骨形态蛋白-2对兔腰椎脊柱功能单位的运动范围的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分可重复性、缓慢演变的兔椎间盘退变模型的诱导
     目的:证实经腹膜外椎间盘侧前方手术穿刺途径是一种简单易行,且能够成功诱导兔的可重复、缓慢演变的椎间盘退变动物模型。
     方法:实验预算使用新西兰大白兔共24只,实际使用了26只(有2只由于意外情况放弃作为实验组的观察)。实验开始3只大白兔被立即宰杀,其椎间盘的影像学及组织学资料被收集与穿刺手术后的大白兔的相关资料做对比。全身麻醉后,通过经腹膜外侧前方对剩余的21只骨骼发育成熟的雌性新西兰大白兔L2-L3,L3-L4和L4-L5椎间盘运用16号皮下穿刺针进行深达5mm的穿刺手术。在术后3、6、12、24周几个时间点对其穿刺节段椎间盘(L2-3、L3-4、L4-5)和完整椎间盘(L1-2和L5-6)进行连续的MRI扫描,且在这几个时间点分别任意选择3只实验大白兔行X线照片和组织学分析(其余9只作为第二部分实验备用),并且和手术前的作比较。
     结果:X线照片发现穿刺手术后6周在穿刺椎间盘相邻节段出现了早期的骨赘形成,24周出现了广泛的骨赘,且有骨桥的形成。在手术后3-24周,穿刺椎间盘的MRI指数(T2加权像正中矢状位上髓核区域和信号强度产生)出现进行性的下降(平均MRI指数3周时为术前的82%,24周为术前的31%),且没有证据显示有自然转归的趋势。组织学分析显示髓核内的脊索细胞进行性的减少,取而代之的是纤维软骨细胞,纤维环也发生了结构的紊乱。
     结论:运用16号皮下穿刺针对兔侧前方椎间盘进行5mm深度穿刺诱导的可重复性、缓慢演变的兔椎间盘退变的动物模型,发现在手术后24周椎间盘发生的组织学、X线照片和MRI扫描改变与人类椎间盘退变的变化相似。这种椎间盘退变动物模式适合作为椎间盘退变的病源学和病理生理学动物模型研究,还可以为进一步的发现先进的、安全有效的治疗方法提供实验载体。
     第二部分骨形态蛋白-2对兔腰椎脊柱功能单位的运动范围的影响
     目的:证实骨形态蛋白-2椎间盘注射治疗能够延缓或阻止兔椎间盘的退变,且能引起椎间盘生物力学的改变,进而为临床上开创一种新型的治疗椎间盘退行性疾病的方法提供实验依据。
     方法:在兔椎间盘穿刺后3周,自由选取9只实验大白兔同法在穿刺椎间盘的对侧穿刺注入BMP-2,在6、12、24几个时间点观察MRI、组织学及基因表达的改变,同时测量这几个时间点的L3-4的FSU的ROM,并且将正常组、穿刺组和BMP-2治疗组进行比较。
     结果:在穿刺术后6、12、24几个时间点椎间盘的MRI、组织学及基因表达均有退变样改变,但是比穿刺组发展的程度低。6周时经BMP-2治疗兔L3-4的FSU的ROM和正常组比较已经发生了改变,但相对于穿刺组还没有发生变化,在12周和24周与正常组比较仍然存在统计学差异,但是已明显向正常的方向转变,且出现了与穿刺组有明显统计学意义上的差距。
     结论:BMP-2对兔椎间盘局部注射不仅能够在影像学、组织学、基因表达方面显示出延缓椎间盘的退变,而且通过L3-4的FSU的ROM测试发现在注射后9周至21周(穿刺后12至24周)出现了ROM向正常方向的改变。BMP-2椎间盘局部注射治疗或许是将来治疗椎间盘退行性疾病的一种新型治疗方法。
Objectives: To prove anterolateral extraperitoneal anular stab is not only a simple and practicable but also a successful way to constructn a slowly progressive, reproducible rabbit model of intervertebral disc degeneration.
     Methods: In the experiment, we anticipated 24 New Zealand rabbits would be used. Actually, 26 rabbits were used in the experiment because 2 rabbits had to quit because of unforeseen situation. Three rabbits were killed promptly to provide intact disc specimens and collected radioloty and histology data for comparison with the preoperative state of discs. After general anesthesia, the L2-L3, L3-L4, and L4-L5 lumbar intervertebral discs of remaining 21 skeletally mature female New Zealand White rabbits were stabbed by 16-gauge hypodermic needle to a depth of 5 mm in the left anterolateral annulus fibrosus. All experimental rabbits were performed serial magnetic resonance imaging scan in the stabbed discs and intact L1-L2 and L5-L6 control discs at 3, 6, 12, and 24 weeks post surgery. Three rabbits were chosen randomly each time supplemental radiograph and histologic analyses (Remain 9 rabbits were used in the secondary stage experiment) . At the same time, whole results were compared with preoperative observation results.
     Results: Radiograph findings included early osteophyte formation in adjacent intervertebral by 6 weeks post stab and extensive, bridging osteophytes by 24 weeks. The stabbed discs exhibited a progressive decrease in "magnetic resonance imaging index" (the product of nucleus pulposus area and signal intensity from T2-weighted midsagittal plane images) starting at 3 weeks post stab and continuing through 24 weeks (mean MRI index was 82% of preoperative MRI index by week 3, decreasing to 31% by week 24.) , with no evidence of spontaneous recovery or reversal of magnetic resonance imaging changes. Histologic analysis revealed progressive loss of notochordal cells from the nucleus pulposus, filling of the nucleus pulposus space with fibrocartilage, and derangement of anulus fibrosus.
     Conclusion: Stabbing the anterolateral anulus fibrosus of adult rabbit lumbar discs with a 16-gauge hypodermic needle to a limited (5-mm) depth results in a number of slowly progressive and reproducible magnetic resonance imaging, radiograph, and histologic changes over 24 weeks that show a similarity to changes seen in human intervertebral disc degeneration. This model would appear suitable for studying pathogenesis and pathophysiology of intervertebral disc degeneration and testing safety and efficacy of novel treatments of intervertebral disc degeneration.
     Part II. To Evaluate Bone Morphogenetic Protein -2 Effects in Range of Motion of Functional Spinal Unit Of Rabbit's Lumbar Spine
     Objectives: To determine the efficacy of Bone Morphogenetic Protein-2 injection in degenerated intervertebral rabbit disc in preventing or delaying the progression of disc degeneration, it also can change the biomechanics of intervertebral disc and provide the experiments evidences for initiate a new therapy in intervertebral disc degeneration disease.
     Methods: Optional choosing 9 experiment rabbit were injected BMP-2 in stabbed intervertebral disc with Contralateral track in 3 weeks postoperation. At the time point of 6, 12 and 24 weeks postoperation, treatment intervertebral discs were analyzed the changes in MRI, histology and gene expression. At the same time, the ROM testing of FSU of L3-4 were completed and compared the difference in intact, stabbed and BMP-2 therapy three groups.
     Results: The treatment interverbral discs were found some degenerative changes by MRI, histology and gene expression at 6, 12, 24 weeks postoperation but had low level degeneration. The ROM testing of FSU of L3-4 in BMP-2 therapy group had some differences with intact group but had no changes with stabbed group at 6 weeks. At 12 and 24 weeks time points, treatment group still had variance with intact group in ROM testing but the results showed they were developing to normal and had obvious statistically significant differences with stabbed group.
     Conclusion: BMP-2 Partially injected in rabbit intervertebral disc not only shows delaying disc degeneration evidences by imagelogy, histology and gene expression but also finds the gene therapy discs are developing to normal by ROM testing of FUS of L3-4 during 9 to 21 weeks after BMP-2 injection(during 12 to 24weeks postoperation). We can hypothesis that the way of BMP-2 injected directly in intervertebral disc may be an effective new treatment to degeneration disc disease in the future.
引文
[1] Praemer A, Furner S, Rice DP. Musculoskeletal Conditions in the United States. Rosemont, IL: American Academy of Orthopaedic Surgeons; 1999.
    [2] Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1995;20(11):1307-14.
    [3] Hirsch C, Ingelmark BE, Miller M. The anatomical basis for low back pain. Acta Orthop Scand 1963;33:1-17.
    [4] Kitano T, Zenvekh JE, Usui Y, Edwards ML, Flicker PL, Mooney V. Biochemical changes associated with the symptomatic human intervertebral disk. Clin Orthop 1993;293:372-7.
    [5] Pearce RH, Grimmer BJ, Adams ME. Degeneration and the chemical composition of the human intervertebral disk. J Orthop Res 1987;5:198.
    [6] Lob A, Holm C. Die zusammenhange zwischen den verletzungen der bandscheiben and der spondylosis deform ans intervertebral such[J]. Dtsch ZtschrChr, 1933, 240: 421-440.
    [7] Lipson SJ. Muir H. Proteoglyeans in expefimenlal intervertebral disc degeneration. Spine,. 1981. 6:194-210.
    [8] Osti OL, Vernon-Roberts B, Fraser RD. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine 1990; 15:762-7.
    [9] Koichi Masuda, Yoichi Aota, Carol Muehleman. A Novel Rabbit Model of Mild, Reproducible Disc Degeneration by an Anulus Needle Puncture: Correlation Between the Degree of Disc Injury and Radiological and Histological Appearances of Disc Degeneration. SPINE Volume 30, Number 1, 2004: 5-14.
