双侧经寰枢关节螺钉及寰椎椎板钩内固定的基础研究和临床评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     寰枢关节复合体是脊柱运动最灵活的区域,附近有极其重要的神经血管通过,不但容易造成机械性损伤,也是先天性畸形、肿瘤、结核、类风湿性等疾病的好发部位,由以上疾病所致的寰枢椎不稳伴脊髓压迫是脊柱外科治疗的重要方面。后路寰枢椎融合术是解决寰枢椎不稳的主要手段。传统的寰枢椎后路固定术包括钢丝捆扎术(Gallie技术和Brooks技术)、椎板夹、经寰枢关节间隙螺钉技术(Magerl技术)、寰枢椎椎弓根螺钉技术等。随着对颈椎解剖和手术潜在并发症的深入理解、颈椎外科生物力学研究的不断深入以及新的内固定器械的应用,寰枢椎内固定技术也有了长足的进步和发展,出现了后路寰枢椎融合内固定术、前路经寰枢侧块关节螺钉内固定术以及前路经口咽钢板内固定术。但后路寰枢椎内固定融合术仍是临床上解决寰枢椎不稳的主要手段。在上颈椎生物力学以及三维有限元研究基础上,后路寰枢椎内固定术经历了由二点内固定技术(如钢丝捆扎术、椎板夹技术)向三点内固定技术(如经寰枢关节间隙螺钉技术、C1-2椎弓根螺钉技术)的发展过程。大量基础研究和临床实践表明,单一的两点内固定技术均存在着不足和缺陷。Gallie和Brooks技术存在钛缆切割椎板损伤脊髓的可能;Apofix椎板夹采用椎板挂钩固定技术,虽然避免了椎板下穿钛缆的技术环节,但是椎板钩可能进入椎管产生脊髓压迫;Magerl技术采用经寰枢关节间隙螺钉固定的方法,需要与Gallie和Brooks技术相结合来完成寰枢椎后结构的固定。寰椎侧块螺钉和枢椎椎弓根螺钉内固定技术具有较强的生物力学稳定性,但由于寰枢椎解剖学上的特殊性,手术操作难度较大。
     近年来,国内外学者针对各单一的两点内固定技术的缺陷进行了改良,衍生出一些改良型寰枢椎后路三点内固定技术,使寰枢椎不稳治疗的临床疗效获得了很大提高。由Magerl技术合并Gallie或Brooks技术形成的“三点”内固定术能为寰枢关节提供最好的力学稳定性已经成为共识。随着内固定技术的不断改良,C1侧块和C2椎弓根螺钉内固定也被应用到临床。
     我的导师倪斌教授总结传统后路寰枢椎融合技术的优点,改良创新了一种寰枢椎后路固定融合技术――双侧经寰枢关节螺钉及寰椎椎板钩内固定术,此项技术结合了经关节螺钉技术和椎板钩技术的优点,操作相对简单,在同一系统内同时完成对前后结构的固定、加压植骨,充分体现了寰枢椎生物力学“三点”固定的理念;经寰枢关节螺钉内固定是本改良内固定的关键技术,它的顺利放置决定着整个内固定放置的成败。我们前瞻性的利用此内固定技术救治了76名寰枢椎不稳伴脊髓压迫的患者,初步随访结果表明临床症状缓解率及植骨融合率均较传统内固定技术有优势。但是,对于此新型内固定技术相关的基础研究及临床应用的长期随访仍为空白,本课题从内固定的力学稳定性、内固定放置的解剖学及影像学基础、内固定术后影像学评价、临床疗效评价四个方面对此改良的内固定术进行了研究,以求达到以下目的:
     1.利用人尸体标本的离体生物力学方法,对改良内固定的生物力学稳定性进行评估。
     2.从解剖和影像基础方面评价改良内固定的手术安全性,并由此制定患者术前影像评价的相关指标,为内固定的安全放置提供理论基础。
     3.评价经寰枢关节螺钉位置的优劣,探讨经关节螺钉放置过程中相关的风险因素,并评价以参照枢椎椎弓峡部内壁,选择枢椎下关节突内缘向上向外2 mm处进针,大上倾角度放置经寰枢关节螺钉方法的安全性,为本改良内固定的安全放置提供保障。
     4.通过长期(24个月)的临床随访,从临床应用角度,评价双侧经寰枢关节螺钉及寰椎椎板钩内固定的安全性、有效性。
     方法
     1.以新鲜人尸体颈椎标本为模型,采用离体生物力学研究方法,通过与传统的后路寰枢椎融合技术比较,评价双侧经寰枢关节螺钉及寰椎椎板钩内固定的生物力学稳定性。6具人体颈椎标本按照正常、破坏、Gallie钛缆固定,经寰枢关节螺钉+Gallie钛缆固定(TA+G)、经寰枢关节螺钉固定(TA),双侧经寰枢关节螺钉及寰椎椎板钩内固定(TA+Hook)、寰椎侧块螺钉及枢椎椎弓根螺钉内固定(C1+C2)的顺序依次实施手术,术后分别进行寰枢关节前屈、后伸、左侧屈、右侧屈、左旋、右旋方向的运动范围(角度)测试。
     2.利用电子游标卡尺及CT图像处理系统自带测量工具,分别对35套正常中国成人寰枢椎骨标本以及105套正常中国成人(男55,女50)的颈椎CT片进行测量,测量内容包括枢椎椎弓峡部的高度,上、下面的宽度以及枢椎侧块的内侧高度。
     3.2004年10月-2008年10月,收治了33例需要行后路寰枢椎融合的患者(男性30例,女性3例),均实施双侧经寰枢关节螺钉及寰椎椎板钩内固定术,其中后路经寰枢关节螺钉是参照枢椎椎弓峡部内壁,选择枢椎下关节突内缘向上向外2 mm处进针,大上倾角度的方式放置。术后3天,评价每位患者的颈椎X线照相和CT薄层扫描及三维重建,分析螺钉在枢椎峡部及寰椎下关节面的位置。螺钉位置的判断应用以下方法:(1)螺钉在椎弓峡部的位置:位置好:螺钉均走形在C2椎弓峡部内,进入C2侧块内,并穿越关节面,指向寰椎前弓皮质,穿出皮质小于5mm;位置差:螺钉太高、太低,穿破了峡部腹侧及背侧的骨皮质;(2)螺钉在寰椎下关节面的位置:分为A、B、C三区。A区:螺钉在枢椎下关节面内;B区:螺钉在关节面的前后方(前方B1,后方B2);C区:螺钉在关节面的内、外侧(内侧C1,外侧C2)。
     4.对采用双侧经寰枢关节螺钉及寰椎椎板钩固定的31例患者,术后均随访24个月。回顾手术并发症,临床治疗情况;利用ASIA2000脊髓损伤神经功能评分及分级评价患者术前及术后的神经功能情况;通过术后影像学资料(包括颈椎正侧位、过伸过屈位X线片及颈椎CT平扫加三维重建片)评价寰枢关节的稳定性及植骨块的愈合清况。
     结果
