硬膜外脊髓电刺激对大鼠下肢步行中枢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分硬膜外脊髓电刺激诱发正常大鼠脊髓反射的特点
     实验一硬膜外脊髓电刺激电压变化对正常大鼠脊髓反射的影响
     目的研究正常大鼠麻醉状态下S1脊髓节段不同电压硬膜外脊髓电刺激所诱发的脊髓反射,探讨硬膜外脊髓电刺激电压变化对正常大鼠脊髓反射的影响。方法选取成年雌性Sprague-Dawley大鼠10只,麻醉后手术将电极植入S1脊髓节段。分别予400mV、600mV、1200mV硬膜外脊髓电刺激,以同心圆针电极记录大鼠下肢半腱肌肌腹的肌电信号,观察所诱导脊髓反射的特点。结果能引起大鼠下肢肌肉反应的阈值为300mV。三种电压强度的硬膜外脊髓电刺激能诱导出两种潜伏期成分的脊髓反射,较低的400mV、600mV电压强度可诱发出长潜伏期成分,潜伏期分别为5.27±0.36 ms和5.19±0.67ms;较高的1200mV电压强度可诱发出短潜伏期成分,潜伏期为2.57±0.23ms。结论不同电压的硬膜外脊髓电刺激可诱导出不同来源的脊髓反射。长潜伏期成分可能是兴奋脊髓背根传入神经后引起的单突触反射;短潜伏期成分可能是直接兴奋脊髓内的运动神经元或运动纤维后向下传导引起的肌肉兴奋电反应。
     实验二硬膜外脊髓电刺激频率变化对正常大鼠脊髓反射的影响
     目的研究正常大鼠麻醉状态下S1脊髓节段不同频率硬膜外脊髓电刺激所诱发的脊髓反射,探讨硬膜外脊髓电刺激频率变化对正常大鼠脊髓反射的影响。方法选取成年雌性Sprague-Dawley大鼠10只,麻醉后手术将电极植入S1脊髓节段。予波宽200μs、电压强度1200mV,频率分别为50Hz、60Hz、80Hz、100Hz硬膜外脊髓电刺激,以同心圆针电极记录大鼠下肢半腱肌肌腹的肌电信号,观察所诱导脊髓反射的特点。结果以50Hz、60Hz、80Hz、100Hz的ESCS刺激大鼠S1脊髓时,可诱发出脊髓反射。4种高频刺激后期均出现了脊髓反射脱落后不规律出现,部分大鼠出现了高频刺激后期脊髓反射完全消失。50Hz频率的ESCS所诱发脊髓反射的潜伏期和波宽分别为4.46±1.07ms和7.33±1.00ms,与另外三组相比有统计学差异。结论四种高频ESCS所诱发的不规律出现的脊髓反射,可能是一种单突触反射。高频刺激时脊髓反射的不规律出现可能与高频刺激的抑制作用有关。
     实验三硬膜外脊髓电刺激应用于正常大鼠不同脊髓节段所诱发脊髓反射的特点
     目的观察ESCS分别刺激正常大鼠L2及S1脊髓节段时所诱发的脊髓反射,探讨硬膜外脊髓电刺激应用于正常大鼠不同脊髓节段所诱发脊髓反射的特点。方法以同心圆针电极记录大鼠下肢胫前肌的EMG信号。将不同电压强度(400mV,600mV,1200mV)所诱发脊髓反射的潜伏期与经颅磁刺激得到的运动诱发电位的潜伏期相比较。将高频ESCS(50Hz、60Hz、80Hz、100Hz)分别应用于大鼠L2及S1脊髓节段,观察高频ESCS对脊髓反射的作用。结果L2脊髓节段电刺激的电压强度的改变并未对其诱发的脊髓反射有明显作用,并且L2脊髓节段电刺激所诱发脊髓反射的潜伏期与运动诱发电位的潜伏期无统计学差异。但不同电压强度的S1脊髓节段电刺激所诱发脊髓反射则显示出了不同的潜伏期。结论S1节段较低电压的电刺激时能诱发出一个较长潜伏期的脊髓反射,这个脊髓反射可能是电刺激兴奋了脊髓背根所致;较高电压的电刺激时能诱发出一个较短潜伏期的脊髓反射,这个脊髓反射可能是电刺激直接兴奋了脊髓的运动神经元或是运动神经纤维所致。L2节段较高电压刺激时,并未观察到类似现象,提示这可能与两个节段的结构不同有关。研究中我们记录到脊髓反射的波宽较小,这可能是与我们使用的同心圆记录电极的记录面积更局限有关;提示我们,研究中采用不同的记录电极,脊髓反射的波形可能会有不同。我们应用高频硬膜外电刺激时并未诱发下肢节律性的运动,这可能是因为我们难以给予实验中的麻醉大鼠一定的下肢感觉反馈所致;这提示我们记录清醒大鼠的EMG信号是十分必要的。
     第二部分硬膜外脊髓电刺激结合跑台训练对脊髓损伤大鼠大脑运动皮质及脊髓灰质前角超微结构的影响
     目的ESCS联合跑台训练已被证明可以促进脊髓损伤患者及脊髓损伤大鼠步行功能的恢复。我们拟研究硬膜外脊髓电刺激结合跑台训练对脊髓损伤大鼠大脑运动皮质,以及刺激部位脊髓灰质前角超微结构的影响。探讨ESCS联合跑台训练促进脊髓损伤患者及脊髓损伤大鼠步行功能的机制。方法:12只成年雌性大鼠随机分为4组:(1)脊髓损伤组(spinal cord injury group,SI),(2)脊髓损伤+ESCS组(spinal cordinjury plus ESCS group,SE SE),(3)脊髓损伤+跑台训练组(treadmill training group,TT),(4)脊髓损伤+跑台训练+ESCS组(treadmill training plus ESCS group,TE)。所有大鼠先接受不完全脊髓损伤手术造模。造模手术后4周,SE组和TE组大鼠再接受电极植入手术。电极覆盖范围为L2~S1。电极植入术后4周,SE组大鼠要接受运动阈下的ESCS刺激,第天30分钟。TT组大鼠接受5cm/s的跑台训练,每天30分钟。TE组大鼠则每天同时接受ESCS和跑台训练,训练参数同SE组和TT组。SI组大鼠则不接受ESCS或是跑台训练,作为对照组。以上4组的干预都进行4周。4周后按电镜标本制作方法取大鼠大脑下肢运动皮质及脊髓前角灰质,以观察其超微结构变化。结果:经过4周的干预后,TT组和TE组大鼠的空地神经行为学评分都增加到了18左右,但两组间无统计学差异。而SI组和SE组则未见明显的增加。TT、TE组的大脑运动皮质血管直径都显著地较SI组和SE组增大。但TT、TE组间的血管直径无统计学差异,SI、SE组间的血管直径无统计学差异。无论是否接受ESCS或是跑台干预、大脑运动皮质突触和神经元的形态都无明显改变;刺激部位脊髓灰质前角的突触和神经元形态无明显改变。结论:ESCS应用时,脊髓腰膨大特定部位的局限电刺激可能对其作用有重要意义。实验中我们观察到的大脑运动皮质血管直径的增大可能是由于相关蛋白表达的改变引起的血管增生,从而增加了运动皮质的血管储备。脊髓灰质前角内突触及神经元形态并未观察到有显著改变,可能是由于我们的取材部位为损伤节段以下。ESCS联合跑台训练促进下肢功能恢复可能与刺激部位脊髓及大脑运动皮质神经通路的改变无明显联系,但仍需进一步研究。
PARTⅠSpinal cord reflexes induced by epidurat spinal cord stimulationin normal adult rats
     EXP.ⅠEffects of epidural spinal cord stimulation voltage alteration on spinal cordreflexes in normal adult rats
     Objective Effects of epidural spinal cord stimulation voltage alterationon spinal cord reflexes in normal adult rats were investigated, expecting to find out whereand how the spinal cord reflexes were generated. Methods Ten adult femaleSprague-Dawley rats were anaesthetized, following with electrode placed at S1 spinal cordsegment. 400mV, 600mV, 1200mV epidural spinal cord stimulation were appliedrespectively, while EMG signal was recorded with concentric needle electrodes atsemitendinosus of the rats, to observe the characteristics of spinal cord reflexes. ResultsThe threshold for generating a hind limb muscle respond is 300mV. Three kinds ofepidural spinal cord stimulation could induce 2 kinds of spinal cord reflexes. Lowerstimulation voltages, including 400mV, 600mV, had induced the short latency spinal cordreflexes, which were 5.27±0.36 ms and 5.19±0.67ms respectively. The higher 1200mV stimulation voltage had induced the long latency spinal cord reflexes, which were 2.57±0.23ms. Conclusion Different voltages of epidural spinal cord stimulation could inducedifferent spinal cord reflexes generated differently. The long latency reflexes might bemonosynaptic responses mediated by dorsal root excitement, while the short latencyreflexes might be sarcous electric activity mediated by direct excitement of motor neuron ormotor fiber.
     EXP.ⅡEffects of epidural spinal cord stimulation frequency alteration on spinalcord reflexes in normal adult rats
     Objective Effects of epidural spinal cord stimulation frequencyalteration on spinal cord reflexes in normal adult rats were investigated, expecting to findout where and how the spinal cord reflexes were generated. Methods Ten adult femaleSprague-Dawley rats were anaesthetized, following with electrode placed at S1 spinal cordsegment. 50Hz, 60Hz, 80Hz, 100Hz epidural spinal cord stimulations were appliedrespectively, while EMG signal was recorded with concentric needle electrodes atsemitendinosus of the rats, to observe the characteristic of spinal cord reflexes. ResultsSpinal cord reflexes could be generated by 50Hz, 60Hz, 80Hz, 100Hz epidural spinalcord stimulations, while the late stage of high frequency stimulations could induce spinalcord reflexes lost, and appeared irregularly. Some of the rats appeared with spinal cordvanishing totally at the late stage of the stimulations. Latency and duration of spinal cordreflexes induced by 50Hz epidural spinal cord stimulations, which were 4.46±1.07ms and7.33±1.00ms respectively, statistically differed from the ones initiated by 60Hz, 80Hz,100HzESCS. Conclusion Spinal cord reflexes induced by high frequency epiduralspinal cord stimulation might be some kind of monosynaptic responses. Irregularly appearances of spinal cord reflexes induced by high frequency stimulation might due to theinhibitory effect of the high frequency stimulation.