    [10] Jeffrey C. Lotz. Animal Models of Intervertebral Disc Degeneration. SPINE Volume 29, Number 23, 2004:2742-2750. Grace D. O'Connell, Edward J. Vresilovic. Comparison of Animals Used in Disc Research to Human Lumbar Disc Geometry. SPINE Volume 32, Number 3, 2007: 328-333.
    [11] Marc-Antoine A. Rousseau, Jill A. Ulrich, Elisa C. Bass. Stab Incision for Inducing Intervertebral Disc Degeneration in the Rat. SPINE Volume 32, Number 1,2007:17-24.
    [12] Lipson SJ, Muir H. Experimental intervertebral disc degeneration: morphologic and proteoglycan changes over time. Arthritis Rheum 1981 ;24:12-21.
    [13] Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 1999;246:129-37.
    [14] Hunter CJ, Matyas JR, Duncan NA: The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering.Tissue Eng 2003, 9:667-677. 8.
    [15] Aguiar DJ, Johnson SL, Oegema TR: Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis.Exp Cell Res 1999, 246:129-137.9.
    [16] Girard-Lauriault PL, Mwale F, Iordanova M, Demers CN, Desjardins P, Wertheimer MR: Atmospheric pressure deposition of micropatterned N-rich plasma-polymer films for tissue engineering. Plasma Process Polym 2005, 2:263-270. 10.
    [17] Lee CR, Grad S, Sakai D, Mochida J, Alini M: Comparison of gene expression profiles of nucleus pulposus, annulus fibrosus and articular cartilage cells. Proceedings of the 52 nd Annual Meeting ofthe Orthopaedic Research Society: Chicago, IL . March 19-22,2006. Poster 1199.
    [18] Henderson N, Stanescu V, Cauchoix J. Nucleolysis ofthe rabbit intervertebral disc using chondroitinase ABC. Spine 1991;16:203-8.30.
    [19] Fazzalari NL, Costi JJ, Hearn TC, et al. Mechanical and pathologic consequences of induced concentric anular tears in an ovine model. Spine 2001; 26:2575-81.
    [20] Masuda K, Aota Y, Muehleman C, et al. A novel rabbit model of mild,reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 2005;30:5-14.
    [21] Sobajima S, Kompel JF, Kim JS, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, Xray, and histology. Spine 2005;30:15-24.
    [22] Fry TR, Eurell JC, Johnson AL, et al. Radiographic and histologic effects of chondroitinase ABC on normal canine lumbar intervertebral disc. Spine 1991;16:816-9.
    [23] Keun Su Kim, S. Tim Yoon, Jun Li, et al. Disc Degeneration in the Rabbit: A Biochemical and Radiological Comparison Between Four Disc Injury Models. SPINE Volume 30, Number 2004;1,:33-37.
    [24] Dawn M. Elliott, PhD,~* Chandra S. Yerramalli, PhD,~* Jesse C. Beckstein etal. The Effect of Relative Needle Diameter in Puncture and Sham Injection Animal Models of Degeneration. SPINE Volume 33, Number 2008;6,:588-596.
    [25] Anderson D, Li X, Tannoury T, et al. A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine 2003;28:2338-45.
    [26] Henderson N, Stanescu V, Cauchoix J. Nucleolysis of the rabbit intervertebral disc using chondroitinase ABC. Spine 1991;16:203-8.
    [27] Dando PM, Morton DB, Buttle DJ, et al. Quantitative assessment of human proteinases as agents for chemonucleolysis. Spine 1988; 13:188-92.
    [28] Sumida K, Sato K, Aoki M, et al. Serial changes in the rate of proteoglycan synthesis after chemonucleolysis of rabbit intervertebral discs. Spine 1999;24:1066-70.
    [29] Masuda K, Imai Y, Okuma M, et al. Osteogenic protein-1 injection into a degenerated disc induces the restoration of disc height and structural changes in the rabbit anular puncture model. Spine 2006;31:742-54.
    [30] Sato K, Nagata K, AriyoshiM,et al. Intradiscal pressure after intradiscal injection of hypertonic saline: an experimental study. Eur Spine J 2000;9:213-7.
    [31] Kim KS, Yoon ST, Li J, et al. Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models. Spine 2005;30:33-7.
    [32] Sobajima S, Shimer AL, Chadderdon RC, et al. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 2005;5:14-23.
    [33] Elliott DM, Sarver JJ. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine 2004;29:713-22.
    [34] Wilke HJ, Neef P, Caimi M, et al. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 1999;24:755-62. 54.
    [35] Edwards WT, Ordway NR, Zheng Y, et al. Peak stresses observed in the posterior lateral anulus. Spine 2001 ;26:1753-9. 55.
    [36] Sato K, Kikuchi S, Yonezawa T. In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 1999;24:2468-74. 56.
    [37] Saal JA, Saal JS. Intradiscal electrothermal treatment for chronic discogenic low back pain: prospective outcome study with a minimum 2-year followup.Spine 27:966-73.
    [38] Chatani K, Kusaka Y, Mifune T, et al. Topographic diferences of 1 H -NMR relaxation times(T1. T2)in the normal intervertebraldisc and its relationship to water content。Spine, 1993, 18: 2271-2275.
    [39] Krowber M W, Ungi F, Wang H, et al. New in vlvo animdl model to create intervertebral disc degeneration and to investigate the efects of therapeutic strategies Io stimulate disc regeneration[J]. Spine, 2002,27(23): 2 684-2 690.
    [40] Gruber HE. Johnson T. Norton HJ, et al. The sand rat model for disc degeneration: radiologic characterization of age related changes: cross sectional and prospective analyses[J]. Spine.2002.27(3):230-234.
    [41] Videman T. Nummt P, Battie MC, etal. Digital assessment of MRI for lumbar disc desiccation: a comparison of digital versus subjective assessments and digital intensity profiles versus disctomy and macroanatomic findings. Spine, 1994, 19: 192-198.
    [42] Nguyen CM, Haughton VM, Ho KC, et al. A model for studying intervertebral disc degeneration with magnetic resonance and a nucleotome. Invest Radiol 1989;5:407-9. 16. Olsewski JM, Schendel MJ, Wallace LJ, et al.
    [43] Magnetic resonance imaging and biological changes in injured intervertebral discs under normal and increased mechanical demands. Spine 1996;17:1945-51. 17.
    [44] Sether LA, Nguyen C, Yu SN, et al. Canine intervertebral disks: correlation of anatomy and MR imaging. Radiology 1990;175:207-11.
    [1] Wehling P, Schulitz KP, Robbins PD, Evans CH, Reinecke JA: Transfer of genes to chondrocytic cells of the lumbar spine: Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine 1997;22: 1092-1097.
    
    [2] Wallach CJ, Sobajima S, Watanabe Y, et al: Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine 2003;28:2331-2337.
    [3] Yoon ST, Park JS, Kim KS, et al: ISSLS prize winner: LMP-1 upregulates intervertebral disc cell production of proteoglycans and BMPs in vitro and in vivo. Spine 2004;29:2603-2611.
    [4] Paul R, Haydon RC, Cheng H, et al: Potential use of Sox9 gene therapy for intervertebral degenerative disc disease.Spine 2003;28:755-763.
    [5] Nishida K, Kang JD, Gilbertson LG, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 1999;24:2419-25.
    [6] Osada R, Ohshima H, Ishihara H, et al. Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insulin-like growth factor-1 on proteoglycan synthesis in bovine intervertebral discs. J Orthop Res 1996;14:690-9.
    [7] Masuda K, Takegama K, An H, et al. Recombinant osteogenic protein-1 upregulates extracellular matrix metabolism by rabbit annulus fibrosus and nucleus pulposus cells cultured in alginate beads. J Orthop Res 2003;21:922-30.
    [8] Takegami K, Thonar EJ, An HS, et al. Osteogenic protein-1 enhances matrix replenishment by intervertebral disc cells previously exposed to interleukin-1. Spine 2002;27:1318-25.
    [9] Nagano T, Yonenobu K, Miyamoto S, Miyamoto S, Tohyama M,Ono K. Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral discs. Spine 1995;20:1972-8.
    [10] Yoon TS, Su Kim K, Li J, et al. The effect of bone morphogenetic protein-2 on rat intervertebral disc cells in vitro. Spine 2003;28: 1773-80.
    [11] Kim D-J, Moon S-H, Kim H, et al. Bone morphogenetic potein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine 2003;28:2679-84.
    [12] Shimer AL, Chadderdon RC, Gilbertson LG, Kang JD. Gene therapy approaches for intervertebral disc degeneration. Spine 2004;29: 2770-8.
    [13] Sobajima S, Kim JS, Gilbertson LG, Kang JD. Gene therapy for degenerative disc disease. Gene Therapy 2004; 11:390-401.
    [14] Li J, Yoon ST, Hutton WC. Effect of bone morphogenetic protein- 2 (BMP-2) on matrix production, other BMPs, and BMP receptors in rat intervertebral disc cells. J Spinal Disord Tech 2004; 17:423-8.
    [15] Nishida K, Kang JD, Suh JK, et al. denovirus-mediated gene transfer to nucleus pulposus cells. Implications for the treatment of intervertebral disc degeneration. Spine 1998;23:2437-42.
    [16] Panjabi MM. The stabilizing system of the spine. Part Ⅱ. Neutral zone and instability hypothesis.. J Spinal Disord .1992 (4):390-7.
