J. Phys. Oceanogr.,32,1010-1027.
    [9]Bourassa, M. A.,2006, Satellite-based observations of surface turbulent stress during severe weather, in Atmosphere-Ocean Interactions, vol.2, Adv. Fluid Mech. Ser., vol.39, edited by W. Perrie, pp. 35-52, Wessex Inst. of Technol., Southampton, UK.
    [10]Bleck, R.,2002, An Ocean General Circulation Model Framed in Hybrid Isopycnic-Cartesian Coordinates. Ocean Model.,4,55-88.
    [11]——, Halliwell, G.,2002, Wallcraft, A., Carroll, S., Kelly, K. and Rushing, K., HYCOM User's Manual.
    [12]Bouws, E. and G. J. Komen,1983, On the balance between growth and dissipation in an extreme depth-limited wind-sea in the southern north sea. J. Phys. Oceanogr.,13,1653-1658.
    [13]Chen G., B. Chapron, R. Ezraty, and D. Vandemark,2002, A Global View of Swell and Wind Sea Climate in the Ocean by Satellite Altimeter and Scatterometer. J. Atmos. Oceanic Technol.,19, 1849-1859.
    [14]——, R. Ezraty, C. Fang, and L. Fang,2002, A new look at the zonal pattern of the marine wind system from TOPEX measurements. Remote Sens. Environ.,79,15-22.
    [15]Cartwright, D. E., J. S. Driver, and J. E. Tranter,1977, Swell waves at Saint Helena related to distant storms. Quart. J. Roy. Meteor. Soc.,103,655-683.
    [16]Chalikov, D.,1995, The Parameterization of the Wave Boundary Layer. J. Phys. Oceanogr.,25, 1333-1349.
    [17]—— and M. Y. Belevich,1993, One-dimensional theory of the wave boundary layer. Boundary-Layer Meteorol.,63,65-96.
    [18]Collins, J.I.,1972, Prediction of shallow water spectra, J. Geophys. Res.,77, No.15,2693-2707.
    [19]Changlong Guan and Lian Xie,2004, A Note on the Linear Parameterization of Drag Coefficient over Sea Surface, J. Phys. Oceanogr.,34,2847-2851.
    [20]Carder, K. L., K. A. Fanning, P. R. Betzer and V. Maynard,1977, Dissolved silica and the circulation in the Yucatan Strait and the deep eastern Gulf of Mexico. Deep-Sea Res.,24,49-60.
    [21]Chu, P. C., Edmons, N., L., and Fan, C.,1999, Dynamical Mechanisms for the South China Sea Seasonal Circulation and Thermohaline Variablilities, J. Phys. Oceanogr.,29,2971-2989.
    [22]Cochrane, J. D.,1972, Separation of an anticyclone and subsequent developments in the Loop Current (1969). Texas A & M Univ. Ocean Studies. Eds:L. R. A. Capurro and J. L. Reid, Gulf Publishing Co., Houston,2,91-106.
    [23]Cooper, C., G. Z. Forristall and T. M. Joyce,1990, Velocity and hydrographic structure of two Gulf of Mexico warm-core rings. J. Geophys, Res.,95,1663-1679.
    [24]Davis, R. W. and E. F. More,1982, A numerical study of vortex shedding from rectangles. J. Fluid Mech.,166,475-506.
    [25]Davies, A. M., and J. Lawrence,1995, Modeling the effect of wave-current interaction on the three dimensional wind-driven circulation of the Eastern Irish Sea, J. Phys. Oceanogr.,25,29-45.
    [26]Donelan, W. M. Drennan, and K. B. Katsaros,1997, The Air-sea Momentum Flux in Mixed Wind Sea and Swell Conditions. J. Phys. Oceanogr.,27,2087-2099.
    [27]——, and L. K. Shay,2006, On the variability of the fluxes of momentum and sensible heat, Boundary Layer Meteorol.,119,81-107.