     1. TA+Hook在各个方向的运动范围(Range of Motion)最小。与不含TA的内固定比较,运动范围更小,差异有显著性;与包含TA的内固定比较,屈伸方向的运动范围更小,差异有显著性。C1+C2与Gallie内固定比较,各个方向的运动范围更小,差异有显著性,但与单独TA的内固定比较,屈伸和侧弯的运动范围差异不显著,与含TA的“三点”内固定比较,各个方向的运动范围更大,差异有显著性。
     2.枢椎骨标本的解剖学测量,枢椎峡部上面宽度、枢椎峡部高度、枢椎侧块内高度的测量数据左侧明显大于右侧(P<0.05);枢椎峡部下面宽度的测量数据左右两侧无显著差异(P>0.05)。14.1%的标本的枢椎峡部上面宽度≤4.5mm,其中左侧8.6%,右侧14.1%,1例≤3.5mm在右侧;9%的标本的枢椎侧块内高度<2.1mm,其中左侧2.9%,右侧8.6%;17.1%的标本的枢椎峡部高度≤4.5mm,其中左侧9%,右边17.1%,4例≤3.5mm全在右侧;17.2%的标本的枢椎峡部下面宽度≤4.5mm,其中左侧2.9%,右侧17.2%, 4例≤3.5mm全在右侧。
     枢椎影像学测量,枢椎峡部上面宽度、峡部高度、左侧侧块内高度的测量数据男女有显著差异(P<0.05),峡部下面宽度、右侧侧块内高度的测量数据男女没有显著差异(P>0.05);男女性的枢椎峡部上面宽度、枢椎峡部高度的测量数据左右两侧有显著差异(P<0.05),男女性的枢椎峡部下面宽度测量的数据左右两侧无显著差异(P>0.05),男性枢椎侧块内高度的测量数据左右两侧有显著差异,而女性的测量数据左右两侧无显著差异。7.6%的样本的峡部上面宽度≤4.5mm,16%女性的样本峡部上面宽度≤4.5mm(2例≤3.5mm),其中左侧8%,右侧14%,男性无一例;枢椎峡部高度男性明显大于女性,且左右两侧有显著差异,19%的样本的峡部高度≤4.5mm,40%女性样本的峡部高度≤4.5mm(3例≤3.5mm),其中左侧12%,右侧40%,男性无一例;枢椎侧块内高度有10例(9.5%) <2.1mm,全为女性,其中左侧12%,右侧6%;17.1%的样本的枢椎峡部下面的宽度≤4.5mm,5.5%的男性样本的枢椎峡部下面的宽度≤4.5mm(1例≤3.5mm),24%的女性标样本的枢椎峡部下面的宽度≤4.5mm(6例≤3.5mm),男性标本左侧3.6%,右侧3.6%,女性标本左侧16%,右侧20%。
     3.在66枚螺钉中,6枚(9.1%)螺钉为位置差,其中4枚(6.0%)螺钉太高,2枚(6.0%)螺钉太低。没有偏外及偏内的螺钉;在位置差的螺钉中2枚(3.0%)螺钉位于B1区,其余4枚螺钉(6.0%)均位于A区;6枚位置差螺钉共涉及3例患者,1例为青年女性,2例为儿童,病因为颈椎创伤1例,颈椎先天性畸形2例。其余60枚(90.9%)螺钉为位置好,其中58枚(87.9%)螺钉位于A区,2枚(3.0%)位于B1区,无B2及C区螺钉。术中及术后随访未见椎动脉损伤等并发症,植骨块完全融合,无寰枢关节不稳表现。
     4.术中未见椎动脉及脊髓损伤表现;术后三月所有患者都获得不同程度的临床症状改善;术后三个月ASIA分级除外2例C和D级的患者无明显改善外,其余患者都获得1-2级的改善,平均提高1.1个等级,术后3个月ASIA评价指标与手术前比较显著提高(P<0.05),术后3个月与末次随访时间点的ASIA评价指标改善没有显著差异(P>0.05);影像学复查未见寰枢关节不稳征象;植骨在术后6月均获得完全融合。
     结论
     1.双侧经寰枢关节间隙螺钉+寰椎板钩内固定(TA+Hook)在各个方向具有最佳的力学稳定性。寰椎侧块螺钉+枢椎椎弓根螺钉内固定(C1+C2)具有与TA、TA+Gallie内固定组几乎相同的力学稳定性,当放置经寰枢关节螺钉困难时,可选用C1+C2内固定。
     2. 19%的国人不适合后路经关节螺钉内固定,女性比例明显高于男性;枢椎结构双侧比较,右侧的不适合率明显高于左侧。所以在行后路经关节螺钉固定时,通过患者术前的CT薄层扫描及三维重建片,评估枢椎峡部的高度及宽度、侧块的内侧高度是否适合经关节螺钉内固定是非常必要的,如果峡部高度及宽度≤4.5mm且枢椎侧块内侧高度<2.1mm,安全放置后路经关节螺钉是不可能的。
     3.后路经寰枢关节螺钉及寰椎椎板钩内固定放置的风险因素包括(1).寰椎侧块不完整, (2)二次手术寰椎前弓及齿突不存在, (3)术前寰枢关节没有复位, (4)类风湿关节炎患者, (5)儿童或女性患者, (6)医师的手术技术低。术前评估应重视以上风险。对于适合后路经关节螺钉放置的患者,采用参照枢椎椎弓峡部内壁,选择枢椎下关节突内缘向上向外2 mm处进针,大上倾角度的方式放置螺钉,可避免手术并发症的出现。
     4.对于寰枢椎不稳或可复性寰枢椎脱位的患者,在明确手术适应症,详细的术前影像评价下及充分的术前准备下,双侧经寰枢关节螺钉及寰椎椎板钩内固定术是一种安全、有效的治疗方式。
Objective:
     The atlantoaxial instability caused by fractures, rheumatoid arthritis, congenital deformity or traumatic lesions of the transverse ligament often results in acute or chronic spinal cord compression, a possible threat to a patient’s life. Even though conservative management could be appropriate for many patients, surgical intervention is usually necessary. The goal of most surgical intervention is to obtain solid fixation and it is common knowledge that this is best achieved when the fixation minimizes motion.