    [17] Bennett J. Immune response following intraocular delivery of recombinant viral vectors. Gene Ther 2003; 10:977-82.
    [18] Kozaci LD, Guner A, Oktay G, Guner G: Alterations in biochemical components of extracellular matrix in intervertebral disc herniation: Role of MMP-2and TIMP-2 in type Ⅱ collagen loss. Cell Biochem Fund 2006;24:431-436.
    [19] Nishida K, Doita M, Takada T, et al. Sustained transgene expression in intervertebral disc cells in vivo mediated by microbubble-enhanced ultrasound gene therapy. Spine 2006;31: 1415-1419.
    [20] Kim DJ, Moon SH, Kim H, et al: Bone morphogenetic protein-2 facilitates expression of chondrogenic, not osteogenic, phenotype of human intervertebral disc cells. Spine 2003;28:2679-2684.
    [21] Panjabi MM, Krag M, Summers D, Videman T (1985) Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 3: 292-300.
    [22] Wetzel FT, Panjabi MM, Pelker RR (1989) Biomechanics of the rabbit cervical spine as a function of component transections. J Orthop Res 7:723-727.
    [23] Panjabi MM (1998) Cervical spine models for biomechanical research. Spine 24:2684-2700.
    [24] Wilke HJ, Kettler A, Claes LE (1997) Are sheep spines a valid biomechanical model for human spines. Spine 22:2365-2374.
    [25] Wilke HJ, Krischak S, Claes L (1996) Biomechanical comparison of calf and human spines. J Orthop Res 14:500-503.
    [26] Wilke HJ, Krischak ST, Wenger KH, Claes LE (1997) Load-displacement properties of the thoracolumbar calf spine: experiemtnal results and comparison to known human data. Eur Spine J 6:129-137.
    [27] Elliott DM, Sarver JJ. Validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine 2004;29:713-22.
    [28] Jesse C. Beckstein, MS,~* Sounok Sen, BS,~* Thomas P. Schaer, et al. Comparison of Animal Discs Used in Disc Research toHuman Lumbar Disc. SPINE 2008; Volume 33, Number 6, E166-E173.
    [29] Boden SD, Schimandle H, Huttom WC (1995) An experimental lumbar intertransverse process spinal fusion model: radiographic, histologic, and biomechanical healing characteristics. Spine 20:412-420.
    [30] Feiertag MA, Boden SD, Schimandle JH, Norman JT (1996) A rabbit model for nonunion of lumbar intertransverse process spine arthrodesis. Spine 21: 27-31.
    [31] Schimandle JH, Boden SD (1994) The use of animal models to study spinal fusion. Spine Update. Spine 19:1998-2006.
    [32] Schimandle JH, Boden SD, Hutton WC (1995) Experimental spinal fusion with recombinant human bone morphogenetic protein-2 (rhBMP-2). Spine 20:1326-1337.
    [33] O'Connell GD, Vresilovic EJ, Elliott DM. Comparison of animals used in disc research to human lumbar disc geometry. Spine 2007;32:328-33.
    [34] Zhang Y, Li Z, Thonar EJ, et al. Transduced bovine articular chondrocytes affect the metabolism of cocultured nucleus pulposus cells in vitro: implications for chondrocyte transplantation into the intervertebral disc. Spine 2005;30:2601-7.
    [35] Nishida K, Kang JD, Gilbertson LG, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus-mediated transfer of the human transforming growth factor beta 1 encoding gene. Spine 1999;24:2419-25.
    [36] Wallach CJ, Sobajima S, Watanabe Y, et al. Gene transfer of the catabolic inhibitor TIMP-1 increases measured proteoglycans in cells from degenerated human intervertebral discs. Spine 2003;28:2331-7.
    [37] Paul R, Haydon RC, Cheng H, et al. Potential use of Sox9 gene therapy for intervertebral degenerative disc disease. Spine 2003;28:755-63.
    [38] Ratko TA, Cummings JP, Blebea J, Matuszewski KA: Clinical gene therapy for nonmalignant disease. Am J Med 2003;115:560-569.
    [1]Deyo RA,Weinstein JN.Low back pain.N Engl J Med 2001;344:363-70.
    [2]Wehling P,Schulitz KP,Robbins PD,et al.Transfer of genes to chondrocytic cells of the lumbar spine.Proposal for a treatment strategy of spinal disorders by local gene therapy. Spine 1997;22:1092-7.
    [3] Nishida K, Kang JD, Gilbertson LG, et al. Modulation of the biologic activity of the rabbit intervertebral disc by gene therapy: an in vivo study of adenovirus mediated transfer of the human transforming growth factor beta encoding gene. Spine 1999;24:2419-25.
    [4] Ganey T, Libera J, Moos V, et al. Disc chondrocyte transplantation in a canine model: a treatment for degenerated or damaged intervertebral disc. Spine 2003;28:2609-20.
    [5] Sakai D, Mochida J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc: a potential therapeutic model for disc degeneration. Biomaterials 2003;24:3531-41.
    [6] Lotz JC. Animal models of intervertebral disc degeneration: lessons learned. Spine. 2004;29:2742-50.
    [7] Pritzker KPH. Animal models for osteoarthritis: processes, problems and propsects. Ann Rheum Dis 1994;53:406-20.
    [8] Lob A, Holm C. Die zusammenhange zwischen den verletzungen der bandscheiben and der spondylosis deform ans intervertebral such[J]. Dtsch Ztschr Chr, 1933, 240: 421-440.
    [9] Rousseau MA, Ulrich JA, Bass EC, et al. Stab incision for inducing intervertebral disc degeneration in the rat. Spine 2007;32:17-24.
    [10] Council NR. Musculoskeletal Disorders and the Workplace. Washington, DC: National Academy Press, 2001.
    [11] Lilienfeld A, Lilienfeld D. Foundations of Epidemiology. New York: Oxford University Press, 1980.
    [12] West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science 1997;276:122-6.
    [13] Wu R, et al. A statistical model for the genetic origin of allometric scaling laws in biology. J Theor Biol 2002;219:121-35.
    [14] West GB, Woodruff WH, Brown JH. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Natl Acad Sci USA 2002;99(suppl 1):2473-8.
    [15] Nakatsukasa M, Hirose Y. Scaling of lumbar vertebrae in anthropoids and implications for evolution of the hominoid axial skeleton. Primates 2003;44:127-35.
    [16] Homer HA, Urban JP. 2001 Volvo Award Winner in Basic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 2001;26:2543-9.
    [17] Elliott DM, Sarver JJ. Young investigator award winner: validation of the mouse and rat disc as mechanical models of the human lumbar disc. Spine 2004;29:713-22.
    [18] Higuchi M, Kaneda K, Abe K. Age-related changes in the nucleus pulposus of intervertebral disc in mice: an electronmicroscopic study. Nippon Seikeigeka Gakkai Zasshi 1982;56:321-9.
    [19] Urban JP, Roberts S, Ralphs JR. The nucleus of the intervertebral disc from development to degeneration. Am Zool 2000;40:53-61.
    [20] Berry RJ. Genetically controlled degeneration of the nucleus pulposus in the mouse. J Bone Joint Surg Br 1961;43:387-93.
    [21] Hunter CJ, Matyas JR, Duncan NA. The three-dimensional architecture of the notochordal nucleus pulposus: novel observations on cell structures in the canine intervertebral disc. J Anat 2003;202(Pt 3):279 -91.
    [22] Aguiar DJ, Johnson SL, Oegema TR. Notochordal cells interact with nucleus pulposus cells: regulation of proteoglycan synthesis. Exp Cell Res 1999;246:129-37.
    [23] Lauerman WC, Platenberg RC, Cain JE, et al. Age-related disk degeneration: preliminary report of a naturally occurring baboon model. J Spinal Disord 1992;5:170-4.
    [24] Silberberg R, Gerritsen G. Aging changes in intervertebral discs and spondylosis in Chinese hamsters. Diabetes 1976;25:477-83.
    [25] Silberberg R. Histologic and morphometric observations on vertebral bone of aging sand rats. Spine 1988; 13:202-8.
    [26] Silberberg R, Aufdermaur M, Adler JH. Degeneration of the intervertebral disks and spondylosis in aging sand rats. Arch Pathol Lab Med 1979; 103:231-5.
    [27] Nguyen CM, Haughton VM, Ho KC, et al. A model for studying intervertebral disc degeneration with magnetic resonance and a nucleotome. Invest Radiol 1989;24:407-9.
    [28] Gillett NA, Gerlach R, Cassidy JJ, et al. Age-related changes in the beagle spine. Acta Orthop Scand 1988;59:503-7.
    [29] Green PW, Fox RR, Sokoloff L. Spontaneous degenerative spinal disease in the laboratory rabbit. J Orthop Res 1984;2:161-8.
    [30] Hansen HJ. A pathologic anatomical study on dise degeneration in dogs. Acla Orthop Seand (Br), 1952, 11(suppl 3): 111-117.
    [31] SilberbergR,Aufdermaur M, Adler JH.Degeneration of the intervertebral disks and spondylosis in aging sand rats. Arch Pathol Lab Med 1979;103(5):231-5.
    [32] Adler JH, Schoenbaum M, Silberberg R. Early onset of disk degeneration and spondylosis in sand rats (Psammomys obesus). Vet Pathol 1983;20:13-22.