     EXP.ⅢEpidural stimulation on different spinal segments induced spinal cordreflexes recorded using a concentric needle electrode in normal adult rats
     Objective Spinal cord reflexes induced by epidural spinal cordstimulation of L2/S1 spinal cord segments in normal adult rats were recorded, expecting tofind out how the spinal cord reflexes were generated. Methods EMG signals weredetected using a concentric needle electrode inserted into the tibia muscle. Reflexlatencies induced by different stimulation voltages (400 mV, 600 mV, 1200 mV) werecompared with magnetic transcranial stimulation-induced motion evoked potentials. Theeffects upon the spinal cord reflex under epidural spinal cord stimulation with variousfrequencies (50 Hz, 60 Hz, 80 Hz, and 100 Hz) were also investigated. ResultsElectrical stimulation of L2 segment with different voltages did not induce statisticallysignificant changes in the latency of spinal cord reflexes. However, different voltageelectrical stimulation of S1 segment induced different reflexes. Conclusion Low voltageelectrical stimulation of S1 segment induced reflexes with longer latencies, which may bedue to excitation of dorsal root neurons. High voltage electrical stimulation of S1segments induced short latency reflexes, which may be due to direct excitation of motorneurons or nerve fibers. We recorded wave shapes that were different to those describedin previous studies, which may be related to the more localized recording area of theconcentric needle electrode used in this study. This highlights the need for furtherresearch using different recording electrodes. We were unable to induce rhythmichindlimb movement with high frequency electrical stimulation, possibly due to suppressedsensory feedback in anesthetized rats. Therefore, further studies that record EMG signals in waking rats are necessary.
     PARTⅡEffects of epidural spinal cord stimulation combined withtreadmill training on stimulated spinal cord and cerebral motor cortexultrastructure after moderate spinal cord injury in rats
     Objective Epidural spinal cord stimulation (ESCS) combined withtreadmill training has been proven to help spinal cord injury patients and rats regainwalking ability. We plan to investigate how this procedure affects the ultrastructure of thestimulated spinal cord and cerebral motor cortex after moderate spinal cord injury in rats.Methods Twelve adult female Sprague-Dawley rats were randomly distributed intofour groups: (1) spinal cord injury group (SI), (2) spinal cord injury plus ESCS group (SE),(3) spinal cord injury plus treadmill training group (TT), and (4) spinal cord injury plustreadmill training and ESCS group (TE). All rats received a moderate spinal cord injurysurgery. Four weeks after the surgery, SE and TE rats received an electrode implantationprocedure, with the electrode field covering spinal cord segments L2~S1. Four weeks afterelectrode implantation, the SE rats received subthreshold ESCS for 30 minutes per day. TTrats received 5cm/s treadmill training for 30 minutes per day. TE rats received ESCS whilecarrying out treadmill training, with parameters equal to those of the SE and TT rats. SI ratsreceived no intervention, thus functioning as a control group. All procedures in these fourgroups lasted four weeks. After four weeks intervention, tissues of stimulated spinal cordand cerebral motor cortex were cut off following standard protocols for electronmicroscopy. Results After four weeks of intervention, TT and TE animals improvedtheir open field locomotion score to 18 (there were no significant differences between thetwo groups). In contrast, no significant improvement was observed in groups SI and SE. The diameters of cortical blood vessels were significantly larger in the TT and TE groupswhen compared to the SI and SE groups. There were no significant differences between theTT and TE groups or between the SI and SE groups. Synapses and neurons of thestimulated spinal cord and cerebral motor cortex were similar regardless of whether ratsunderwent ESCS combined with treadmill training or not. Conclusion Localizedstimulation on the lumbar enlargement may play an important role in ESCS's effectiveness.Treadmill trained rats showed widened motor cortex blood vessels, which could be due tothe expression of angiogenesis-related proteins leading to an increase in the size of thecapillary reserve. ESCS and treadmill training might not contribute to changes in thestimulated spinal cord and cortical pathways underlying the recovery of walking ability,which still needs more investigation.