     The established atlantoaxial fixation techniques include: wiring technique (Gallie and Brooks), Apofix or Halifax laminar clamp, C1-2 transarticular screw fixation, Lateral mass screw of C1 combined with pedicle screw of C2. Wiring techniques carry the potential risk of the neural injury caused by the passage of sublaminar wires; laminar clamp technique have the risk similar to the wiring techniques and a weak biomechanical stability to control the bending and rotation motion; C1-2 transarticular screw technique keep a excellent biomechanical stability in all motional directions, this technique, however, is technically demanding and generally is combined with other techniques such as Gallie or Brooks in order to accomplish the long-term stability; C1 lateral mass screw combined with C2 pedicle screw technique also requires high operative skill to avoid some complications such as an injury of vertebral artery neural or occipital nerves.
     Introduced by Magerl and Seeman in 1979, the bilateral C1-2 transarticular (TA) screw fixation technique, in combination with posterior wiring between C1 and C2, produced a three-point fixation resulting in a higher fusion rate relative to wiring and screws alone. Presently, this technique is considered by many spine surgeons to be the golden standard for posterior fusions of C1–C2. Some biomechanical researchers have suggested that there has been greater motion reduction with TA fixation, as compared to wiring-only techniques. The results from large clinical observations have shown lower pseudarthrosis rates in patients who are treated with the TA fixation technique. Anatomic or radiological studies of the atlantoaxial complex have shown that, in more than 20% of cases, safe placement of transarticular screws is almost impossible, mostly due to a high-riding transverse foramen. As a possible alternative, screws in the lateral mass screws of C1 and screws of the pedicle screws in C2 connected by rods have been described.
     Bilateral C1-2 transarticular screws and C1 laminar hooks fixation, as a modified fixation device for posterior C1-2 fusion, is introduced by NI, Bin et al. This device uses one pair of parallel placed fixation device, each device includes a laminar hook of C1, a C1-2 transarticular screw, rod and connectors; The laminar hook of C1 connects to the C1-2 transarticular screw with a rod and bone grafts between C1-2 spinous process producing a three-point fixation, among which the C1-2 transarticular screw is the most essential part that determine success or failure of the whole fixation. This bilateral C1-2 transarticular screws and C1 laminar hooks fixation has the advantage of the C1-C2 transarticular screw and Halifax laminar clamp, which allows well stability against motion in all motion direction including extension-flexion, lateral bending and rotation. In a pilot clinical practice, we managed 75 patiants who suffered form atlantoaxial instability; the result of short-term clinical follow-up shows no evidence of unstability or neurovascular injury and the complete fusion of bone graft. However, there is not a fundamental study related to the modified posterior C1-2 fusion technique, so author is going to research the biomechanics, anatomical, radiological character of this technique and evaluate its clinical application aiming at the below four points:
     1. To evaluate the biomechanical stability of the C1-2 transarticular screw combined with the laminar hook of C1 fixation relative to established fixation techniques;
     2. To investigate the safety of the modified technique at the aspect of radiology and anatomy and institute the radiological index to preoperatively judge the safety to implant this fixation;
     3. To prove the reliability to implanted the C1-2 transarticular screw by referring to the internal wall of C2 isthmic and investigate the risk factors related to implanting the C1-2 transarticular screw by analyzing the position of the C1-2 transarticular screw in the patient’s postoperative radiological materials including the X-ray, CT scan and reconstructed imaging of cervical spine;
     4. To evaluate the clinical outcome of the modified posterior fusion technique in the long-term follow-up;
     Materials and Methods
     1. Six human specimens (C0-C4) were loaded nondestructively with pure moments and the range of motion (ROM) at the level of C1-C2 was measured in the intact, destabilized and fixation condition. Six specimens were implanted with each of the following fixations, respectively: Gallie fixation(Gallie), C1-2 transarticular screw fixation combined with Gallie fixation(TA+Gallie), C1-2 transarticular screw fixation(TA), C1 laminar hook combined with C1-2 transarticular screw fixation plus bone grafts(TA+Hook), and C1 lateral mass screws combined with C2 isthmic screws fixation(C1+C2).
     2. The width (including superior and inferior surface) and height of C2 isthmus, the internal height of C2 lateral mass were measured on 35 human cadaveric C2 vertebrae and 105 human cervical CT scan and reconstructed images.