    [28]Deng, Z., Zhao, D., Wu, K., Yu, T. and Shi, J.,2008, Impacts of Wave and Current on Drag Coefficient and Wind Stress over the Tropical and Northern Pacific, J. Ocean Univ. Chin., Vol.7, No.4, pp.1-6.
    [29]——, Wu, K. and Yu, T.,2007, The wave transport of the eastern area of the Pacific. ACTA OCEANOLOGICA SINICA (Chinese edition), Vol.29 No.6,1-9.
    [30]——, Wu, K., Zhao, D. and Yu, T.,2009, Effects of Wind Waves of the Pacific Westerly on the Eastern Pacific Wave Transport. ACTA OCEANOLOGICA SINICA, Vol.28, No.1,83-88.
    [31]——, Xie, L., Liu, B., Wu, K., Zhao, D. and Yu, T.,2009, Coupling winds to ocean surface currents over the global ocean. Ocean Modeling,29,261-268.
    [32]Dingemans, M.W., A.C. Radder and H.J. de Vriend,1987, Computations of the driving forces of wave-induced currents, Coastal Engng.,11,539-563.
    [33]Ebuchi, N., H. Kawamura, and Y. Toba,1992, Growth of wind waves with fetch observed by the Geosat altimeter in the Japan Sea under winter monsoon. J. Geophys. Res.,97,809-819.
    [34]Eldeberky, Y. and J.A. Battjes,1995, Parameterization of triad interactions in wave energy models, Proc. Coastal Dynamics Conf. '95, Gdansk, Poland,140-148.
    [35]——,1996, Nonlinear transformation of wave spectra in the nearshore zone, Ph.D. thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands.
    [36]Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Yong,1996, Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res.,101,3747-3764.
    [37]——, E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson,2003, Bulk parameterization of air-sea fluxes:Updates and verification for the COARE algorithm, J. Clim.,16,571-591.
    [38]Fratantoni, D. M.,2001, North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters.J. Geophys. Res.,106,22,067-22,093.
    [39]Gelci, R., H. Cazale, and J. Vassal,1957, Prevision de la houle, la methode des densites spectroangulaires. Bull. Inform. Comite Central Oceanogr. Etude Cotes,9,416-435.
    [40]Garratt, J. R. D.,1977, Review of Drag Coefficients over Oceans and Continents. Mon. Wea. Rev., 105,915-929.
    [41]Grachev, A. A., C. W. Fairall, J. E. Hare, J. B. Edson, and S. D. Miller,2003, Wind stress vector over ocean waves, J. Phys. Oceanogr.,33,2408-2429.
    [42]Hsu, S. A.,1974, A Dynamic Roughness Equation and Its Application to Wind Stress Determination At the Air-sea Interface. J. Phys. Oceanogr.,4,116-120.
    [43]Huang, N.E.,1979, On Surface Drift Currents in the Ocean. J. Fluid Mech.,91,191-208.
    [44]Hwang, P. A.2005, Drag coefficient, dynamic roughness and reference wind speed, J. Oceanogr.,61, 399-413.
    [45]Hasselmann, K.,1970, Wave-driven inertial oscillations, Geophys. Fluid Dyn.,1,463-502.
    [46]——,1962, On the nonlinear energy transfer in a gravity wave spectrum,1. J. Fluid Mech.,12, 481-500.
    [47]——,1963, On the nonlinear energy transfer in a gravity wave spectrum,2. J. Fluid Mech.,15, 273-281.
    [48]——, T. P. Barnett, E. Bouws, H. Carlson, D. E. Cartwright, K. Enke, J. A. Ewing, H. Gienapp, D. E. Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J. Olbers, K. Richter, W. Sell, and H. Walden, 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch. Hydrogr. Z. Suppl. A,8,1-95.
    [49]——,1974, On the spectral dissipation of ocean waves due to whitecapping, Bound-layer Meteor.,6, 1-2,107-127
    [50]Hasselmann, S. and K. Hasselmann,1985, Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, part 1:A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr.,15,1369-1377.