引文
[1] Field-Fote E. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured subject. Spinal Cord. 2002.40(8): 428.
    [2] Carhart MR, He J, Herman R, D'Luzansky S, Willis WT. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004.12(1): 32-42.
    [3] Huang H, He J, Herman R, Carhart MR. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng. 2006. 14(1): 14-23.
    [4] Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998. 860: 360-76.
    [5] Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005. 383(3): 339-44.
    [6] Lavrov I, Dy CJ, Fong AJ, et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci. 2008. 28(23): 6022-9.
    [7] Grillner S, Deliagina T, Ekeberg O, et al. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci.1995. 18(6): 270-9.
    [8] Roberts A, Hill NA, Hicks R. Simple mechanisms organise orientation of escape swimming in embryos and hatchling tadpoles of Xenopus laevis.J Exp Biol. 2000. 203(Pt 12): 1869-85.
    [9] Otsuka M, Konishi S. Electrophysiology of mammalian spinal cord in vitro.Nature. 1974. 252(5485): 733-4.
    [10] Yul A, Orlovsky GN, YuV P, Roberts A, Soffe SR. Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends Neurosci. 1993. 16(6): 227-33.
    [11] Gerasimenko YP, Lavrov IA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006. 157(2): 253-63.
    [1] Phadke, CP, Wu, SS, Thompson, FJ, et al. Comparison of soleus H-reflex modulation after incomplete spinal cord injury in 2 walking environments: treadmill with body weight support and overground. Arch Phys Med Rehabil. 2007, 88(12): 1606-13.
    [2] Lavrov, I, Dy, CJ, Fong, AJ, et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci. 2008, 28(23): 6022-9.
    [3] Ichiyama, RM, Gerasimenko, YP, Zhong, H, et al. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005, 383(3): 339-44.
    [4] Dimitrijevic, MR, Gerasimenko, Y, Pinter, MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998, 860: 360-76.
    [5] Gerasimenko, YP, Lavrov, IA, Courtine, G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006, 157(2): 253-63.
    [6] Qi, Xu, Jiping, He, Yongji, Wang, et al. A versatile microprocessor-based multichannel stimulator for experimental use in epidural spinal cord stimulation. Proc. 1st Int. Conf. Neural Interface & Control, Wuhan, China. 2005 : 205-208.
    [7] Pinter, MM, Gerstenbrand, F, Dimitrijevic, MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control Of spasticity. Spinal Cord. 2000, 38(9): 524-31.
    [8] Riistama, J, Lekkala, J. Electrode-electrolyte interface properties in implantation conditions. Conf Proc IEEE Eng Med Biol Soc. 2006, 1: 6021-4.
    [9] Dumitru, D, King, JC, Nandedkar, SD. Concentric/monopolar needle electrode modeling: spatial recording territory and physiologic implications. Electroencephalogr Clin Neurophysiol. 1997, 105(5):370-8.
    [10] Chen, XY, Wolpaw, JR. Circadian rhythm in rat H-reflex. Brain Res. 1994,648(1): 167-70.
    [11] Chiba, A, Nakanishi, H, Hiruma, S, et al. Magnetically induced motor evoked potentials and H-reflex during nembutal and ketamine anesthesia administration in rats. Res Commun Mol Pathol Pharmacol. 1998, 101(1) :43-57.
    [1] Edgerton, VR, Tillakaratne, NJ, Bigbee, AJ, et al. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004, 27: 145-67.
    [2] Rossignol, S, Dubuc, R, Gossard, JP. Dynamic sensorimotor interactions in locomotion. Physiol Rev. 2006, 86(1): 89-154.
    [3] De Leon RD, Hodgson, JA, Roy, RR, et al. Full weight-bearing hindlimb standing following stand training in the adult spinal cat. J Neurophysiol. 1998, 80(1): 83-91.
    [4] de Leon RD, Hodgson, JA, Roy, RR, et al. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats. J Neurophysiol. 1998, 79(3): 1329-40.
    [5] Dimitrijevic, MR, Gerasimenko, Y, Pinter, MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998, 860: 360-76.
    [6] Edgerton, VR, Roy, RR. Paralysis recovery in humans and model systems.Curr Opin Neurobiol. 2002, 12(6): 658-67.
    [7] Rossignol, S, Bouyer, L, Barthelemy, D, et al. Recovery of locomotion in the cat following spinal cord lesions. Brain Res Brain Res Rev. 2002, 40(1-3): 257-66.
    [8] Leblond, H, L'Esperance, M, Orsal, D, et al. Treadmill locomotion in the intact and spinal mouse. J Neurosci. 2003, 23(36): 11411-9.
    [9] Cazalets, JR, Sqalli-Houssaini, Y, Clarac, F. Activation of the central pattern generators for locomotion by serotonin and excitatory amino acids in neonatal rat. J Physiol. 1992, 455: 187-204.
    [10] Cai, LL, Fong, AJ, Otoshi, CK, et al. Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. J Neurosci. 2006, 26(41): 10564-8.
    [11] Ichiyama, RM, Gerasimenko, YP, Zhong, H, et al. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005, 383(3): 339-44.
    [12] Gerasimenko, YP, Lavrov, IA, Courtine, G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006, 157(2): 253-63.
    [13] Qi, Xu, Jiping, He, Yongji, Wang, et al. A versatile microprocessor-based multichannel stimulator for experimental use in epidural spinal cord stimulation. Proc. 1st Int. Conf. Neural Interface & Control, Wuhan, China. 2005 : 205-208.