     3. From October 2004 to October 2008, 33 patients (male 30, female 3) suffering from atlantoaxial instability were managed with the bilateral C1-2 transarticular and C1 laminar hook fixation implanted by the method that chose the point that is the through isthmus of C2 pedicle sagittal line at the lower edge of the C2 lamina, approximately 2mm superior-outside the inner edge of the C2 inferior articular process as a screw entrance and determined the screw trajectory with referring to the internal wall of C2 isthmic. In postoperative 3 days, the position of C1-2 transarticular screw was analyzed in the C2 isthmic and C1 inferior articular surface on the patients’cervical X-ray and CT scan, reconstructed images. In the C2 isthmic, screw positions were checked and assigned to one of two categories:1) well positioned, if the screw passed through both C2 isthmic and lateral masses of C-2, crossed the joint in between C1 and C2, and protruded through the anterior cortex of C-1 by less than 5 mm; or 2) malpositioned, if the screw being too high or too low, too lateral, or too media in the C2 isthmic, it can protrude the cortex of C2 isthmic that cause the neurovascular injury. In the C1 inferior articular surface, screw positions were checked and assigned to one of five zones: zone A is that screw inside the facet joint, zone B1 is that screw is anterior to the B2 inferior articular surface, zone C1 is that screw is in the spinal canal, zone C2 is that screw is in the foramen of vertebral artery.
     4. There were total 31 cases with an atlantoaxial instability 29 males and 2 females, age ranging 6–72. All patients were operated on posterior atlantoaxial fusion using bilateral C1-2 transarticular screw and C1 laminar hook and followed up for 12–24 months. Each patient underwent a complete cervical radiograph series including lateral and flexion-extension X-ray, CT scan and reconstructed images to evaluate the atlantoaxial articular stability. The ASIA 2000 grades and scores were applied to assess the preoperative and postoperative neurologic status.
     Results
     1.TA+hook fixation compared to other fixation techniques has a minimal ROM, the difference is significant between TA+hook and Gallie ,C1+C2 in all motion directions, TA+hook and TA,TA+Gallie in extension-flexion direction. The C1+C2 compared to Gallie has much smaller ROM, the difference is significant, however it compared to TA have a significant difference in lateral bending and extension-flexion directions.
     2. In the anatomical measure. the width of C2 isthmic superior surface of 12.8% specimen were smaller than and equal to 4.5mm, 8.6% in the left, 14.1% in the right ( 1 specimen was smaller than and equal to 3.5mm); the internal height of C2 lateral mass of 9% specimens were smaller than 2.1mm, 2.9% in the left, 8.6% in the right; the height of C2 isthmic of 17.1% specimens were smaller than and equal to 4.5mm, 2.9% in the left, 17.2% in the right ( 4 specimen is smaller than and equal to 3.5mm); the width of C2 isthmic inferior surface of 17.2% specimen were smaller than and equal to 4.5mm, 2.9% in the left, 17.2% in the right ( 4 specimen were smaller than and equal to 3.5mm) In radiological measure, the widths of C2 left isthmic superior surface is significantly larger than that of the right and there have a significant difference between the right and the left; this widths of 16% female were smaller than and equal to 4.5mm (2 specimens were smaller than and equal to 3.5mm), 2% in the left and 14% in the right, there were no male specimen whose width is smaller than 4.5mm. the heights of C2 left isthmic is significantly larger than that of the left, and there have a significant difference between the right and the left, this heights of 40% female were smaller than and equal to 4.5mm (3 specimens were smaller than and equal to 3.5mm), 12% in the left and 40% in the right, there were no male specimen whose height is smaller than 4.5mm. The internal heights of C2 lateral mass of 9.5% specimens all of whom were male were smaller than 2.1mm, 12% in the left, 6% in the right. The widths of C2 isthmic inferior surface of 5.5% male specimens were smaller than and equal to 4.5mm (6 specimens is smaller than and equal to 3.5mm), this widths of 24% female specimens were smaller than and equal to 4.5mm, there were3.6% of male specimens whose widths were smaller than and equal to 4.5mm in the left, 3.6% in the right, there were 16% of female specimens whose widths were smaller than and equal to 4.5mm in the left, 20% in the right.
     3. Of the 66 screws, 6 screws were malpositioned, 2 screws of which were too high, 4 screws were too low, and no screw was too lateral or medial, 4 screws of which were in the zone A, 2 screws were in the zone B2; other 60 screws were well positioned, 58 of which were in the zone A, 2 screws in the B2, no screw in the zone B1 and C1. There was no cervical artery injury during surgery and follow-up interval, there was no atlantoaxial aritular instability during the follow-up interval, and high fusion rate of bone graft and good clinical improvements were achieved.
     4. The clinical outcomes including neurologic status, graft bone fusion rate and stability of Atlantoaxial joint were evaluated in follow-up term. Of these 31 patients, 2 sustained an incomplete injury whose ASIA grades were respectively C and D after postoperative 3 months; 29 patients were neurologically intact whose ASIA grades improve 1 or 2 degree (average 1.1 degree) after postoperative 3 months. All 26 patients had no instability on their follow-up plain radiographs and computerized tomography in follow-up interval. All patients’bone grafts were well fused after postoperatively 6 months.
     Conclusions
     1. The modified C1 laminar hook combined with C1-2 transarticular screws and bone graft fixation provided the best biomechanical stability. The C1 lateral mass screws in the atlas combined with isthmic screws in axis fixation is a sound alternative, when the C1-2 transarticular screw fixation is not feasible.
     2. 19.4% Chinese are unsuitable for posterior C1-2 transarticular screw,and the rate of female was significantly greater than that of male, the rate of the right was significantly greater than that of the left. It is important that a preoperative radiological evaluation be made to determine the safety to implant the C1-2 transarticular screw by cervical x-ray and CT reconstructed images.