    [33] Silberberg R. Histologic and morphometric observations on vertebral bone of aging sand rats. Spine 1988;13:202-8.
    [34] Moskowitz RW, et al. Spondylosis in sand rats: a model of intervertebral disc degeneration and hyperostosis. J Orthop Res 1990;8:401-11.
    [35] Gruber HE, et al. The sand rat model for disc degeneration. Radiologic characterization of age-related changes: cross-sectional and prospective analyses. Spine 2002;27:230-4.
    [36] Ziv I, et al. Physicochemical properties of the aging and diabetic sand rat intervertebral disc. J Orthop Res 1992;10:205-10.
    [37] Silberberg R, Gerritsen G. Aging changes in intervertebral discs and spondylosis in Chinese hamsters. Diabetes 1976;25:477-83.
    [38] Cole TC, Ghosh P, Taylor TK. Variations of the proteoglycans of the canine intervertebral disc with ageing. Biochim Biophys Acta 1986;880:209-19.
    [39] Goggin JE, Li AS, Franti CE. Canine intervertebral disk disease: characterization by age, sex, breed, and anatomic site of involvement. Am J Vet Res 1970;31:1687-92.
    [40] Ghosh P, Taylor TK, Braund KG, Larsen LH. The collagenous and non-collagenous protein of the canine intervertebral disc and their variation with age, spinal level and breed. Gerontology 1976;22: 124-34.
    [41] Gillett NA, Gerlach R, Cassidy JJ, Brown SA. Age-related changesin the beagle spine. Acta Orthop Scand 1988;59:503-7.
    [42] Kimura T, et al. Progressive degeneration of articular cartilage and intervertebral discs: an experimental study in transgenic mice bearing a type IX collagen mutation. Int Orthop 1996;20:177-81.
    [43] Solovieva S, et al. COL9A3 gene polymorphism and obesity in intervertebral disc degeneration of the lumbar spine: evidence of gene-environment interaction. Spine 2002;27:2691-6.
    [44] Noponen-Hietala N, et al. Sequence variations in the collagen Ⅸ and Ⅺ genes are associated with degenerative lumbar spinal stenosis. Ann Rheum Dis 2003;62:1208-14.
    [45] Eyre DR, Matsui Y, Wu JJ. Collagen polymorphisms of the intervertebral disc. Biochem Soc Trans 2002;30(Pt 6):844-8.
    [46] Roberts S, et al. 1991 Volvo Award in basic sciences. Collagen types around the cells of the intervertebral disc and cartilage end plate: an immunolocalization study. Spine 1991;16:1030-8.
    [47] Nerlich AG, et al. Immunolocalization of major interstitial collagen types in human lumbar intervertebral discs of various ages. Virchows Arch 1998;432:67-76.
    [48] Hamrick MW, Pennington C, Byron CD. Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin). J Orthop Res 2003;21:1025-32.
    [49] Venn G, Mason RM. Changes in mouse intervertebral-disc proteoglycan synthesis with age: hereditary kyphoscoliosis is associated with elevated synthesis. Biochem J 1986;234:475-9.
    [50] Mason RM, Palfrey AJ. Intervertebral disc degeneration in adult mice with hereditary kyphoscoliosis. J Orthop Res 1984;2:333-8.
    [51] Sahlman J, et al. Premature vertebral endplate ossification and mild disc degeneration in mice after inactivation of one allele belonging to the Col2a1 gene for Type Ⅱ collagen. Spine 2001;26:2558-65.
    [52] Bray JP, Burbidge HM. The canine intervertebral disk: Part 2. Degenerative changes: nonchondrodystrophoid versus chondrodystrophoid disks. J Am Anim Hosp Assoc 1998;34:135-44.
    [53] Bray JP, Burbidge HM. The canine intervertebral disk: Part 1. Structure and function. J Am Anim Hosp Assoc 1998;34:55-63.
    [54] Melrose J, Taylor TK, Ghosh P. Variation in intervertebral disc serine proteinase inhibitory proteins with ageing in a chondrodystrophoid (beagle) and a non-chondrodystrophoid (greyhound) canine breed. Gerontology 1996;42:322-9.
    [55] Ghosh P, et al. A comparison of the high buoyant density proteoglycans isolated from the intervertebral discs of chondrodystrophoid and nonchondrodystrophoid dogs. Matrix 1992;12:148-55.
    [56] Ghosh P, et al. The collagenous and non-collagenous protein of the canine intervertebral disc and their variation with age, spinal level and breed. Gerontology 1976;22:124-34.
    [57] Cole TCet al. The proteoglycans of the canine intervertebral disc. Biochim Biophys Acta 1985;839:127-38.
    [58] Braund KGet al. Spinal mobility in the dog: a study in chondrodystrophoid and non-chondrodystrophoid animals. Res Vet Sci 1977;22:78-82.
    [59] Lindblom K. Intervertebral disc degeneration considered as a pressure atrophy. J Bone Joint Surg Am 1957;39:933-45.
    [60] Kelsey JL, et al. Acute prolapsed lumbar intervertebral disc: an epidemiologic study with special reference to driving automobiles and cigarette smoking. Spine 1984;9:608-13.
    [61] Hutton WC, Yoon ST, Elmer WA, et al. Effect of tail suspension (orsimulated weightlessness) on the lumbar intervertebral disc: study of proteoglycans and collagen. Spine 2002;27:1286-90.
    [62] Jones LL, Sajed D, Tuszynski MH. Axonal regeneration through regions of chondroitin sulfate proteoglycan deposition after spinal cord injury: a balance of permissiveness and inhibition. J Neurosci 2003;23:9276-88.
    [63] Goff C, Landmesser W. Bipedal rats and mice: laboratory animals fororthopaedic research. J Bone Joint Surg 1957;39A:616-22.
    [64] Yamada K. The dynamics of experimental posture. Experimental study of intervertebral disk herniation in bipedal animals. Clin Orthop 1962;25:20-31.
    [65] Kroeber MW, Unglaub F, Wang H, et al. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 2002;27: 2684-90.
    [66] Hadjipavlou AG, Simmons JW, Yang JP, Bi LX, Simmons DJ, Necessary JT. Torsional injury resulting in disc degeneration in the rabbit: Ⅱ. Associative changes in dorsal root ganglion and spinal cord neurotransmitter production. J Spinal Disord 1998; 11:318-21.
    [67] Hadjipavlou AG, Simmons JW, Yang JP, et al. Torsional injury resulting in disc degeneration: I. An in vivo rabbit model. J Spinal Disord 1998;11:312-7.
    [68] Peacock A. Observations of the postnatal structure of the intervertebral disc in man. J Anat 1952;86:162.
    [69] Kroeber MW, et al. New in vivo animal model to create intervertebral disc degeneration and to investigate the effects of therapeutic strategies to stimulate disc regeneration. Spine 2002;27:2684-90.
    [70] MacLean JJ, et al. Effects of immobilization and dynamic compression on intervertebral disc cell gene expression in vivo. Spine 2003;28:973-81.
    [71] Lotz JC, et al. Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 1998;23:2493-506.
    [72] Palmer EI, Lotz JC. The effects of tissue level forces on the cells of the intervertebral disc. San Francisco, CA. Transactions of the 50th Annual Meeting of the Orthopaedic Research Society, 2004.
    [73] Hsieh AH, et al. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study. J Biomech Eng In review.
    [74] Mow VC, et al. Biphasic creep and stress relaxation of articular cartilage: theory and experiments. J Biomech Eng 1980;102:73-84.
    [75] Iatridis JC, et al. Compression-induced changes in intervertebral disc properties in a rat tail model. Spine 1999;24:996-1002.
    [76] Palmer EI, Lotz JC. The compressive creep properties of normal and degenerated murine intervertebral discs. J Orthop Res 2004;22:164-9.
    [77] Rufai A, Benjamin M, Ralphs JR. The development of fibrocartilage in the rat intervertebral disc. Anat Embryol 1995;192:53-62.
    [78] Bass EC, et al. Heat-induced changes in porcine annulus fibrosus biomechanics. J Biomech 2004;37:233-40.
    [79] Hsieh AH, Lotz JC. Prolonged spinal loading induces matrix metalloproteinase-2 activation in intervertebral discs. Spine 2003;28:1781-8.
    [80] Lipson SJ, Muir H. Proteoglycans in experimental intervertebral disc degeneration. Spine 1981;6:194-210.
    [81] Kaapa E, et al. Collagens in the injured porcine intervertebral disc. J Orthop Res 1994;12:93-102.
    [82] Anderson DG, et al. Comparative gene expression profiling of normal and degenerative discs: analysis of a rabbit annular laceration model. Spine 2002;27:1291-6.
    [83] Kaigle AM, Holm SH, Hansson TH. 1997 Volvo Award winner in biomechanical studies. Kinematic behavior of the porcine lumbar spine: a chronic lesion model. Spine 1997;22:2796-806.
    [84] Melrose J, et al. Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine 2002;27:1278-85.
    [85] O'Neill CW, et al. Percutaneous plasma decompression alters cytokine expression in injured porcine intervertebral discs. Spine J 2004;4:88-98.
    [86] Cole TC,Burkhardt D. Ghosb P, et al. Effects of spinal fusion on the proteoglycans of the canine intervertebral disc. J Orthop Res. 1985,3: 277-291.
    [87] Freemont AJ, et al. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 1997;350:178-81.