    [14] Lavrov, I, Dy, CJ, Fong, AJ, et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci. 2008, 28(23): 6022-9.
    [15] Pinter, MM, Gerstenbrand, F, Dimitrijevic, MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control Of spasticity. Spinal Cord. 2000, 38(9): 524-31.
    [16] Edgerton, VR, Courtine, G, Gerasimenko, YP, et al. Training locomotor networks. Brain Res Rev. 2008, 57(1): 241-54.
    [17] de Leon RD, Tamaki, H, Hodgson, JA, et al. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J Neurophysiol. 1999, 82(1): 359-69.
    [18] Fong, AJ, Cai, LL, Otoshi, CK, et al. Spinal cord-transected mice learn to step in response to quipazine treatment and robotic training. J Neurosci. 2005, 25(50): 11738-47.
    [19] Guertin, PA. Synergistic activation of the central pattern generator for locomotion by 1-beta-3, 4-dihydroxyphenylalanine and quipazine in adult paraplegic mice. Neurosci Lett. 2004, 358(2): 71-4.
    [20] Lavrov, I, Courtine, G, Dy, CJ, et al. Facilitation of stepping with epidural stimulation in spinal rats: role of sensory input. J Neurosci. 2008, 28(31): 7774-80.
    [21] Coburn, B, Sin, WK. A theoretical study of epidural electrical stimulation of the spinal cord--Part I: Finite element analysis of stimulus fields. IEEE Trans Biomed Eng. 1985, 32(11): 971-7.
    [22] Rattay, F, Minassian, K, Dimitrijevic, MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. Spinal Cord. 2000, 38(8) :473-89.
    [23] Crone, C, Nielsen, J. Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res. 1989, 78(1): 28-32.
    [24] Schieppati, M, Crenna, P. From activity to rest: gating of excitatory autogenetic afferences from the relaxing muscle in man. Exp Brain Res. 1984, 56(3) : 448-57.
    [25] Hultborn, H, Illert, M, Nielsen, J, et al. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996, 108(3) : 450-62.
    [1] 0Gerasimenko YP, Ichiyama RM, Lavrov IA, et al. Epidural spinal cord stimulation plus quipazine administration enable stepping in complete spinal adult rats. J Neurophysiol. 2007. 98(5): 2525-36.
    [2] Edgerton VR, Courtine G, Gerasimenko YP, et al. Training locomotor networks. Brain Res Rev. 2008. 57(1): 241-54.
    [3] Otsuka M, Konishi S. Electrophysiology of mammalian spinal cord in vitro. Nature. 1974. 252(5485): 733-4. [4] YuI A, Orlovsky GN, YuV P, Roberts A, Soffe SR. Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends Neurosci. 1993. 16(6): 227-33.
    [5] Grillner S, Deliagina T, Ekeberg 0, et al. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci. 1995. 18(6): 270-9.
    [6] Lavrov I, Dy CJ, Fong AJ, et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci. 2008. 28(23): 6022-9.
    [7] Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005. 383(3): 339-44.
    [8] Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998. 860: 360-76.
    [9] Huang H, He J, Herman R, Carhart MR. Modulation effects of epidural spinal cord stimulalation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng. 2006. 14(1): 14-23.
    [10] Herman R, He J, D'Luzansky S, Willis W, Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord. 2002. 40(2): 65-8.
    [11] Gerasimenko YP, Lavrov IA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006. 157(2): 253-63.
    [12] Pearson KG, Acharya H, Fouad K. A new electrode configuration for recording electromyographic activity in behaving mice. J Neurosci Methods. 2005. 148(1): 36-42.
    [13] Ichiyama RM, Courtine G, Gerasimenko YP, et al. Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci.2008. 28(29): 7370-5.
    [14] Dumitru D, King JC, Nandedkar SD. Concentric/monopolar needle electrode modeling: spatial recording territory and physiologic implications. Electroencephalogr Clin Neurophysiol. 1997. 105(5): 370-8.
    [15] Nandedkar SD, Dumitru D, King JC. Concentric needle electrode duration measurement and uptake area. Muscle Nerve. 1997. 20(10): 1225-8.
    [16] Hallin RG, Wu G. Protocol for microneurography with concentric needle electrodes. Brain Res Brain Res Protoc. 1998. 2(2): 120-32.
    [17] Yeager JD, Phillips DJ, Rector DM, Bahr DF. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods. 2008. 173(2): 279-85.
    [18] Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998. 860: 360-76.
    [19] Pinter MM, Gerstenbrand F, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control Of spasticity. Spinal Cord. 2000. 38(9): 521-31.
    [20] Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005. 383(3): 339-44.
    [21] Lavrov I, Dy CJ, Fong AJ, et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci. 2008.28(23): 6022-9.
    [22] Luft AR, Kaelin-Lang A, Hauser TK, Cohen LG, Thakor NV, Hanley DF.Transcranial magnetic stimulation in the rat. Exp Brain Res. 2001.140(1): 112-21.
    [23] Riistama J, Lekkala J. Electrode-electrolyte interface properties in implantation conditions. Conf Proc IEEE Eng Med Biol Soc. 2006. 1:6021-4.
    [24] Coburn B, Sin WK. A theoretical study of epidural electrical stimulation of the spinal cord--Part I: Finite element analysis of stimulus fields.IEEE Trans Biomed Eng. 1985. 32(11): 971-7.
    [25] Rattay F, Minassian K, Dimitrijevic MR. Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. Spinal Cord. 2000. 38(8): 473-89.
    [26] Chen XY, Wolpaw JR. Circadian rhythm in rat H-reflex. Brain Res. 1994.648(1): 167-70.
    [27] Chiba A, Nakanishi H, Hiruma S, Satou T, Hashimoto S, Chichibu S.Magnetically induced motor evoked potentials and H-reflex during nembutal and ketamine anesthesia administration in rats. Res Commun Mol Pathol Pharmacol. 1998. 101(1): 43-57.
    [28] Gerasimenko YP, Lavrov IA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006. 157(2): 253-63.
    [29] Edgerton VR, Courtine G, Gerasimenko YP, et al. Training locomotor networks. Brain Res Rev. 2008. 57(1): 241-54.
    [30] de Leon RD, Tamaki H, Hodgson JA, Roy RR, Edgerton VR. Hindlimb locomotor and postural training modulates glycinergic inhibition in the spinal cord of the adult spinal cat. J Neurophysiol. 1999. 82(1): 359-69.
    [31] Guertin PA. Synergistic activation of the central pattern generator for locomotion by 1-beta-3, 4-dihydroxyphenylalanine and quipazine in adult paraplegic mice. Neurosci Lett. 2004. 358(2): 71-4.