     3. The method that chose the point that is the through isthmus of C2 pedicle sagittal line at the lower edge of the C2 lamina, approximately 2mm superior-outside the inner edge of the C2 inferior articular process as a screw entrance and determined the screw trajectory with referring to the internal wall of C2 isthmic is reliable. The risk factors related to implant C1-2 transaricular screw included (1) incomplete of atlas lateral mass (2) unreduced atlantoaxial articulation (3) absence of odontoid process (4) rheumatoid arthritis (5) female or children (6) poor surgery skill.
     4. On the condition to seriously determine its operative indication and carefully evaluate the safety of using transarticular screw in patients’cervical imaging, the bilateral C1-2 tansarticular screw combined with C1 laminar hook fixationwas reliable to reconstruct the stability of atlantoaxial articulation.
引文
1.倪斌,陈华江,郭翔,等.双侧寰椎椎板挂钩及经寰枢椎关节间隙螺钉固定术.中华外科杂志,2005,20: 1358-1359.
    2. Pelker RR, Duranceau JS, Panjabi MM. Cervical spine stabilization. A three- dimensional, biomechanical evaluation of rotational stability, strength, and failure mechanisms. Spine, 1991 Feb,16(2):117-22.
    3. White AA, Panjabi MM. Clinical Biomechanics of the Spine. Philadelphia: Lippencott,1990, 213-243.
    4. Melcher,-R-P ;Puttlitz,-C-M ;Kleinstueck,-F-S ;Lotz,-J-C ;Harms,-J ;Bradford,-D-S.Biomechanical testing of posterior atlantoaxial fixation techniques. Spine, 2002 Nov 15, 27(22): 2435-40.
    5. Richter,-M ; Schmidt,-R ; Claes,-L ; Puhl,-W ; Wilke,-H-J. Posterior fixation: biomechanical in vitro comparison of six different techniques. Spine, 2002 Aug 15, 27(16): 1724-32.
    6. Magerl F, Seemann PS. Stable posterior fusion of the atlas and axis by transarticular screw fixation. In: Kehr P, Weidner A, eds. Cervical Spine, New York: Springer- Verlag, 1986:322–7.
    7.党耕町译. AO ASIF脊柱内固定.第一版.北京:人民卫生出版社,2000:36-61.
    8.闫明,王超,党耕町,等.经寰椎侧块和枢椎峡部内固定的解剖学基础.中国脊柱脊髓杂志,2003,13: 25-27.
    9.朱青安.脊柱三维运动试验机的研制。颈椎纵向撞击性损伤机制及颈椎三维运动稳定性和动力学响应特性影响的实验研究:博士研究生论文.中国广州:第一军医大学,1995.
    10. Panjabi MM, White AA, Brand RA, et al. A note on defining body parts configurations. J Biomech, 1974,7:385-9.
    11. Oda T, Panjabi MM, Crisco T, et al. Three-dimensional translational movements of the upper cervical spine. J Spinal Disord., 1991,4:414-24.
    12. Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine, 1989,14:1256-60.
    13.王东泉.利用体视图像确定物体的三维坐标.上海交通大学学报,1992,18:4-6.
    14. Panjabi M, Dvorak J, Duranceau J, Yamamoto I, Gerber M, Rauschning W, Bueff HU. Three-dimensional movements of the upper cervical spine. Spine, 1988 , 13(7):726-30.
    15.卢一生,贾连顺.寰枢关节的三维运动规律及其测量.中华创伤杂志, 1995, 11(1):1-3.
    16.袁文,贾连顺,李家顺,等.寰椎横韧带断裂对寰枢关节三维运动的影响.中国临床解剖学杂志,1996,14(1):61-63.
    17. Panjabi MM. Cervical spine models for biomechanical research. Spine, 1998, 23(24):2684—2700.
    18. Crawford NR, Hurlbert RJ, Choi WG,etal. Differential biomechanical effects of injury and wiring at C1-C2. Spine, 1999, 24:1894-902.
    19. Herring JA,Wenger DR. Segmental spinal instrumentation: A Preliminary report of 40 consecutive cases. Spine, 1982,7:285-298.
    20. Naderi S,Crawford NR,Song GS,et al.Biomechanical comparison of C1-C2 Posterior fixations:Cable,graft,and screw combination. Spine, 1998, 23:1946-1955, discussion 1955-6.
    21. About Madawi A, Solanki G,Casey AT,et al. Variation of the groove in the axis vertebra for the vertebral artery: Implications for instrumentation. J Bone Joint Surg Br, 1997, 79:820-823.
    22. Hanson PB, Montesano PX, Sharkey NA, et al. Anatomic and biomechanical assessment of transarticular screw fixation for atlantoaxial instability. Spine, 1991, 16:1141–5.
    23. Fang HSY, Ong GB. Direct anterior approach to the upper cervical spine. J Bone Joint Surg Am, 1962, 44:1588–604.
    24. Farey ID, Nadkarni S, Smith N. Modified Gallie technique versus transarticular screw fixation in C1–C2 fusion. Clin Orthop, 1999, 359:126–35.
    25. Fidler MW, Valentine NW, Rahmatalla AT. Posterior atlantoaxial fusion: A new internal fixation device. Spine, 1994, 19:1397–401.
    26. Fielding JW, Hawkins RJ, Ratzan SA. Spine fusion for atlantoaxial instability. J Bone Joint Surg Am, 1976, 58:400–7.
    27. Fraser AB, Sen C, Casden AM, et al. Cervical transdural intramedullary migration of a sublaminar wire: A complication of cervical fixation. Spine, 1994, 19:456–9.
    28. Brooks AL, Jenkins EB. Atlantoaxial arthrodesis by the wedge compression method. J Bone Joint Surg Am, 1978, 60:279–84.
    29. Dickman CA, Sonntag VK, Papadopoulos SM, et al. The interspinous method of posterior atlantoaxial arthrodesis. J Neurosurg, 1991, 74:190–8.
    30. Fidler MW, Valentine NW, Rahmatalla AT. Posterior atlantoaxial fusion: A new internal fixation device. Spine, 1994, 19:1397–401.