    [88] Freemont AJ, et al. Nerve growth factor expression and innervation of the painful intervertebral disc. J Pathol 2002; 197:286-92.
    [89] Koike Y, et al. Angiogenesis and inflammatory cell infiltration in lumbar disc herniation. Spine 2003;28:1928-33.
    [90] Fazzalari NL, et al. Mechanical and pathologic consequences of induced concentric anular tears in an ovine model. Spine 2001 ;26:2575-81.
    [91] Wada E, Ebara S, Saito S, OnoK. Experimental spondylosis in the rabbit spine. Overuse could accelerate the spondylosis. Spine 1992;17(3suppl):S1-6.
    [92] Osti O, Vernon-Roberts B, Fraser R. Annulus tears and intervertebral disc degeneration. Spine 1990;15:762-7.
    [93] Gregory D. Cramer, DC, PhD,a Jaeson T,et al DEGENERATIVE CHANGES FOLLOWING SPINAL FIXATION IN A SMALL ANIMAL MODEL. Journal of Manipulative and Physiological Therapeutics 2004;4:141-154.
    [94] Olsewski JM, et al. Magnetic resonance imaging and biological changes in injured intervertebral discs under normal and increased mechanical demands. Spine 1996;21: 1945-51.
    [95] Muehleman C, et al. Histological assessment of a novel needle puncture model: a mild, progressive intervertebral disc degeneration. 49th Annual Meeting of the Orthopaedic Research Society, New Orleans, 2003.
    [96] Lipson SJ, Muir H. 1980 Volvo award in basic science. Proteoglycans in experimental intervertebral disc degeneration. Spine 1981;6:194-210.
    [97] Lipson SJ, Muir H. Experimental intervertebral disc degeneration: morphologic and proteoglycan changes over time. Arthritis Rheum 1981;24:12-21.
    [98] Key A, Ford L. Experimental intervertebral-disc lesions. J Bone Joints Surg Am 1948;30A:621-30.
    [99] Smith J, Walmsley R. Experimental incision of the intervertebral disc. J Bone Joint Surg Br 1954;33B:612-25.
    [100] Kim KS, Yoon ST, Li J, et al. Disc degeneration in the rabbit: a biochemical and radiological comparison between four disc injury models. Spine 2005;30:33-7.
    [101] Masuda K, Aota Y, Muehleman C, et al. A novel rabbit model of mild, reproducible disc degeneration by an anulus needle puncture: correlation between the degree of disc injury and radiological and histological appearances of disc degeneration. Spine 2005;30:5-14.
    [102] Osti OL, Vernon RB, Fraser RD. 1990 Volvo Award in experimental studies. Anulus tears and intervertebral disc degeneration. An experimental study using an animal model. Spine 1990;15:762-7.
    [103] Kaapa E, Holm S, Han X, Takala T, Kovanen V, Vanharanta H. Collagens in the injured porcine intervertebral disc. J Orthop Res 1994;12:93-102.
    [104] Kaapa E, Zhang LQ, Muona P, Holm S, Vanharanta H, Peltonen J. Expression of type Ⅰ, Ⅲ, and Ⅵ collagen mRNAs in experimentally injured porcine intervertebral disc. Connect Tissue Res 1994;30: 203-14.
    [105] Kaapa E, Gronblad M, Holm S, Liesi P, Murtomaki S, Vanharanta H. Neural elements in the normal and experimentally injured porcineintervertebral disk. Eur Spine J 1994;3:137-42.
    [106] Williams JM, Downey C, Thonar EJ. Increase in levels of serum keratin sulfate following cartilage proteoglycan degradation in the rabbit knee joint. Arthritis Rheum 1988;31:557-60.
    [107] Homandberg GA, Meyers R, Williams JM. Intraarticular injection of fibronectin fragments causes severe depletion of cartilage proteoglycans in vivo. J Rheumatol 1993;20:1378-82.
    [108] Rousseau MA, Ulrich JA, Bass EC. Stab incision for inducing intervertebral disc degeneration in the rat. Spine. In press.
    [109] Palmer EI, Lotz JC. The time-dependent role of cytokines in mechanically induced intervertebral disc degeneration. Trans Orthop Res Soc. 2004;29:128.
    [110] Kim JS, et al. Successful in vivo gene transfer to intervertebral discs in a slowly progressive and reproducible animal model of disc degeneration. 50th Annual Meeting of the Orthopaedic Research Society, San Francisco,2004.
    [111] Aota Y, et al. Radiological and MRI analyses of a novel rabbit model: a mild, progressive disc degeneration. Dallas, TX. 48th Annual Meeting of the Orthopaedic Research Society, 2002.
    [112] Adams MA, et al. Mechanical initiation of intervertebral disc degeneration. Spine 2000;25:1625-36.
    [113] Holm S, et al. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech 2004;17:64-71.
    [114] Markolf KL, Morris JM. The structural components of the intervertebral disc: a study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am 1974;56:675-87.
    [115] Kim KW, et al. The origin of chondrocytes in the nucleus pulposus and histologic findings associated with the transition of a notochordal nucleus pulposus to a fibrocartilaginous nucleus pulposus in intact rabbit intervertebral discs. Spine 2003;28:982-90.
    [116] Kasra M, et al. Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J Orthop Res 2003;21:597-603.
    [117] Rannou F, et al. Cyclic tensile stretch modulates proteoglycan production by intervertebral disc annulus fibrosus cells through production of nitrite oxide. J Cell Biochem 2003 ;90:148-57.
    [118] Chin JR, et al. Compression-induced apoptosis in the mouse intervertebral disc is time and stress dependent. 45th Annual Meeting of the Orthopaedic Research Society, Anaheim, CA, 1999.
    [119] Palmer EI, Lotz JC. The time dependent role of cytokines in mechanically induced intervertebral disc degeneration. San Francisco, CA. Transactions of the 50th Annual Meeting of the Orthopaedic Research Society, 2004.
    [120] Walsh AJ, Lotz JC. Biological response of the intervertebral disc to dynamic loading. J Biomech 2004;37:329-37.
    [121] Ching CT, et al. The effect of cyclic compression on the mechanical properties of the inter-vertebral disc: an in vivo study in a rat tail model. Clin Biomech (Bristol, Avon) 2003; 18:182-9.
    [122] Nagano T, et al. Distribution of the basic fibroblast growth factor and its receptor gene expression in normal and degenerated rat intervertebral discs. Spine 1995;20:1972-8.
    [123] Keyes DC. Compere EL. The normal and pathological physiolgy of the nucleus pulposus of the intervertebral disc :anatomic,clinical and experimental studyJ Bone Joint Surg(Br), 1982, 14: 897-938.
    [124] Sobajima S, Kompel JF, Kim JS, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, Xray, and histology. Spine 2005;30:15-24.
    [125] Ariga K, et al. The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 2001;26:2414-20.
    [126] Peng B, et al. The relationship between cartilage end-plate calcification and disc degeneration: an experimental study. Chin Med J (Engl) 2001;114:308-12.
    [127] Stokes IA, Counts DF, Frymoyer JW. Experimental instability in the rabbit lumbar spine. Spine 1989; 14:68-72.
    [128] [128] Wada E, et al. Experimental spondylosis in the rabbit spine: overuse could accelerate the spondylosis. Spine 1992;17(suppl 3):1- 6.
    [129] Bradford DS, Cooper KM, Oegema TR. Chymopapain, chemonucleolysis and nucleus pulposus regeneration. J Bone Joint Surg Am 1983;65:1220.
    [130] Melrose J, et al. Intervertebral disc reconstitution after chemonucleolysis with chymopapain is dependent on dosage. Spine 1996;21:9-17.
    [131] Bradford DS, et al. Chymopapain, chemonucleolysis, and nucleus pulposus regeneration: a biochemical and biomechanical study. Spine 1984;9:135-47.
    [132] Takahashi T, et al. Chemonucleolytic effects of chondroitinase ABC on normal rabbit intervertebral discs: course of action up to 10 days postinjection and minimum effective dose. Spine 1996;21:2405-11.
    [133] Lu DS, et al. Spinal flexibility increase after chymopapain injection is dose dependent: a possible alternative to anterior release in scoliosis. Spine 2004;29:123-8.
    [134] Yamada K, et al. Investigation of the short-term effect of chemonucleolysis with chondroitinase ABC. J Vet Med Sci 2001;63:521-5.
    [135] Ando T, et al. Effects of chondroitinase ABC on degenerative intervertebral discs. Clin Orthop 1995;318:214-21.
    [136] Sakuma M, et al. Effect of chondroitinase ABC on matrix metalloproteinases and inflammatory mediators produced by intervertebral disc of rabbit in vitro. Spine 2002;27:576-80.
    [137] Park JS, Ahn JI. The effect of chondroitinase ABC on rabbit intervertebral disc: radiological, histological and electron microscopic findings. Int Orthop 1995;19:103-9.
    [138] Norcross JP, et al. An in vivo model of degenerative disc disease. J Orthop Res 2003;21:183-8.
    [139] Hoogendoorn RJ, Wuisman P, Smit TH, et al. Experimental intervertebral disc degeneration induced by chondroitinase ABC in the Goat. Spine 2007; 32:1816-25.
    [140] Suguro T, Oegema TR Jr, Bradford DS. Ultrastructural study of the shortterm effects of chymopapain on the intervertebral disc. J Orthop Res 1986;4:281-7.