    [32] Fong AJ, Cai LL, Otoshi CK, et al. Spinal cord-transected mice learn to step in response to quipazine treatment and robotic training. J Neurosci. 2005. 25(50): 11738-47.
    [33] Lavrov I, Courtine G, Dy CJ, et al. Facilitation of stepping with epidural stimulation in spinal rats: role of sensory input. J Neurosci. 2008. 28(31): 7774-80.
    [34] Bracci E, Ballerini L, Nistri A. Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord. J Neurosci. 1996. 16(21) :7063-76.
    [35] Puskar Z, Antal M. Localization of last-order premotor interneurons in the lumbar spinal cord of rats. J Comp Neurol. 1997. 389(3): 377-89.
    [36] Bertrand S, Cazalets JR. The respective contribution of lumbar segments to the generation of locomotion in the isolated spinal cord of newborn rat. Eur J Neurosci. 2002. 16(9): 1741-50.
    [37] Schmidt BJ, Jordan LM. The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res Bull.2000. 53(5) : 689-710.
    [1] Herman R, He J, D'Luzansky S, Willis W, Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord. 2002. 40(2): 65-8.
    [2] Carhart MR, He J, Herman R, D'Luzansky S, Willis WT. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004.12(1): 32-42.
    [3] Huang H, He J, Herman R, Carhart MR. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng. 2006. 14(1): 14-23.
    [4] Lavrov I, Dy CJ, Fong AJ, et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci. 2008.28(23): 6022-9.
    [5] Ichiyama RM, Courtine G, Gerasimenko YP, et al. Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci.2008. 28(29): 7370-5.
    [6] Yeager JD, Phillips DJ, Rector DM, Bahr DF. Characterization of flexible ECoG electrode arrays for chronic recording in awake rats. J Neurosci Methods. 2008. 173(2): 279-85.
    [7] Lago N, Yoshida K, Koch KP, Navarro X. Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans Biomed Eng. 2007. 54(2): 281-90.
    [8] Streng T, Hedlund P, Talo A, Andersson KE, Gillespie JI. Phasic non-micturition contractions in the bladder of the anaesthetized and awake rat. BJU Int. 2006. 97(5): 1094-101.
    [9] Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005. 383(3): 339-44.
    [10] Gerasimenko YP, Lavrov IA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006. 157(2): 253-63.
    [11] Hosp JA, Molina-Luna K, Hertler B, Atiemo CO, Stett A, Luft AR. Thin-film epidural microelectrode arrays for somatosensory and motor cortex mapping in rat. J Neurosci Methods. 2008. 172(2): 255-62.
    [12] Heng C, de Leon RD. Treadmill training enhances the recovery of normal stepping patterns in spinal cord contused rats. Exp Neurol. 2009. 216(1) :139-147.
    [13] Gorassini MA, Norton JA, Nevett-Duchcherer J, Roy FD, Yang JF. Changes in locomotor muscle activity after treadmill training in subjects with incomplete spinal cord injury. J Neurophysiol. 2009. 101(2): 969-79.
    [14] MehrholzJ, Kugler J, Pohl M. Locomotor training for walking after spinal cord injury. Spine. 2008. 33(21): E768-77.
    [15] Butt SJ, Harris-Warrick RM, Kiehn O. Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator. J Neurosci. 2002. 22(22): 9961-71.
    [16] Stokke MF, Nissen UV, Glover JC, Kiehn O. Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat.J Comp Neurol. 2002. 446(4): 349-59.
    [17] Birinyi A, Viszokay K, Weber I, Kiehn O, Antal M. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats.J Comp Neurol. 2003. 461(4): 429-40.
    [18] Cheng J, Stein RB, Jovanovic K, Yoshida K, Bennett DJ, Han Y.Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord. J Neurosci.1998. 18(11): 4295-304.
    [19] Buchanan JT, McPherson DR. The neuronal network for locomotion in the lamprey spinal cord: evidence for the involvement of commissural interneurons. J Physiol Paris. 1995. 89(4-6): 221-33.
    [20] Kjaerulff O, Kiehn O. Crossed rhythmic synaptic input to motoneurons during selective activation of the contralateral spinal locomotor network. J Neurosci. 1997. 17(24): 9433-47.
    [21] Matsuyama K, Mori S. Lumbar interneurons involved in the generation of fictive locomotion in cats. Ann N Y Acad Sci. 1998. 860: 441-3.
    [22] Kleim JA, Cooper NR, VandenBerg PM. Exercise induces angiogenesis but does not alter movement representations within rat motor cortex. Brain Res. 2002. 934(1): 1-6.
    [23] Swain RA, Harris AB, Wiener EC, et al. Prolonged exercise induces angiogenesis and increases cerebral blood volume in primary motor cortex of the rat. Neuroscience. 2003. 117(4): 1037-46.
    [24] Kleim JA, Swain RA, Armstrong KA, Napper RM, Jones TA, Greenough WT.Selective synaptic plasticity within the cerebellar cortex following complex motor skill learning. Neurobiol Learn Mem. 1998. 69(3) : 274-89.
    [25] Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci U S A. 1990. 87(14) :5568-72.
    [26] Kleim JA, Pipitone MA, Czerlanis C, Greenough WT. Structural stability within the lateral cerebellar nucleus of the rat following complex motor learning. Neurobiol Learn Mem. 1998. 69(3): 290-306.
    [27] Goldshmit Y, Lythgo N, Galea MP, Turnley AM. Treadmill training after spinal cord hemisection in mice promotes axonal sprouting and synapse formation and improves motor recovery. J Neurotrauma. 2008. 25(5):449-65.
    [1] YuI A, Orlovsky GN, YuV P, Roberts A, Soffe SR. Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends Neurosci. 1993. 16(6): 227-33.
    [2] Grillner S, Deliagina T, Ekeberg O, et al. Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci.1995. 18(6): 270-9.
    [3] Roberts A, Hill NA, Hicks R. Simple mechanisms organise orientation of escape swimming in embryos and hatchling tadpoles of Xenopus laevis.J Exp Biol. 2000. 203(Pt 12): 1869-85.
    [4] Otsuka M, Konishi S. Electrophysiology of mammalian spinal cord in vitro.Nature. 1974. 252(5485): 733-4. [5] Kiehn O, Kjaerulff O. Spatiotemporal characteristics of 5-HT and dopamine-induced rhythmic hindlimb activity in the in vitro neonatal rat. J Neurophysiol. 1996. 75(4): 1472-82.
    [6] Kiehn O, Sillar KT, Kjaerulff O, McDearmid JR. Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord. J Neurophysiol. 1999. 82(2): 741-6.