    31. Fielding JW, Hawkins RJ, Ratzan SA. Spine fusion for atlantoaxial instability. J Bone Joint Surg Am, 1976, 58:400–7.
    32. McGraw RW, Rusch RM. Atlantoaxial arthrodesis. J Bone Joint Surg Br, 1973, 55:482–9.
    33. Mimatsu K, Katoh F, Kawakami N, et al. Atlantoaxial fusion with posterior double wire fixation. Spine, 1992, 17:1409–13.
    34. Henriques T, Cunningham BW, Olerud C, et al. Biomechanical comparison of five differentatlantoaxial posterior fixation techniques. Spine, 2000, 25:2877–83.
    35. Holness RO, Huestis WS, Howes WJ, et al. Posterior stabilization with an interlaminar clamp in cervical injuries: Technical note and review of the long-term experience with the method. Neurosurgery, 1984, 14:318–22.
    36. Mitsui H. A new operation for atlantoaxial arthrodesis. J Bone Joint Surg Br, 1984, 66:422–5.
    37. Tokuda K, Miyasaka K, Abe H, et al: Anomalous atlantoaxial portions of vertebral and posterior inferior cerebellar arteries. Neuroradiology, 1985, 27:410–413.
    38. Madawi AA, Casey AT, Solanki GA, et al: Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique. J Neurosurg, 1997, 86:961–968.
    39. Stanescu S, Ebraheim NA, Yeasting R, et al. Morphometric evaluation of the cervico-thoracic junction. Practical considerations for posterior fixation of the spine. Spine, 1994,19:2082-8.
    40. Xu RM, Ebraheim NA, Yeasting R, et al. Anatomy of C7 lateral mass and projection of pedicle axis on its posterior aspect. J Spinal Disord, 1995,8(2):116-20.
    41.曹正霖,钟世镇,徐达传.寰枢椎的解剖学测量及临床意义.中国临床解剖学杂志, 2000, 18(4): 299-301.
    42.沙勇,张绍祥,刘正津,等.后路经寰枢关节螺钉内固定的枢椎解剖学测量.中国临床解剖学杂志, 2002, 20(3): 172-175.
    43.瞿东滨,金大地,朱志红,等.国人寰枢椎经关节螺钉固定术的解剖学研究.中国矫形外科杂志, 2000, 7(11): 1117-1119.
    44.孔庆毅,李家顺,贾连顺,等.寰枢椎经关节螺钉固定的临床解剖学测量.中国矫形外科杂志, 2002, 11(10): 1328-1330.
    45.陈庄洪,余伦红,黄继锋,等.寰枢椎后路经关节螺钉固定新定位标志透视参数的解剖学研究.中国临床解剖学杂志, 2005, 23(5): 463-466.
    46.陈庄洪,蔡贤华,黄继锋,等.寰枢椎后方经关节螺钉内固定的应用解剖与临床研究.中华实验外科杂志, 2005, 22(2): 159-160.
    47.朱海波,贾连顺,孙启全,等.寰椎测量及临床意义.解剖学杂志, 1997, 20 (6) :517-520.
    48.李启华,刘仰斌,盛瑤环,等.寰椎的应用解剖学研究.赣南医学院学报, 2003, 23(4): 363-367.
    49. Mandel IM,Kambach BJ,Petersilge CA, et al. Morphologic Considerations of C2 Isthmus Dimensions for the Placement of Transarticular Screws. Spine, 2000, 25(12):1542-7.
    50. Gebhard JS, Schimmer RC, Jeannerel B. Safty and accuracy of transarticular screw fixation C1-C2 using an aiming device: an anatomic study. Spine, 1998, 23: 2185-2189.
    51. Wright NW, Lauryssen C. Vertebral artery injury in C1-2 transarticular screw fixation: results of survey of the AANS/CNS section on disorders of the spine and peripheral nerves. J Neurosurg, 1998, 88(4): 634-640.
    52. Madawi A, Solanki G, Casey AT, et al. Variation of the groove in the axis vertebra for the vertebral artery: Implications for instrumentation. J Bone Joint Surg Br, 1997, 79: 820-823.
    53. Igarashi T ,Kikuchi S ,Sato K , et a1.Anatomic study of the axis for surgical planning of transarticular screw fixation. Clinical Orthoppaedics and related research, 2003,(408):162-6.
    54. Madawi AA, Casey AT, Solanki GA, et al: Radiological and anatomical evaluation of the atlantoaxial transarticular screw fixation technique. J Neurosurg, 1997, 86:961–968.
    55. Goel A, Gupta S. Vertebral artery injury with transarticular screws. J Neurosurg, 1999, 90:376–7.
    56. Jun BY. Anatomic study for ideal and safe posterior C1–C2 transarticular screw fixation. Spine, 1998, 23:1703–7.
    57.任中武,倪斌,陶春生,等.寰椎椎后路经关节螺钉固定术。中华创伤骨科杂志, 2007,9(3):229-232.
    58. Farey ID, Nadkarni S, Smith N. Modified Gallie technique versus transarticular screw fixation in C1–C2 fusion. Clin Orthop, 1999, 359:126–35.
    59. Brockmeyer DL, York JE, Apfelbaum RI. Anatomical suitability of C1–C2 transarticular screw placement in pediatric patients. J Neurosurg, 2000, 92(Suppl 1):7–11.
    60. Paramore CG, Dickman CA, Sonntag VK. The anatomical suitability of the C1–C2 complex for transarticular screw fixation. J Neurosurg, 1996, 85:221–4.
    61. Grob D, Crisco JJ III, Panjabi MM, et al: Biomechanical evaluation of four different posterior atlantoaxial fixation techniques. Spine,1992,17:480–490.
    62. Knoringer P: Osteosynthesis of injuries and rheumatic or congenital instabilities of the upper cervical spine using doublethreaded screws. Neurosurg Rev, 1992, 15:275–283.