    [141] Kahanovitz N, Arnoczky SP, Kummer F. The comparative biomechanical,histologic, and radiographic analysis of cani lumbar discs treated by surgical excision or chemonucleolysis. Spine 1985;10:178-83.
    [142] Oegema TR Jr, et al. Fibronectin and its fragments increase with degeneration in the human intervertebral disc. Spine 2000;25:2742-7.
    [143] Anderson DG, et al. A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine 2003;28:2338-45.
    [144] Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine 1995;20:1307-14.
    [145] Hu B, et al. Coordinate induction of collagenase-1, stromelysin-1 and Animal Models of Intervertebral Disc Degeneration · Lotz 2749 urokinase plasminogen activator (uPA) by the 120-kDa cell-binding fibronectin fragment in fibrocartilaginous cells: uPA contributes to activation of procollagenase-1. Matrix Biol 2000; 19:657-69.
    [146] Phillips FM, Reuben J, Wetzel FT. Intervertebral disc degeneration adjacent to a lumbar fusion: an experimental rabbit model. J Bone Joint Surg Br 2002;84:289-94.
    [147] Miyamoto S, Yonenobu K, Ono K. Experimental cervical spondylosis in the mouse. Spine 1991;16(suppl):495-500.
    [148] Iwahashi M, Matsuzaki H, Tokuhashi Y, Wakabayashi K, Uematsu Y. Mechanism of intervertebral disc degeneration caused by nicotine in rabbits to explicate intervertebral disc disorders caused by smoking. Spine 2002;27:1396-401.
    [149]Clancy R,Varenika B,Huang W,Ballou L,Attur M,Amin AR,Abramson SB.Nitric oxide synthase/COX cross-talk:nitric oxide activates COX-1 but inhibits COX-2-derived prostaglandin production.J Immunol.2000;165:1582-7.
    [150]Vassalle C,Domenici C,Lubrano V,L'Abbate A.Interaction between nitric oxide and cyclooxygenase pathways in endothelial cells.J Vasc Res.2003;40:491-9.
    [151]Schuerwegh AJ,Dombrecht EJ,Stevens WJ,Van Offel JF,Bridts CH,De Clerck LS.Influence of pro-inflammatory(IL-1 alpha,IL-6,TNF-alpha,IFN-gamma) and anti-inflammatory(IL-4) cytokines on chondrocyte function.Osteoarthritis Cartilage.2003;11:681-7.
    [1]White,AA and MM Panjabi.Clinical Biomechanics of the Spine.Philadelphia,Lippincott.(1978).
    [2]Jayson,MIV.The Lumbar Spine and Back Pain.Edinburgh,Churchill Livingstone.(1992).
    [3]Stokes,IAF and JC Iatridis:"Biomechanics of the Spine." Basic Orthopaedic Biomechanics and Mechanobiology,Ed by VC Mow and R Huiskies.New York,Lippincott Williams & Wilkins,(2005),pp.529-563.
    [4]Iatridis JC,Setton LA,Weidenbaum M,and Mow VC:"The Viscoelastic Behavior of the Non-degenerate Human Lumbar Nucleus Pulposus in Shear." J Biomechanics 30:(1997),pp.1005-1013.
    [5]Stokes,IAF and JC Iatridis:"Biomechanics of the Spine." Basic Orthopaedic Biomechanics and Mechanobiology,Ed by VC Mow and R Huiskies.New York,Lippincott Williams & Wilkins,(2005),pp.529-563.
    [6]White,AA and MM Panjabi.Clinical Biomechanics of the Spine.Philadelphia,Lippincott.(1978).
    [7]Lee,C.R.,Iatridis,J.C.,Alini,M.,2006.In vitro organ culture of the bovine intervertebral disc:effects of vertebral endplate and potential for mechanobiology studies.Spine,in press.
    [8] K. Ueno and Y.K. Liu, A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion, J. Biomech. Engng. 109(1987), 1987.
    [9] Iatridis JC, Setton LA, Weidenbaum M, and Mow VC: "The Viscoelastic Behavior of the Non-degenerate Human Lumbar Nucleus Pulposus in Shear." J Biomechanics 30: (1997), pp. 1005-1013.
    [10] S. Shirazi-adl "Finite-element simulation of changes in the fluid content of human lumbar discs-mechanical and clinical implications" Spine 17(2):206-212, 1992.
    [11] S. Shirazi-Adl, S.C. Shrivastava, A.M. Ahmed, "Stress analysis of the lumbar disc-body unit in compression. A threedimensional nonlinear finite element study", Spine 9(2):120-134,1984.
    [12] L. Sonnerup, "A semi-experimental stress analysis of the human intervertebral disk" Exp. Mec, 12 (3): 142-147,1972.
    [13] Kuroki, H., Goel, V. K., Holekamp, S. A., Ebraheim, N. A., Kubo, S., and Tajima, N., 2004, "Contributions of Flexion-Extension Cyclic Loads to the Lumbar Spinal Segment Stability Following Different Discectomy Procedures,"Spine, 29, pp. E39-E46.
    [14] Keller, T. S., Hansson, T. H., Holm, S. H., Pope, M. M., and Spengler, D. M.,1988, "In Vivo Creep Behavior of the Normal and Degenerated Porcine Intervertebral Disk: A Preliminary Report," J. Spinal Disord., 1, pp. 267-278.
    [15] Adams, M. A., Freeman, B. J., Morrison, H. P., Nelson, I. W., and Dolan, P.,2000, "Mechanical Initiation of Intervertebral Disc Degeneration," Spine, 25, pp. 1625-1636.
    [16] Hasegawa, K., Turner, C. H., Chen, J., and Burr, D. B., 1995, "Effect of Disc Lesion on Microdamage Accumulation in Lumbar Vertebrae Under Cyclic Compression Loading," Clin. Orthop. Relat. Res., 311, pp. 190-198.
    [17] Hansson, T. H., Keller, T. S., and Spengler, D. M., 1987, "Mechanical Behavior of the Human Lumbar Spine. II. Fatigue Strength During Dynamic Compressive Loading," J. Orthop. Res., 5, pp. 479-487.
    [18] Johannessen, W., Cloyd, J., O'Connell, G., Vresilovic, E. J., and Elliott, D. M., 2006, "Trans Endplate Nucleotomy Increases Deformation and Creep Response in Axial Loading," Ann. Biomed. Eng., 34_4_, pp. 687-696.
    [19] Shea, M., Takeuchi, T. Y., Wittenberg, R. H., White, A. A., and Hayes, W. C.,1994, "Comparison of the Effects of Automated Percutaneous Discectomy and Conventinal Discectomy on Intradiscal Pressure, Disc Geometry, and Stiffness," J. Spinal Disord., 7, pp. 317-325.
    [20] Markolf, K. L., and Morris, J. M., 1974, "Structural Components of the Intervertebral Disc," J. Bone Jt. Surg., Am. Vol., 56A, pp. 675-687.
    [21] Otilainen E.Long2termoutcome of patients suffering from clinical instability after microsurgical treatment of lumbar disc herniationl [J ] . Acta Neurochir (Wien) ,1998 ,140:120-125.
    [22] Urban, J.P.G., McMullin, J.F., 1988. Swelling pressure of the lumbar intervertebral discs: influence of age, spinal level, composition, and degeneration. Spine 13,179-187.
    [23] R. Bertagnoli, R. Schonmayr. Surgical and clinical results with the PDN p rothetic disc nucleus device. EuroSp ine [ J ], 2002, 11 ( Supp 12): 143-8.
    [24] Iatridis JC, Setton LA, Weidenbaum M, et al. Alterations in the mechanical behavior of the human lumbar nucleus pulposus with degeneration and aging. J Orthop Res 1997; 15:318-22.
    [25] Kim DJ. Pathophysiology of degenerative cervical spinal disease. J Korean Spine Surg 1999;6:173-80.
    [26] Cripton PA, Dumas GA, Nolte LP. A minimally disruptive technique for measuring intervertebral disc pressure in vitro: application to the cervical spine. J Biomech 2001;34:545-A9.
    [27] Steffen T, Baramki HG, Rubin R, et al. Lumbar intradiscal pressure measured in the anterior and posterolateral annular regions during asymmetrical loading. Clin Biomech 1998; 13:495-505.
    [28] Seroussi, R. E., Krag, M. H., Muller, D. L., and Pope, M. H., 1989, "Internal Deformations of Intact and Denucleated Human Lumbar Discs Subjected to Compression, Flexion, and Extension Loads," J. Orthop. Res., 7, pp. 122-131.
    [29] Meakin, J. R., Redpath, T. W, and Hukins, D. W, 2001, "The Effect of Partial Removal of the Nucleus Pulposus From the Intervertebral Disc on the Response of the Human Annulus Fibrosus to Compression," Clin. Biomech. Bristol, Avon_, 16,pp. 121-128.
    [30] Natarajan, R. N., Williams, J. R., and Andersson, G. B., 2004, "Recent Advances in Analytical Modeling of Lumbar Disc Degeneration," Spine, 29, pp. 2733-2741.
    [31] Laible, J. P., Pflaster, D. S., Krag, M. H., Simon, B. R., and Haugh, L. D.,1993, "Poroelastic-Swelling Finite Element Model With Application to the Intervertebral Disc," Spine, 18, pp. 659-670.
    [32] Stokes, I. A., and Iatridis, J. C, 2004, "Mechanical Conditions That Accelerate Intervertebral Disc Degeneration: Overload Versus Immobilization," Spine, 29, pp. 2724-2732.