    [7] Sqalli-Houssaini Y, Cazalets JR. Noradrenergic control of locomotor networks in the in vitro spinal cord of the neonatal rat. Brain Res.2000. 852(1): 100-9.
    [8] Iizuka M, Kiehn O, Kudo N. Development in neonatal rats of the sensory resetting of the locomotor rhythm induced by NMDA and 5-HT. Exp Brain Res. 1997. 114(2): 193-204.
    [9] Jiang Z, Rempel J, Li J, Sawchuk MA, Carl in KP, Brownstone RM. Development of L-type calcium channels and a nifedipine-sensitive motor activity in the postnatal mouse spinal cord. Eur J Neurosci. 1999. 11(10):3481-7.
    [10] Whelan P, Bonnot A, 0'Donovan MJ. Properties of rhythmic activity generated by the isolated spinal cord of the neonatal mouse. J Neurophysiol. 2000. 84(6): 2821-33.
    [11] Nishimaru H, TakizawaH, Kudo N. 5-Hydroxytryptamine-induced locomotor rhythm in the neonatal mouse spinal cord in vitro. Neurosci Lett. 2000.280(3): 187-90.
    [12] Altman J, Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim Behav. 1975. 23(4): 896-920.
    [13] Bracci E, Ballerini L, Nistri A. Localization of rhythmogenic networks responsible for spontaneous bursts induced by strychnine and bicuculline in the rat isolated spinal cord. J Neurosci. 1996. 16(21):7063-76.
    [14] Puskar Z, Antal M. Localization of last-order premotor interneurons in the lumbar spinal cord of rats. J Comp Neurol. 1997. 389(3): 377-89.
    [15] Bertrand S, Cazalets JR. The respective contribution of lumbar segments to the generation of locomotion in the isolated spinal cord of newborn rat. Eur J Neurosci. 2002. 16(9): 1741-50.
    [16] Schmidt BJ, Jordan LM. The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord. Brain Res Bull.2000. 53(5): 689-710.
    [17] Kjaerulff O, Kiehn O. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro:a lesion study. J Neurosci. 1996. 16(18): 5777-94.
    [18] Kjaerulff 0, Barajon I, Kiehn 0. Sulphorhodammine-labelled cells in the neonatal rat spinal cord following chemically induced locomotor activity in vitro. J Physiol. 1994. 478 ( Pt 2): 265-73.
    [19] Cina C, Hochman S. Diffuse distribution of sulforhodamine-labeled neurons during serotonin-evoked locomotion in the neonatal rat thoracolumbar spinal cord. J Comp Neurol. 2000. 423(4): 590-602.
    [20] Hultborn H, Jankowska E, Lindstrom S. Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. J Physiol. 1971. 215(3): 591-612.
    [21] Grillner S, Wallen P. Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci. 1985. 8: 233-61.
    [22] Cazalets JR, Borde M, Clarac F. The synaptic drive from the spinal locomotor network to motoneurons in the newborn rat. J Neurosci. 1996.16(1): 298-306.
    [23] Grillner S, Wallen P. Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci. 1985. 8: 233-61.
    [24] Raastad M, Johnson BR, Kiehn O. Analysis of EPSCs and IPSCs carrying rhythmic, locomotor-related information in the isolated spinal cord of the neonatal rat. J Neurophysiol. 1997. 78(4): 1851-9.
    [25] Ballerini L, Bracci E, Nistri A. Pharmacological block of the electrogenic sodium pump disrupts rhythmic bursting induced by strychnine and bicuculline in the neonatal rat spinal cord. J Neurophysiol. 1997. 77(1): 17-23.
    [26] BeatoM, Nistri A. Interaction between disinhibited bursting and fictive locomotor patterns in the rat isolated spinal cord. J Neurophysiol. 1999.82(5) : 2029-38.
    [27] Cazalets JR, Sqalli-Houssaini Y, Clarac F. GABAergic inactivation of the central pattern generators for locomotion in isolated neonatal rat spinal cord. J Physiol. 1994. 474(1): 173-81.
    [28] Butt SJ, Harris-Warrick RM, Kiehn O. Firing properties of identified interneuron populations in the mammalian hindlimb central pattern generator. J Neurosci. 2002. 22(22): 9961-71.
    [29] Stokke MF, Nissen UV, Glover JC, Kiehn O. Projection patterns of commissural interneurons in the lumbar spinal cord of the neonatal rat.J Comp Neurol. 2002. 446(4): 349-59.
    [30] Birinyi A, Viszokay K, Weber I, Kiehn O, Antal M. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats.J Comp Neurol. 2003. 461(4): 429-40.
    [31] Cheng J, Stein RB, Jovanovic K, Yoshida K, Bennett DJ, Han Y.Identification, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord. J Neurosci.1998. 18(11): 4295-304.
    [32] Buchanan JT, McPherson DR. The neuronal network for locomotion in the lamprey spinal cord: evidence for the involvement of commissural interneurons. J Physiol Paris. 1995. 89(4-6): 221-33.
    [33] Kjaerulff O, Kiehn O. Crossed rhythmic synaptic input to motoneurons during selective activation of the contralateral spinal locomotor network. J Neurosci. 1997. 17(24): 9433-47.
    [34] Matsuyama K, Mori S. Lumbar interneurons involved in the generation of fictive locomotion in cats. Ann N Y Acad Sci. 1998. 860: 441-3.
    [35] Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005. 383(3): 339-44.
    [36] Carhart MR, He J, Herman R, D'Luzansky S, Willis WT. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004.12(1): 32-42.
    [37] Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA. Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol. 2003. 33(3): 247-54.
    [38] IuP G, Lavrov IA, Bogacheva IN, Shcherbakova NA, Kucher VI, Musienko PE. [Features of stepping pattern formation in decerebrated cats under epidural spinal cord stimulation]. Ross Fiziol Zh Im I M Sechenova. 2003.89(9): 1046-57.
    [39] Gerasimenko YP, Makarovskii AN, Nikitin OA. Control of locomotor activity in humans and animals in the absence of supraspinal influences.Neurosci Behav Physiol. 2002. 32(4): 417-23.
    [40] Iwahara T, Atsuta Y, Garcia-Rill E, Skinner RD. Spinal cord stimulation-induced locomotion in the adult cat. Brain Res Bull. 1992.28(1): 99-105.
    [41] Dietz V, Wirz M, Curt A, Colombo G. Locomotor pattern in paraplegic patients: training effects and recovery of spinal cord function. Spinal Cord. 1998. 36(6): 380-90.
    [42] Edgerton VR, Tillakaratne NJ, Bigbee AJ, de Leon RD, Roy RR. Plasticity of the spinal neural circuitry after injury. Annu Rev Neurosci. 2004.27: 145-67.