    [51]——, K. Hasselmann, J. H. Allender, and T. P. Barnett,1985, Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum, part 2:Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr.,15,1378-1391.
    [52]Holthuijsen, L. H. and H. L. Tolman,1991, Effects of the Gulf Stream on ocean waves, J. Geophys. Res.,96(C7),12,775-12,771.
    [53]Ianniello, J. P., Garvine, R. W.,1975, Stokes transport by gravity waves for application to circulation models. J. Phys. Oceanog.,5,47-50.
    [54]Irvine, D. E. and D. G. Tilley,1988, Ocean wave directional spectra and wave-current interaction in the Agulhas from the shuttle imaging radar-B synthetic aperture radar, J. Geophys. Res.,93(C12), 15,389-15,401.
    [55]Jordan T. Dawe and LuAnne Thompson,2006, Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean, Geophysical Research Letters, Vol 33, L09604, doi:10.1069/1006GL025784.
    [56]Janssen, P.A.E.M.,1989, Wave induced stress and the drag of air flow over sea waves, J. Phys. Oceanogr.,19,745-754.
    [57]——,1991a, Quasi-linear theory of wind-wave generation applied to wave forecasting, J. Phys. Oceanogr.,21,1631-1642.
    [58]——1991b, Consequences of the effect of surface gravity waves on the mean air flow, Int. Union of Theor. and Appl. Mech. (IUTAM), Sydney, Australia,193-198.
    [59]Jonsson, I.G.1966, Wave boundary layers and friction factors, Proc.10th Int. Conf. Coastal Engineering, ASCE,127-148.
    [60]——. and N.A. Carlsen,1976, Experimental and theoretical investigations in an oscillatory turbulent boundary layer, J. Hydraulic Research,14,45-60.
    [61]——,1980, A new approach to rough turbulent boundary layers, Ocean Engineering,7,109-152.
    [62]Kara, A. B., E. J.Metzger, and M. A. Bourassa,2007, Ocean Current and Wave Effects on Wind Stress Drag Coefficient Over the Global Ocean, Geophys. Res. Lett.,34, L01604, doi:10.1029/2006GL027849.
    [63]——, H. E. Hurlburt, and A. J. Wallcraft,2005, Stability-dependent exchange coefficients for air-sea fluxes, J. Atmos. Oceanic Technol.,22,1080-1094.
    [64]—— and H. E. Hurlburt,2006, Daily inter-annual Simulations of SST and MLD using Atmospherically Forced OGCMs:Model Evaluation in Comparison to Buoy Time Series, J. Marine Systems,95-119.
    [65]——, E. J.Metzger, and M. A. Bourassa,2007, Ocean Current and Wave Effects on Wind Stress Drag Coefficient Over the Global Ocean, Geophys. Res. Lett.,34, L01604, doi:10.1029/2006GL027849.
    [66]——, A. J. Wallcraft, P. J. Martin and E. P. Chassignet,2008, Performance of Mixed Layer Models in Simulating SST in the Equatorial Pacific Ocean, J. Geophys. Res., Vol.113, doi:10. 1029/2007JC004250.
    [67]Kelly, K. A., S. Dickinson, M. McPhaden, and G. Johnson,2001, Ocean Currents Evident in Satellite Wind Data. Geophys. Res. Lett.,28,2469-2472.
    [68]Komen, G. J., L. Cavaleri, M. Donelan, K. Hasselmann, S. Hasselmann, and P. A. E. M. Janssen, 1994:Dynamics and modeling of ocean waves. Cambridge University Press,532pp.
    [69]——, K. Hasselmann, and S. Hasselmann,1984, On the existence of a fully developed windsea spectrum. J. Phys. Oceanogr.,14,1271-1285.
    [70]Korvin-Kroukovsky. YV,.1972, Pure drift current and mass transport in coexistent waves. Deut. Hydro. Z.,25,1-13.