    [33] Brown TD, Mutschler TA, Ferguson AB Jr. A non-linear finite element analysis of some early collapse processes in femoral head osteonecrosis. J Biomech. 1982;15(9):705-15.
    [34] Panjabi, M. M., Krag, M. H., and Chung, T. Q., 1984, "Effects of Disc Injury on Mechanical Behavior of the Human Spine," Spine, 9, pp. 707-713.
    [35] Zhu W. Chern KY. Mom VC Anisotropic \iqcoelartic shear piopritics of hoviiie meniscus Cirri Orrhop 306 34 45,1994.
    [36] Koob TI Fkre DR. Viscoeldrtic hear prop-eities oi airicular caitilage and the eltrcts oi glicosidaqetreatmcnt .I Orrhop Re 7 11 771-781,1991.
    [37] Meakin JR,Hukins DW. Effect of removing the nucleus pulposus on the deformation of annulus fibrosus during compression of the intervertebral disc. J Biomech, 2000,33(5):575.
    [38] Meakin JR,Redpath TW,Hukins DW. The effect of partial removal of the nucleus pulposus from the intervertebral disc on the response of the human annulus fibrosus to compression. Clin Biomech,2001,16(2):121.
    [39] Beadle OA: The intervertebral discs. Observations on their normal and morbid anatomy in relation to certain spinal deformities. Special Report Series(161: 7-77,1931.
    [40] Harris RI, MacNab I: Structural changes in the lumbar intervertebral discs. J Bone Joint Surg 36B:304-322,1954.
    [41] Nachemson A, Lewin T, Maroudas A, Freeman MAR: In vitro diffusion of dye through the. end-plates and the annulus fibrosus of human inter-vertebraldiscs. Acta Orthop Scand41:589-607,1970.
    [42] Ogata K, Whiteside LA: Nutritional pathways of the intervertebral disc. An experimental study using hydrogen washout technique. Spine 6:211-216,1981.
    [43] Aspden RM, Hickey DS, Hukins DWL: Determination of collagen fibril orientation in the cartilage of vertebral endplate. Connect Tissue Res 9:83-87, 1981.
    [44] Brinckmann P, Frobin W, Hierholzer E, Horst M: Deformation of the vertebral end-plate under axial loading of the spine. Spine 8:851-856,1983.
    [45] Rolander SD, Blair WE: Deformation and fracture of the lumbar vertebral end plate. Orthop Clin North Am 6:75-82, 1975.
    [46] Shirazi-Ad1 A: Finite-element simulation of changes in the fluid content of human lumbar discs: mechanical and clinical implications. Spine 17:206-212, 1992.
    [47] Simon BR, Wu JSS, Carlton MW, Evans JH, Kazarian LE: Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk. J Biom ch Eng 107:327-335,1985.
    [48] Mak AF: The apparent viscoelastic behavior of articular cartilage: the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows. J Biomech Eng 108:123-130, 1986.
    [49] Eurell JAC, Kazarian LE: The vertebral cartilaginous endplate of the preadult rhesus monkey (macaca mulatta): a correlative scanning electron- and light-microscopic study. Spine 11:483-486,1986c
    [50] Inoue H: Three-dimensional architecture of lumbar intervertebral discs. Soine 6:139-146. 1981.
    [51] Nussbaum NS: Cartilage of the intervertebral disc endplate: a histological, histochemical and fine structure study.Wright-Patterson AFB,81-122. 1981.
    [52] Shirazi-Adl A, Ahmed AM, Shrivastava SC: A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. J Biomech 19:331-350,1986.
    [53] Shirazi-Adl A: Finite-element simulation of changes in the fluid content of human lumbar discs: mechanical and clinical implications. Spine 17:206-212, 1992.
    [54] Simon BR, Wu JSS, Carlton MW, Evans JH, Kazarian LE: Structural models for human spinal motion segments based on a poroelastic view of the intervertebral disk. J Biom ch Eng 107:327-335,1985.
    [55] Best BA, Setton LA, Guilak F, Ratcliffe A, Weidenbaum M, Mow VC: Permeability and compressive stiffness of annulus fibrosus: variation with site and composition. Trans Orthop Res Soc 14:354,1989.
    [56] Broberg KB: On the mechanical behavior of intervertebral discs. Spine 8:151-161,1983.
    [57] Perey 0: Fracture of the vertebral endplate in the lumbar spine. An experimental biomechanical investigation. Acta Orthop Scand (Suppl)25:7-88, 1957.
    [58] Roberts, S., Urban, J.P., Evans, H., Eisenstein, S.M., 1996. Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21 (4), 415-420.
    [59] Spilker, R.L., Daugirda, D.M., Schultz, A.B., 1984. Mechanical response of a simple finite element model of the intervertebral disc under complex loading. Journal of Biomechanics 17 (2), 103-112.
    [60] Brinckmann, P., Horst, M., 1985. The influence of vertebral body fracture, intradiscal injection, and partial discectomy on the radial bulge and height of human lumbar discs. Spine 10 (2), 138-145.
    [61] Brinckmann, P., Frobin, W., Hierholzer, E., Horst, M., 1983. Deformation of the vertebral end-plate under axial loading of the spine. Spine 8 (8), 851-856.
    [62] Langelier, E., Buschmann, M.D., 2003. Increasing strain and strain rate strengthen transient stiffness but weaken the response to subsequent compression for articular cartilage in unconfined compression. Journal of Biomechanics 36 (6), 853-859.
    [63] Bernick S, Cailliet R: Vertebral end-plate changes with aging of human vertebrae. Spine 7:97-102,1982.
    [64] Donisch EW, Trapp W: The cartilage endplates of the human vertebral column (some considerations of postnatal development). Anat Rec 169:705-716,1971.
    [65] Coventry MB, Ghormley RK, Kernohan JW The intervertebral disc: its microscopic anatomy and pathology. Part 11: Changes in the intervertebral disc concomitant with age. J Bone Joint Surg 27:233-247,1945.
    [66] Eyre D, Benya P, Buckwalter J, Caterson B, Heinegard D, Oegema T, Pearce R, Pope M, Urban J: Basic science perspectives.Part B. Intervertebral disc. In: New Perspectives on Low Back Pain, pp 147-207. 1989.
    
    [67] Urban, J: "Disc Biochemistry in Relation to Function." The Lumbar Spine, 2~(nd) Ed. Ed by JN Weinstein and SW Wiesel. Philadelphia, W.B. Saunders Company, (1996), pp. 271-281.
    [68] Bayliss, MT, Johnstone, B, and O'Brien, JP: "Proteoglycan Synthesis in the Human Intervertebral Disc: Variation With Age, Region, Pathology," Spine 13(9): (1988), pp. 972-981.
    [69] Urban, JPG and A Maroudas: "Swelling of the Intervertebral Disc In Vitro." Connective Tissue Research 9(1): (1981), 1-10.
    [70] Pedrini2Mille A,Maynard JA,Dumova GN, et al. Effects ofmicrogravity on the composition of the intervertebral disk [ J ]. J App 1 Physiol,1992, 73: 26-32.
    [71] Urban JPG. The chondrocyte. A cell under p ressure[ J ]. Br J Rheumatol, 1994, 33:901-908.
    [72] Bayliss, MT and B Johnstone: "Biochemistry of the Intervertebral Disc." The Lumbar Spine and Back Pain. 4~(th) Ed. Ed by MIV Jayson. Edinburgh, Churchill Livingstone. (1992), pp. 111-131.
    [73] An, HS et al: "Disc Degeneration: Summary." Spine 29(23): (2004), pp. 2677-2678.
    [74] Huyghe JM, Houben GB, Drost MR, et al. An ionised/non-ionised dual porosity model of intervertebral disc tissue. Biomech Model Mechanobiol 2003;2:3-19.
    [75] Iatridis JC, Laible JP, Krag MH. Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model. J Biomech Eng 2003; 125:12-24.
    [76] Palmer, EI et al: "The Compressive Creep Properties of Normal and Degenerated Murine Intervertebral Discs." Journal of Orthopaedic Research 22: (2004), pp. 164-9.
    [77] Wilke HJ, Kettler A, Claes LE. Are sheep spines a valid biomechanical model for human spines? Spine 1997;22:2365-74.
    [78] Holzapfel GA, Schulze-Bauer CA, Feigl G, et al. Single lamellar mechanics of the human lumbar anulus fibrosus. Biomech Model Mechanobiol 2005;3:125-40.
    [79] Race A, Broom ND, Robertson P. Effect of loading rate and hydration on the mechanical properties of the disc. Spine 2000;25:662-9.
    [80] Nuckley DJ, Hertsted SM, Eck MP, et al. Effect of displacement rate on the tensile mechanics of pediatric cervical functional spinal units. J Biomech 2005;38:2266-75.
    [81] Elias PZ, Nuckley DJ, Ching RP. Effect of loading rate on the compressive mechanics of the immature baboon cervical spine. J Biomech Eng 2006;128:18-23.
    [82] D. S. Lu. Young Investigator Award Winner: Spinal Flexibility Increase After Chymopapain Injection Is Dose Dependent. Spine 29(2): 123-128, 2004.
    [83] Yingling VR, Callaghan JP, McGill SM. Dynamic loading affects the mechanical properties and failure site of porcine spines. Clin Biomech (BristolAvori) 1997;12:301-5.