    [43] Harkema SJ, Hurley SL, Patel UK, Requejo PS, Dobkin BH, Edgerton VR.Human lumbosacral spinal cord interprets loading during stepping. J Neurophysiol. 1997. 77(2): 797-811.
    [44] Wernig A, Muller S, Nanassy A, Cagol E. Laufband therapy based on ' rules of spinal locomotion' is effective in spinal cord injured persons. Eur J Neurosci. 1995. 7(4): 823-9.
    [45] Gerasimenko YP, Lavrov IA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006. 157(2): 253-63.
    [46] Crone C, Nielsen J. Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res. 1989. 78(1):28-32.
    [47] MAGLADERY JW, TEASDALL RD, PARK AM, LANGUTH HW. Some mechanisms in man suppressing spinal motoneurone excitability. Trans Am Neurol Assoc. 1952. 56(77th Meeting): 100-5.
    [48] Schieppati M, Crenna P. From activity to rest: gating of excitatory autogenetic afferences from the relaxing muscle in man. Exp Brain Res.1984. 56(3): 448-57.
    [49] Hultborn H, Illert M, Nielsen J, Paul A, Ballegaard M, Wiese H. On the mechanism of the post-activation depression of the H-reflex in human subjects. Exp Brain Res. 1996. 108(3): 450-62.
    [50] Simonsen EB, Dyhre-Poulsen P. Amplitude of the human soleus H reflex during walking and running. J Physiol. 1999. 515 ( Pt 3) : 929-39.
    [51] Meinck HM. Occurrence of the H reflex and the F wave in the rat.Electroencephalogr Clin Neurophysiol. 1976. 41(5): 530-3.
    [52] Chen XY, Wolpaw JR. Circadian rhythm in rat H-reflex. Brain Res. 1994.648(1) : 167-70.
    [53] Chiba A, Nakanishi H, Hiruma S, Satou T, Hashimoto S, Chichibu S.Magnetically induced motor evoked potentials and H-reflex during nembutal and ketamine anesthesia administration in rats. Res Commun Mol Pathol Pharmacol. 1998. 101(1): 43-57.
    [54] Gozariu M, Roth V, Keime F, Le BD, Wilier JC. An electrophysiological investigation into the monosynaptic H-reflex in the rat. Brain Res. 1998. 782(1-2): 343-7.
    [55] Minassian K, JilgeB, Rattay F, et al. Stepping-like movements in humans with complete spinal cord injury induced by epidural stimulation of the lumbar cord: electromyographic study of compound muscle action potentials. Spinal Cord. 2004. 42(7): 401-16.
    [56] Duenas SH, Rudomin P. Excitability changes of ankle extensor group Ia and Ib fibers during fictive locomotion in the cat. Exp Brain Res. 1988.70(1): 15-25.
    [57] Lavrov I, Dy CJ, Fong AJ, et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci. 2008.28(23): 6022-9.
    [58] Gorassini MA, Prochazka A, Hiebert GW, Gauthier MJ. Corrective responses to loss of ground support during walking. I. Intact cats. J Neurophysiol.1994. 71(2): 603-10.
    [59] Courtine G, Harkema SJ, Dy CJ, Gerasimenko YP, Dyhre-Poulsen P.Modulation of multisegmental monosynaptic responses in a variety of leg muscles during walking and running in humans. J Physiol. 2007. 582(Pt3): 1125-39.
    [60] Donelan JM, Pearson KG. Contribution of sensory feedback to ongoing ankle extensor activity during the stance phase of walking. Can J Physiol Pharmacol. 2004. 82(8-9): 589-98.
    [61] Zehr EP, Stein RB. What functions do reflexes serve during human locomotion. Prog Neurobiol. 1999. 58(2): 185-205.
    [62] Forssberg H, Grillner S, Halbertsma J. The locomotion of the low spinal cat. I. Coordination within a hindlimb. Acta Physiol Scand. 1980. 108(3):269-81.
    [63] Gerasimenko Y, Roy RR, Edgerton VR. Epidural stimulation: comparison of the spinal circuits that generate and control locomotion in rats,cats and humans. Exp Neurol. 2008. 209(2): 417-25.
    [64] Iwahara T, Atsuta Y, Garcia-Rill E, Skinner RD. Spinal cord stimulation-induced locomotion in the adult cat. Brain Res Bull. 1992.28(1): 99-105.
    [65] Gerasimenko YP, Avelev VD, Nikitin OA, Lavrov IA. Initiation of locomotor activity in spinal cats by epidural stimulation of the spinal cord. Neurosci Behav Physiol. 2003. 33(3): 247-54.
    [66] Kazennikov OV, Shik ML. [Propagation of the activity along the "stepping strip" of the spinal cord in the cat]. Neirofiziologiia. 1988. 20(6):763-9.
    [67] Barthelemy D, Leblond H, Rossignol S. Characteristics and mechanisms of locomotion induced by intraspinal microstimulation and dorsal root stimulation in spinal cats. J Neurophysiol. 2007. 97(3): 1986-2000.
    [68] Dimitrijevic MR, Gerasimenko Y, Pinter MM. Evidence for a spinal central pattern generator in humans. Ann N Y Acad Sci. 1998. 860: 360-76.
    [69] Minassian K, Persy I, Rattay F, Pinter MM, Kern H, Dimitrijevic MR. Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity. Hum Mov Sci. 2007. 26(2): 275-95. [70] Jilge B, Minassian K, Rattay F, Dimitrijevic MR. Frequency-dependent selection of alternative spinal pathways with common periodic sensory input. Biol Cybern. 2004. 91(6): 359-76.
    [71] Wolpaw JR, Chen XY. Operant conditioning of rat H-reflex: effects on mean latency and duration. Exp Brain Res. 2001. 136(2): 274-9.
    [72] Valero-Cabre A, Fores J, Navarro X. Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection. J Neurophysiol. 2004. 91(6): 2838-48.
    [1] 饭田宏树,曲成业.脊髓电刺激疗法及其镇痛机制.日本医学介绍.2001.(09):404-405.
    [2] Melzack R, Wall PD. Pain mechanisms: a new theory. Science. 1965.150(699): 971-9.
    [3] Shealy CN, Taslitz N, Mortimer JT, Becket DP. Electrical inhibition of pain: experimental evaluation, Anesth Analg. 1967. 46(3): 299-305.
    [4] Shealy CN, Mortimer JT, Reswick JB. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report, Anesth Analg. 1967. 46(4): 489-91.
    [5] Lavrov I, Dy CJ, Fong AJ, et al. Epidural stimulation induced modulation of spinal locomotor networks in adult spinal rats. J Neurosci. 2008. 28(23): 6022-9.