    [71]Kantha,L.H.,2006, A note on the decay rate of swell, Ocean Modelling,11,167-173.
    [72]——, Wittmann, P., Sclavo, M. and Carniel, S.,2009, A preliminary estimate of the Stokes dissipation of the energy in the global ocean. Geophys. Res. Lett.,36, L02605, doi: 10.1029/2008GL036193.
    [73]Kenyon, K. E.,1970, Stokes transport. J. Geophys. Res.,75,1133-1135.
    [74]——,1971, Wave refraction in ocean currents, Deep-Sea Res.,18,1023-1034.
    [75]Lewis, D. M. and S. E. Belcher,2004, Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dyn. Atmos. Oceans,37,313-351.
    [76]Luo, J.-J., S. Masson, E. Roeckner, G. Madec, and T. Yamagata,2005, Reducing Climatology Bias In An Ocean-atmosphere CGCM With Improved Coupling Physics. J. Climate,18,2344-2360.
    [77]Large, W. G., Mcwilliams, J. C. and Doney, S. C.,1994, Oceanic Vertical Mixing:A Review and A Model With A Nonlocal Boundary Layer Parameterization, Reviews of Geophysics,32,363-403.
    [78]——, Danabasoglu, G., Doney, S.C., and McWilliams, J. C.,1997, Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model:Annual-mean Climatology. J. Phys. Oceanog.,27, 2418-2447.
    [79]Leonard, B. P.,1979, A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng.,88,17-74.
    [80]Liu, Q., A. Kaneko and Su, J.,2008, Recent Progress in Studies of the South China Sea Circulation, Journal of Oceanography,64,753-762.
    [81]Liu, H. and Xie, L.,2009, A numerical study on the effects of wave-current-surge interactions on the height and propagation of sea surface waves in Charleston Harbor. Continental Shelf Research,29, 1454-1463.
    [82]——,2007, Analysis and modeling of wave-current interaction, North Carolina State University, Phd dissertation.
    [83]Liu, A. K., F. C. Jackson, E. J. Walsh and C. Y. Peng,1989, A case study of wave-current interaction near an oceanic front, J. Geophys. Res.,94(C11),16,189-16,200.
    [84]Lin, R. Q., and N. E. Huang,1996, The Goddard coastal wave model,1, Numerical method., J. Phys. Oceanogr.,26,833-847.
    [85]Larson, J. W., Jacob, R. L., Ong, E. and Loy, R., The Model Coupling Toolkit API Reference Manual: MCT v.2.4.
    [86]Mapp, G. R., C. S. Welch and J. C. Munday,1985, Wave refraction by warm core rings, J. Geophys.
    [87]Meadows, G. A., R. A. Shuchman, Y. C. Tseng and E. S. Kasischke,1983, Seasat synthetic aperture radar observations of wave-current and wave-topographic interactions, J. Geophys. Res.,88(C7), 4393-4406.
    [88]Metzger, E. J. and H. Hurlburt,1996, Coupled Dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean, J. Geophys. Res.,101,12331-12352.
    [89]Mellor, G. L.,1996, Users Guide for a three dimensional, primitive equation numerical ocean model. Princeton University Press, Princeton, NJ.
    [90]——,2003, The three-dimensional current and surface wave equations. J. Phys. Oceanogr,33, 1978-1989.
    [91]——, M. A. Donelan, and L.-Y. Oey,2008, A surface wave model for coupling with numerical ocean circulation models. J. Atmos. Oceanic Technol.,25,1785-1807.
    [92]——,2008, The Depth-Dependent Current and Wave Interaction Equations:A Revision, J. Phys. Oceanogr.,38,2587-2596.
    [93]Mcwilliams, J. C. and J. M. Rsetrepo,1999, The wave-driven ocean circulation. J. Phys. Oceanogr, 29,2523-2540.