    63. Montesano PX, Juach EC, Anderson PA, et al: Biomechanics of cervical spine internal fixation. Spine, 1991, 16:S10–S16.
    64. Wilke HJ, Fischer K, Kugler A, et al: In vitro investigations of internal fixation systems of the upper cervical spine. II. Stability of posterior atlanto-axial fixation techniques. Eur Spine, 1992, 1:191–199.
    65. Gebhard JS, Schimmer RC, Jeannerel B. Safty and accuracy of transarticular screw fixation C1-C2using an aiming device: an anatomic study. Spine, 1998, 23: 2185-2189.
    66. Magerl F,seeman PS.Stable posterior fusion of the atlas and axis by transarticular screw fixatior[M].In:KehrP,WeidnerA,eds.Cervical Spine. Chap 4th ed. New York: Springer Verlag, 1985. 322 -327.
    67. Paramore CG,Dickman CA,Sonntag VKH.The anatomical suitabilityof the C1-2 complex for transarticular screw fixatior. J Neurosurg,1996,85:221- 224.
    68. Mareotte P,Dickman CA,So nntag VKH, et a1. Posterior at1antoaxial facet screw fixation. Neurosurg, 1993, 79: 234-237
    69. Grob D, Dvorak J, Panjabi M, et al: Posterior occipitocervical fusion. A preliminary report of a new technique. Spine, 1991, 16: S17–S24.
    70. Frankel HL, Hancock DO, Hyslop G, et al. The value of postural reduction in the initial management of closed injuries of the spine with paraplegia and tetraplegia. Paraplegia, 1969, 7:179 -192.
    71. Tozato F, Tobimat su Y, Wang CW, et al. Reliabilty and validity of the craig handicap assessment and reporting technique for Japanese individuals with spinal cord injury. Tohoku J Exp Med, 2005, 205 (4):357 -366.
    72. Priebe MM, Waring WP. The interobserver reliability of t he revised American Spinal Injury Association standards for neurological classification of spinal injury patient s. Am J Phys Med Rehabil, 1991, 70:268 -270.
    73. Davis LA, Warren SA, Reid DC, et al. Incomplete neural deficits in thoracolumbar and lumbar spine fractures:Reliability of Frankeland Sunnybrook scales. Spine.1993, 18:257 -263.
    74. Jonsson M, Tollback A, Gonzalez H, et al. Inter-rater reliability of t he 1992 international standards for neurological and functional classification of incomplete spinal cord injury. Spinal Cord, 2000, 38:675 -679.
    75. American Spinal Injury Association/ International Medical Society of Paraplegia. International Standards for Neurological and Functional Classification of Spinal Cord Injury, Revised 2000. Atlanta: American Spinal Injury Association, 2000.
    76. Richter M, Schmidt R, Claes L, et al. Posterior atlantoaxial fixation: biomechanical in vitro comparison of six different techniques. Spine, 2002. 27(16): 1724-32.
    77. Panjabi MM, Cholewicki J, Nibu K,et al. Biomechanics of whiplash injury. Orthopade, 1998, 27(12):813-819.
    78. Dickman CA, Crawford NR,et al. Morphology and kinematics of the baboon upper cervical spine.A model of the atlantoaxial complex. Spine, 1994, 19:2518-23.
    79. Takahashi T, Tominaga T. et al. Biomechanical evaluation of hydroxyapatite intervertebral graft and anterior cervical plating in a porcine cadaveric model. Biomed Mater Eng, 1997, 7:121-7.
    80. Keith H, Bridwell,胡有谷等译。脊柱外科学.第2版,北京:人民卫生出版社,2000,124-125.
    81. Jerome M, Cotler J, Michael S, et al. Surgery of Spinaltrauma, Philadelphia: Lippincott Williams &Wilkins, 2000, 345-349.
    [82] Aebi M, Albert TJ, Howard S An, et al. Spinal Instruments. 2th Ed., Philadelphia: Lippincott Willinams & wilkins.2000.158-162.
    [83] Griffith SL, Zogbi SW, et al. Biomechanical comparison of anterior instrumentation for the cervical Spine, J Spinal Disord 1995,8:429-38.
    [84] Svensson MY, Bostrom O, Davidsson J, et al. Neck injuries in car collisions-a review covering a possible injury mechanism and the development of a new rear-impact dummy. Accid Anal Prev, 2000, 32(2): 167-175.
    [85] Crisco JJ, Panjabi MM, Wang E, Price MA, Pelker RR. The injured canine cervical spine after six months of healing, An in vitro three-dimensional study. Spine, 1990, 15:1047-1052.
    [86] Yoganandan N, Kumaresan S, Voo L, et al. Finite element modeling of the C4-C6 cervical spine unit. Med Eng Phys, 1996, 18(7):569-574.
    [87] Karin B, Peter H. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics. Spine, 2004, 29(4):376-385.
    [88] Natarajan RN, Ke JH, Andersson GBJ. A model to study the disc degeneration process. Spine, 1994, 19(3):259-265.
    [89] Dai LY, Xu YK, Zhang WM,et al. A mechanical model of human lumbar motion segment. Acta Anat Sin,1999,20:337.
    [90]付裕,阮狄克.颈椎生物力学中的三维有限元分析.中国脊柱脊髓杂志,2004,14(10):632-634.
    [91] Yang KH, Zhu F, Luan F et al. Development of a finite element model of the human neck. Proceeding of the 42nd Stapp Car Crash Conference, SAE983157, 1998, 1-11.
    [92] Jost R, Nurick GN. Development of a finite element model of the human neck subjected to high g-level deceleration. Int J Crashworthiness 2000, 5:259-67.
    [93] Vilson AJ,Marshall RW,Ewarl M.Transoral fusion with internal fixation in a displaced Hangmans fracture.Spine,1999,24:295-298.
    [94] Coyne TJ, Fehlings MG, Wallace MC, Bernstein M, Tator CH: C1–C2 posterior cervical fusion: Long-term evaluation of results and efficacy. Neurosurgery, 1995,37:688–693.