    [6] Ichiyama RM, Gerasimenko YP, Zhong H, Roy RR, Edgerton VR. Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation. Neurosci Lett. 2005. 383(3): 339-44.
    [7] Gerasimenko YP, Lavrov JA, Courtine G, et al. Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods. 2006. 157(2): 253-63.
    [8] 洪毅,王方永.脊髓电刺激促进脊髓损伤后功能恢复的研究进展.中国康复理论与实践.2006.(03):226-228.
    [9] Moriarty LJ, Borgens RB. An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord. J Neurocytol. 2001. 30(1): 45-57.
    [10] Fehlings MG, Tator CH. The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res. 1992.579(1): 32-42.
    [11] Borgens RB, Blight AR, Murphy DJ, Stewart L. Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol. 1986. 250(2): 168-80.
    [12]Strautman AF, Cork RJ, Robinson KR. The distribution of free calcium in transected spinal axons and its modulation by applied electrical fields. J Neurosci. 1990. 10(11): 3564-75.
    [13] Cayli SR, Kocak A, Yilmaz U, et al. Effect of combined treatment with melatonin and methylprednisolone on neurological recovery after experimental spinal cord injury. Eur Spine J. 2004. 13(8): 724-32.
    [14] Kaymaz M, Emmez H, Bukan N, et al. Effectiveness of FK506 on lipid peroxidation in the spinal cord following experimental traumatic injury.Spinal Cord. 2005. 43(1): 22-6.
    [15] Kakinohana M, Harada H, Mishima Y, Kano T, Sugahara K. Neuroprotective effect of epidural electrical stimulation against ischemic spinal cord injury in rats: electrical preconditioning. Anesthesiology. 2005. 103(1): 84-92.
    [16] Tator CH. Phase 1 trial of oscillating field stimulation for complete spinal cord injury in humans. J Neurosurg Spine. 2005. 2(1): 1;discussion 1-2.
    [17] Shapiro S, Borgens R, Pascuzzi R, et al. Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine. 2005. 2(1) : 3-10.
    [18] Ichiyama RM, Courtine G, Gerasimenko YP, et al. Step training reinforces specific spinal locomotor circuitry in adult spinal rats. j Neurosci.2008. 28(29) : 7370-5.
    [19] Carhart MR, He J, Herman R, D'Luzansky S, Willis WT. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004.12(1): 32-42.
    [20] Huang H, He J, Herman R, Carhart MR. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng. 2006. 14(1): 14-23.
    [21] Herman R, He J, D'Luzansky S, Willis W, Dilli S. Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured. Spinal Cord. 2002. 40(2): 65-8.
    [22] Huang H, He J, Herman R, Carhart MR. Modulation effects of epidural spinal cord stimulation on muscle activities during walking. IEEE Trans Neural Syst Rehabil Eng. 2006. 14(1): 14-23.
    [23] Carhart MR, He J, Herman R, D' Luzansky S, Willis WT. Epidural spinal-cord stimulation facilitates recovery of functional walking following incomplete spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng. 2004.12(1): 32-42.
    [24] Park JP, Kim KJ, Phi JH, et al. Simple measurement of spinal cord evoked potential: a valuable data source in the rat spinal cord injury model.J Clin Neurosci. 2007. 14(11): 1099-105.
    [25] Vanicky I, Ondrejcak T, Ondrejcakova M, Sulla I, Galik J. Long-term changes in spinal cord evoked potentials after compression spinal cord injury in the rat. Cell Mol Neurobiol. 2006. 26(7-8): 1521-39.
    [26] North RB, Wetzel FT. Spinal cord stimulation for chronic pain of spinal origin: a valuable long-term solution. Spine. 2002. 27(22): 2584-91;discussion 2592.
    [27] Burton C. Dorsal column stimulation: optimization of application. Surg Neurol. 1975. 4(1): 171-9.
    [28] Hoppenstein R. Percutaneous implantation of chronic spinal cord electrodes for control of intractable pain: preliminary report. Surg Neurol. 1975. 4(1): 195-8.
    [29] North RB, Lanning A, Hessels R, Cutchis PN. Spinal cord stimulation with percutaneous and plate electrodes: side effects and quantitative comparisons. Neurosurg Focus. 1997. 2(1): e3.
    [30] Zumpano BJ, Saunders RL. Percutaneous epidural dorsal column stimulation. Technical note. J Neurosurg. 1976. 45(4): 459-60.
    [31] Kumar K, Nath R, Wyant GM. Treatment of chronic pain by epidural spinal cord stimulation: a 10-year experience. J Neurosurg. 1991. 75(3): 402-7.
    [32] Barolat G, Massaro F, He J, Zeme S, Ketcik B. Mapping of sensory responses to epidural stimulation of the intraspinal neural structures in man. J Neurosurg. 1993. 78(2): 233-9.
    [33] Nashold BS. Dorsal column stimulation for control of pain: a three-year follow-up. Surg Neurol. 1975. 4(1): 146-7.
    [34] North RB, Kidd DH, Campbell JN, Long DM. Dorsal root ganglionectomy for failed back surgery syndrome: a 5-year follow-up study. J Neurosurg. 1991. 74(2): 236-42.
    [35] 崔红岩,谢小波,胡勇.脊髓硬膜外电刺激的数学模型.中国生物医学工程学报.2008.(01):61-68+75.
    [36] Ekre O, Eliasson T, Norrsell H, Wahrborg P, Mannheimer C. Long-term effects of spinal cord stimulation and coronary artery bypass grafting on quality of life and survival in the ESBY study. Eur Heart J. 2002. 23(24): 1938-45.
    [37] Kupers RC, Van den Oever R, Van Houdenhove B, et al. Spinal cord stimulation in Belgium: a nation-wide survey on the incidence, indications and therapeutic efficacy by the health insurer. Pain. 1994. 56(2): 211-6.
    [38] Jivegard LE, Augustinsson LE, Holm J, Risberg B, Ortenwall P. Effects of spinal cord stimulation (SCS) in patients with inoperable severe lower limb ischaemia: a prospective randomised controlled study. Eur J Vasc Endovasc Surg. 1995. 9(4): 421-5.
    [39] Ubbink DT, Spincemaille GH, Prins MH, Reneman RS, Jacobs MJ.Microcirculatory investigations to determine the effect of spinal cord stimulation for critical leg ischemia: the Dutch multicenter randomized controlled trial. J Vasc Surg. 1999. 30(2): 236-44.
    [40] Petrakis IE, Sciacca V. Transcutaneous oxygen tension (TcP02) in the testing period of spinal cord stimulation (SCS) in critical limb ischemia of the lower extremities. Int Surg. 1999. 84(2): 122-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700