    [94]——, P. P. Sullivan and C. H. Moeng,1997, Langmuir turbulence in the ocean. J. Fluid Mech.,334, 1-30.
    [95]Miles, J.W.,1957, On the generation of surface waves by shear flows, J. Fluid Mech.,3,185-204.
    [96]Mitsuyasu, H.,1968, On the growth of the spectrum of wind-generated waves,1. Rep. Res. Inst. appl. Mech., Kyushu Univ.,16,459-482.
    [97]——,1969, On the growth of the spectrum of wind-generated waves,2. Rep. Res. Inst. appl. Mech., Kyushu Univ.,17,235-243.
    [98]Madsen, O.S., Y.-K. Poon and H.C. Graber,1988, Spectral wave attenuation by bottom friction: Theory, Proc.21th Int. Conf. Coastal Engineering, ASCE,492-504.
    [99]Madsen, P.A. and O.R. Sφrensen,1993, Bound waves and triad interactions in shallow water, Ocean Engineering,20,4,359-388.
    [100]Mathiesen, M.,1987, Wave refraction by a current whirl, J. Geophys. Res.,92(C4),3905-3912.
    [101]Oye, L.-Y., T. Ezer, and H.-C. Lee,2005, Loop Current, Rings and Related Circulation in the Gulf of Mexico:A Review of Numerical Models and Future Challenges. Geophysical Monography Series,161,31-56.
    [102]Ochoa, J., J. Sheinbaum, A. Baden, J. Candela and D. Wilson,2001, Geostrophy via Potential vorticity inversion in the Yucatan Channel, J. Mar. Res.,59,725-747.
    [103]Philips, O. M.,1977, The dynamics of the upper ocean. Cambridge University Press. Cambridge, 336pp.
    [104]——,1957, On the generation of waves by turbulent wind, J. Fluid Mech.,2,417-445.
    [105]——,1958, The equilibrium range in the spectrum of wind-generated waves. J. Fluid Mech.,4, 426-434.
    [106]——,1985, Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech.,156,505-531.
    [107]Pierson, W.J. and L. Moskowitz,1964, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii, J. Geophys. Res.,69,24,5181-5190.
    [108]Pacanowski, R. C.,1987, Effect of Equatorial Currents on Surface Wind Stress. J. Phys. Oceanogr.,17,833-838.
    [109]Plant, W. J.,1982, A relation between wind stress and wave slope. J. Geophys. Res., C87, 1961-1967.
    [110]Pollard R.T.,1970, Surface waves with rotation:An exact solution. J. Geophys. Res.,75: 5895-5898.
    [111]Polton et al., J. A., D. M. Lewis, and S. E. Belcher,2005, The role of waveinduced Coriolis-Stokes forcing on the wind-driven mixed layer, J. Phys. Oceanogr.,35,444-457.
    [112]Qu, T.,2000, Upper layer circulation in the South China Sea, J. Phys. Oceanogr.,30, 1450-1460.
    [113]Qiao, F., Yuan, Y., Yang, Y., Zheng, Q., Xia, C., Ma, J.,2004, Wave-induced mixing in the upper ocean:distribution and application in a global ocean circulation model, Geophysical Research Letter, 31, L11303, doi:10.1029/2004GL019824.
    [114]Romanou, A., E. P. Chassignet, and W. Sturges,2004, The Gulf of Mexico circulation within a high resolution numerical simulation of the North Atlantic Ocean. J. Geophys. Res.,109, CO1003, doi:10.1029/2003CJ001770.
    [115]Rosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley,2002, Navy Operational Global Atmospheric Prediction System (NOGAPS):Forcing for ocean models, Oceanography,15, 99-108.
    [116]Reynolds, R. W.,1987, A Real-Time Global Sea Surface Temperature Analysis, J. of Climate,1, 75-86.
    [117]Rooth C. and L. Xie.1992, Air-sea boundary layer dynamics in the presence of mesoscale surface currents. J. Geophys. Res.,97,14431-14438.