    [95] McDonnell DE, Harrison SJ: Posterior atlantoaxial fusion: Indications and techniques, in Hitchon P,Traynelis V, Rengachary SS (eds): Techniques in Spinal Fusion and Stabilization. New York, Thieme, 1995, pp 92–106.
    [96]倪斌,贾连顺,谭军等.椎板夹加压内固定在寰枢椎融合术中的应用.骨与关节损伤杂志,2000,15:3-5。
    [97] Moskovich R, Crocckard HA. Atlantoaxial arthrodesis using interlaminar clamp: an improved technique. Spine, 1992. 17:261-267
    [98] Magerl F,Seeman PS.Stable posterior fusion of the atlas and axis by transarticular screw fixation.In:Kehr P,Weidner ed.Cervical Spine.New York:Springer Verlag,1985.322-327.
    [99] Mitchell TC, Sadasivan KK, Ogden AI.et a1. Biomechanical study of atlantoaxial arthrodesis:Transarticular screw fixation versus modifled posterior wiring. J OrthopTrauma, 1999,13:483-489.
    [100] Jeanneret B, Magerl F: Primary posterior fusion C1/2 in odontoid fractures:Indications, technique, and results of transarticular screw fixation. J SpinalDisord , 1992,5:464–475.
    [101] Stokes JK, Villavicencio AT, Liu PC, et al. Posterior atlantoaxial stabilization: New alternative to C1–2 transarticular screws. NeurosurgFocus, 2002, 12:1–5.
    [102]阮永平,徐荣民,胡雷杰,等. Apofix夹结合C1-C2关节突螺钉治疗创伤性寰枢椎不稳.中国骨与关节损伤杂志, 2005,3(20):154-156.
    [103] Goel A, Desai KI, Muzumdar DP: Atlantoaxial fixation using plate and screwmethod: A report of 160 treated patients. Neurosurgery, 2002, 51:1351–1357.
    [104] Goel A, Laheri V: Plate and screw fixation for atlantoaxial subluxation. Acta Neurochir (Wien) , 1994,129:47–53.
    [105] Harms J, Melcher RP: Posterior C1-C2 fusion with polyaxial screw and rod fixation. Spine , 2001,26:2467–2471.
    [106] Resnick DK, Benzel EC: C1-C2 pedicle screw fixation with rigid cantilever beam construct: case report and technical note. Neurosurgery,2002, 50:426-428.
    [107] Wright NM: Posterior C2 fixation using bilateral, crossing C2 laminarscrews: Case series and technical note. J Spinal Disord Tech 2004, 17:158-162.
    [108] Wright NM: Translaminar rigid screw fixation of the axis. Technical note.J Neurosurg Spine, 2005, 3:409-414.
    [109] Leonard JR, Wright NM: Pediatric atlantoaxial fixation with bilateral, crossing C-2 translaminar screws. Technical note. J Neurosurg 2006,104:59–63.
    [110] Gorek J, Acaroglu E, Berven S, Yousef A, Puttlitz CM: Constructs incorporating intralaminar C2 screws provide rigid stability for atlantoaxial fixation. Spine, 2005, 30:1513–1518.
    [111] Lapsiwala SB, Anderson PA, Oza A, Resnick DK: Biomechanical comparison of four C1 to C2 rigid fixative techniques: Anterior transarticular, posterior transarticular, C1 to C2 pedicle, and C1 to C2 intralaminar screws. Neurosurgery, 2006,58:516–521.
    [112]马向阳,尹庆水,吴增晖,等.枢椎椎板螺钉固定的解剖可行性研究.中国脊柱脊髓杂志, 2006, 16(1):48-51.
    [113]倪斌,陶春生,郭翔,等.双侧寰椎椎板钩及枢椎椎弓根内固定在寰枢椎融合术中的初步应用.脊柱外科杂志,2006,6:2-3
    [114] Steinmann JC, Herkowitz HN, El-Kommos H, et al. Spinal pedicle fixation: Confirmation of an image-based technique for screw placement. Spine, 1993, 18: 1856-1861.
    [115] Arand M, Hartwing E, .Kinzl L, et al. Spinal navigation in cervical fractures-A preliminary clinical study on Judet-osteosynthesis of axis. Comput Aided Surg, 2001, 6: 170-175.
    [116] Laine T, Schlenzka D, Makitalo K, et al. Improved accuracy of pedicle screw insertion with computer-assisted surgery. A prospective clinical trial of 30 patients. Spine, 1997, 22: 1254-1258.
    [117] Merloz P, Tonetti J, Pitter L, et al. Computer-assisted spine surgery. Comput Aided Surg, 1998, 3: 297-305.
    [118] Schlenzka D, Lavine T, Lund T. Computer-assisted spine surgery. Eur Spine J, 2000, 9: S57-64.
    [119] Alvarez L, Perez-Higueras A, de Miguel, et al. Predictors of outcomes of percutaneous vertebraplasty for osteoporotic vertebral fractures. Spine, 2005, 30: 87-92.
    [120] Alvarez L, Perez-Higueras A, Quinones D, et al. Factors affecting a positive clinical response to percutaneous vertebroplasty. Eur Spine J, 2003, 12: 59.
    [121] Grutzner P, Hebecker A, Waelti H, et al. Clinical study for registeration-free 3D-navigation with the SIREMOBILE Iso-C3D mobile C-arm. Electromedica, 2003, 71: 7-16.
    [122] Jacob A, Messmer P, Kaim A, et al. A whole-body registration-free navigation system for image-guided surgery and interventonal radiology. Invest Radiol, 2000, 35: 279-288.
    [123] Van de Kraats EB, van Walsum T, Kendrick L, et al. Accurracy evaluation of direct navigation with an isocentric 3D rotational X-ray system. Med Image Anal, 2006, 10: 113-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700