    [118]Sugimori, Y, M. Akiyama, and N. Suzuki,2000, Ocean Measurement and Climate Prediction-expectation for Signal Processing (in Japanese). J. Signal Processing,4,209-222.
    [119]Sturges, W., R. Leben,2000, Frequency of ring separations from the Loop Current In the Gulf of Mexico:A revised estimate, J. Phys. Oceanogr.,30,1814-1818.
    [120]Shaw, P. T., S. Chao,1994, Surface circulation in the South China Sea. Deep-Sea Res.,41, 1663-1683.
    [121]Simons, R. R. and R. D. Maciver, Wave refraction across a current with strong horizontal shearing, Proceedings 26th International Conference on Coastal Engineering, Copenhagen, Denmark, June 1998. ASCE 692-705.
    [122]Snyder, R. L., F. W. Dobson, J. A. Elliott, and R. B. Long,1981, Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech.,102,1-59.
    [123]Signell, R. P., et al.,1990, Effect of wave-current interaction on wind-driven circulation in narrow shallow embayments, J. Geophys. Res.,95,9671-9678.
    [124]Taylor, P. K., and M. J. Yelland,2001, The dependence of sea surface roughness on the height and steepness of the waves, J. Phys. Oceanogr.,31,572-590.
    [125]——, and M. J. Yelland,2001, The Dependence of Sea Surface Roughness on the Height and Steepness of the Waves, J. Phys. Oceanogr.,31,572-590.
    [126]Treloar, P. D.,1986, Spectral wave refraction under the influence of depth and current, Coastal Engineering,9,439-452.
    [127]Tolman, H.L.,1990, A third-generation model for wind waves on slowly varying, unsteady and inhomogeneous depth and currents. J. Phys. Oceanogr.21,782-797.
    [128]——,1997, User manual and system documentation of WAVEWATCH-Ⅲ version 1.15, NOAA /NWS/NCEP/OMB Technical Note 151,97 pp.
    [129]——,1999, User manual and system documentation of WAVEWATCH Ⅲ version 1.18, Tech. Note 166, NOAA/NWS/NCEP/OMB,110 pp.
    [130]——,2002, User manual and system documentation of WAVEWATCH-Ⅲ version 2.22, NOAA /NWS/NCEP/MMAB Technical Note 222,133 pp.
    [131]——,2002, Validation of WAVEWATCH Ⅲ version 1.15 for a global domain. Tech. Note 213, NOAA/NWS/NCEP/OMB,33 pp.
    [132]—— and D. V. Chalikov,1996, Source terms in a third-generation wind-wave model. J. Phys. Oceanogr.,26,2497-2518.
    [133]Ursell F.,1950, On the theoretical form of ocean swell on a rotating earth, Mon Not Roy Astron Soc. Geophys Suppl,6,1-8.
    [134]Vukovich, F. M.,1995, An updated evaluation of the Loop Currents eddyshedding frequency. J. Geophys. Res.,100,8655-8659.
    [135]Wallcraft, Alan J., Metzger, E. J., Hurlburt, Harley E., Chassignet, Eric P., Garraffo, Zulema D. and Smedstad, Ole M., Jun.2005, Global Ocean Prediction Using HYCOM, Handle Url http://handle.dtic.mil/100.2/ADA449202.
    [136]Wuest, A., and A. Lorke,2003, Small-scale hydrodynamics in lakes, Annu. Rev. Fluid Mech.,35, 373-412.
    [137]Wu, J.,1982, Wind-stress coefficients over sea surface from breeze to hurricane, J. Geophys. Res.,87, C12,9704-9706.
    [138]Wyrtki, K.,1961, Scientific results of marine investigation of the South China Sea and Gulf of Thailand. NAGA Report,2,195 pp.
    [139]Wang, W. and R. X. Huang,2004a, Wind energy input to the Ekman layer. J. Phys. Oceanogr., 34,1267-1275.
    [140]—— and R. X. Huang,2004b, Wind energy input to the surface waves. J. Phys. Oceanogr.,34, 1276-1280.
    [141]WAMDI group, S. Hasselmann, K. Hasselmann, E. Bauer, P. A. E. M. Janssen, G. J. Komen, L. Bertotti, P. Lionello, A. Guillaume, V. C. Cardone, J. A. Greenwood, M. Reistad, L. Zambresky, and J. A. Ewing,1988, The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr.,18,1775-1810.
    [142]Wu, K. and Liu, B.,2008, Stokes drift-induced and direct wind energy inputs into the Ekman layer within the Antarctic Circumpolar Current. J. Geophys. Res.,113, C10002, doi: 10.1029/2007JC004579.
    [143]Wen, S., D. Zhang, P. Guo, and B. Chen,1989, Parameters in windwave frequency spectra and their bearing on spectrum forms and growth. Acta Oceanol. Sin.,8,15-39.
    [144]——, C. Qian, A. Ye, K. Wu, Z. Wu, C. Guan, and D. Zhao,1999, Wave modeling based on an adopted wind-wave directional spectrum. J. Ocean Univ. Qingdao,29,345-397.
    [145]Xie, L. and C. Rooth,1994, The effect of current-induced stress perturbations in a coupled atmosphere-ocean model. J. of Marine Res.,52,239-257..
    [146]——, Wu, K., Pietrafesa, L. J., Zhang, C.,2001, A numerical study of wave-current interaction through surface and bottom stresses:wind-driven circulation in the South Atlantic Bight under uniform winds. J. Geophys. Res.,106 (16),841-885.
    [147]——, Pietrafesa, L. J., Wu, K.,2003, A numerical study of wave-current interaction through surface and bottom stresses:coastal ocean response to Hurricane Fran of 1996. J. Geophys. Res.,108 (C2),3049, doi:10.1029/2001JC001078.
    [148]——, Liu, H., Peng, M.,2008, The effect of wave-current interactions on the storm surge and inundation in Charleston Harbor during Hurricane Huge 1989. Ocean Moedlling,20,252-269.
    [149]Xia, H., Xia, Z., Zhu, L.,2004, Vertical variation in radiation stress and wave-induced current. Coastal Eng.,51,309-321.
    [150]Yelland, M., and P. K. Taylor,1999, Wind Stress Measurements from the Open Ocean. J. Phys. Oceanogr.,26,541-558.
    [151]——, B.I. Moat, P. K. Taylor, R. W. Pascal, J. Hutchings, and V. C. Cornell,1998, Wind Stress Measurements from the Open Ocean Corrected for Airflow Distortion by the Ship. J. Phys. Oceanogr.,28,1511-1526.
    [152]Young, I. R.,2006, Directional spectra of hurricane wind waves, J. Geophys. Res., 111 (C8), C08020, doi:10.1029/2006JC003540.
    [153]Zhang, D., Z. Wu, D. Jiang, W. Wang, B. Chen, W. Tai, S. Wen, Q. Xu, and P. Guo,1992, A hybrid model for numerical wave forecasting and its implementation-Ⅱ. The discrete part and implementation of the model. Acta Oceanol. Sin.,11,157-178.
    [154]Zhao, D.,2002, A Note on Wave State Dependence of the Sea-surface Roughness, Proceedings of the Twelfth (2002) international offshore and polar engineering conference, Kitakyushu, Japan, May,26-31
    [155]Zhao, L., Vijay P., W. Chen, Z. Demirbilek, N. Chhabbra,2001, Simulation of wave breaking effects in two-dimensional elliptic harbor wave models. Coastal Eng.,42,359-373.
    [156]Zijlema, M. and A.J. van der Westhuysen,2005, On convergence behaviour and numerical accuracy in stationary SWAN simulations of nearshore wind wave spectra, Coastal Eng.,52, 237-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700