    [84] Koeller, W., F. Funke, and F. Hartmann. Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading. Biorheology 21:675-686,1984.
    [85] Race, A., N. D. Broom, and P. Robertson. Effect of loading rate and hydration on the mechanical properties of the disc. Spine 25:662-669,2000.
    [86] Wade Johannessen, Edware J. Vresilovic,Alexander C. Wright. Intervertebral Disc Mechanics Are Restored following Cyclic Loading and Unloaded Recovery. J Biome, Vol. 32, No. 1, January 2004: 70-76.
    [87] Broberg, K. B. Slow deformation of intervertebral discs. J. Biomech. 26:501-512,1993. lOCassidy, J. J., A. Hiltner, and E. Baer. The response of the hierarchical structure of the intervertebral disc to uniaxial compression. J. Mater. Sci. Mater. Med. 1:69-80,1990.
    [88] Yu, C, K. Tsai,W. Hu, R. Lin, H. Song, and G. Chang. Geometric and morphological changes of the intervertebral disc under fatigue testing. Clin. Biomech. 18:S3-S9,2003.
    [89] John J. Costi, Ian A. Stokes,, Mack G. Gardner-Morse. Frequency-Dependent Behavior of the Intervertebral Disc in Response to Each of Six Degree of Freedom Dynamic Loading. Spine 2008; 33:1731-38.
    [90] Lu YM, Hutton WC, Gharpuray VM. Can variations in intervertebral disc height affect the mechanical function of the disc. Spine 1996;21:2208-16.
    [91] Natarajan RN, Andersson GB. The influence of lumbar disc height and cross-sectional area on the mechanical response of the disc to physiologic loading. Spine 1999;24:1873-81.
    [92] Nobuhiro Tanaka, Howard S. An: The relationship between disc degeneration and flexibility of the lumbar spine. Spine Journal (1):47-56,2001.
    [93] Haughton VM, Schmidt TA, Keele K, An HS, Lim TH. Flexibility of lumber spinal motion segments correlated to type of tears in the annulus fibrosus. J Neurosurg 2000;92:81-6.
    [94] Schmidt TA, An HS, Lim TH, Nowicki BS, Haughton VM. The stiffness of lumbar spinal motion segments with a high-intensity zone in the annulus fibrosus. Spine 1998;23:2163-73.
    [95] Krismer M, Haid C, Behensky H, Kapfinger P, Landauer F, Rachbauer F. Motion in lumbar functional spine units during side bending and axial rotation moments depending on the degree of degeneration. Spine 2000;25:2020-7.
    [96] John J. Costi , Trevor C. Hearn , Nicola L. Fazzalari et al. The effect of hydration on the stiffness of intervertebral discs in an ovine model. Clinical Biomechanics 17 (2002) 446-455.
    [97] Urban JP, Maroudas A. Swelling of the intervertebral disc in vitro. Connect Tissue Res 1981;9:1-10.
    [98] Pflaster DS, Krag MH, Johnson CC, Haugh LD, Pope MH. Effect of test environment on intervertebral disc hydration. Spine 1997;22:133-9.
    [99] Race A, Broom ND, Robertson P. Effect of loading rate and hydration on the mechanical properties of the disc. Spine 2000; 25:662-9.
    [100] [100] Hasberry S, Pearcy MJ. Temperature dependence of the tensile properties of interspinous ligaments of sheep. J Biomed Eng 1986;8:62-6.
    [101]Shirazi Adl A, Parnianpour M. Nonlinear response analysis of the human ligamentous lumbar spine in compression: on mechanisms affecting postural stability. Spine 1993; 18:147-58.
    [102] Shirzai Adl A, Parnianpour M. Role of posture in mechanics of the lumbar spine in compression. J Spinal Disord 1996;9:277-86.
    [103] Shirazi Adl A, Parnianpour M, Stabilizing role of moments and pelvic rotation on the human spine in compression. J Biomech Eng 1996; 118:26-31.
    [104] Terry CT, Roberts VL. A viscoelastic model of the human spine subjected to accelerations. J Biomech 1968;l:161-8.
    [105] Krag MK, Cohen MC, Haugh LD, Pope MH. Body heigh change during upright and recumbent postures. Spine 1990;15:202-7.
    [106]Langrana, N et al: "Biomechanical Analysis of Loads on the Lumbar Spine." The Lumbar Spine, 2~(nd) Ed. Ed by JN Weinstein and SW Wiesel. Philadelphia, W.B. Saunders Company, (1996), pp. 281-285.
    [107]Lotz, JC: "Animal Models of Intervertebral Disc Degeneration: Lessons Learned." Spine 29(23): (2004), pp. 2742-2750.
    [108] Urban JPG, Maroudas A. Swelling of the intervertebral disc in vitro. Connect Tissue Res 1981;9:1-10.
    [109]Callaghan JP, McGill SM. Frozen storage increases the ultimate compressive load of porcine vertebrae. J Orthop Res 1995;13:809-12.
    [110]Nachemson A. Lumbar intradiscal pressure. Acta Orthop Scand Suppl 1960; 43:1-104.
    [111] Panjabi MM, Krag M, Summers D, et al. Biomechanical time-tolerance of fresh cadaveric human spine specimens. J Orthop Res 1985;3:292-300.
    [112] Smeathers JE, Joanes DN. Dynamic compressive properties of human lumbar intervertebral joints: A comparison between fresh and thawed specimens. J Biomech 1988;21:425-33.
    [113] Nripendra Dhillon, MBBS, MS. Effect of Frozen Storage on the Creep Behavior of Human Intervertebral Discs. Spine 2001;26:883-888.
    [114] Bass EC, Duncan NA, Hariharan JS, et al. Frozen storage affects the compressive creep behavior of the porcine intervertebral disc. Spine 1997;22: 2867-76.
    [115] Johnstone B, Urban JPG, Roberts S, et al. The fluid content of the human intervertebral disc. Spine 1992;17:412-6.
    [116] Urban J, McMullin J. Swelling pressure of the lumbar intervertebral discs: Influence of age, spinal level, composition, and degeneration. Spine 1988;13: 179-87.
    [117] Andersson GBJ, Ortengren R, Schultz AB. Analysis and measurement of the loads on the lumbar spine during work at a table. J Biomech 1980; 13:513-20.
    [118]Eklund JAE,Corlett EN.Shrinkage as a measure of the effect of load on the spine. Spine 1984;9:189-94.
    [119] Fitzgerald JG.Changes spinal stature following brief periods of static shoulder loading. In: Royal Air Force Institute of Aviation Medicine Report #514.1972.
    [120] Krag MK, Cohen MC; Haugh LD,Pope MH. Body height change during upright and recumbent postures. Spine 1990;15:202-7.
    [121] Kramer J, Gritz A. Changes in body length by pressure dependent fluid shifts in the intervertebral discs. Z Orthop 1980; 118:161-4.
    [122] Tyrell AR, Reilley T, Troup JDG. Circadian variation in stature and the effects of spinal loading. Spine 1985;10:161-4.
    [123] Wilby J, Linge K, Reillym T, Troup JDG. Spinal shrinkage in females: Circadian variation and the effects of circuit training. Ergonomics 1987;30:47-54.
    [124]Hirsch C. The reaction of intervertebral discs to compression forces. J Bone Joint Surg [Am] 1965;37:1188-96.30.
    [125] Hirsch C, Nachemson A. A new observation on the mechanical behavior of lumbar discs. Acta Orthop Scand 1954;23:254-83.
    [126]Hedman TP, Fernie GR. In vivo measurement of lumbar spinal creep in two seated postures using magnetic resonance imaging. Spine 1995;20:178-83.
    [127]Magusson M, Almquist M, Broman H, Pope M, Hansson T.Measurement of height loss during whole body vibtation.J Spinal Disorder 1992;5:198-203.
    [128]Magusson M, Hult E, Lindstrom I, Lindell V, Pope M, Hansson T. Measurement of time dependent height loss during sitting. Clin Biomech 1990;5:137-42.
    [129]Friberg O. Lumbar instability: a dynamic approach by traction compression radiography. Spine 1987; 12:119-29.
    [130]Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A. Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 1994;19:1371-80.
    [131]Solomonow M, He Zhou B, Baratta RV, Lu Y, Zhu M, Harris M. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading. Clin Biomech 2000;15:167-75.
    [132]Guilak F, Ting-Beall HP, Baer AE, Trickey WR, Erickson GR, Setton LA. Viscoelastic properties of intervertebral disc cells. Identification of two biomechanically distinct cell populations. Spine 1999;24:2475-83.
    [133]Wade Johannessen, Dawn M. Elliott. Disc Mechanics With Trans-Endplate Partial Nucleotomy are not Fully Restored Following Cyclic Compressive Loading and Unloaded Recovery. Journal of Biomechanical Engineering. DECEMBER 2006, Vol. 128:823-828.
    [134]Cassidy, J. J., Hiltner, A., and Baer, E., 1990, "The Response of the Hierarchical Structure of the Intervertebral Disc to Uniaxial Compression," J. Mater. Sci.: Mater. Med., 1, pp. 69-80.
    [135]Keller, T. S., Spengler, D. M., and Hansson, T. H., 1987, "Mechanical Behavior of the Human Lumbar Spine. I. Creep Analysis During Static Compressive Loading," J. Orthop. Res., 5, pp. 467-478.
    [136]Adams, M. A., and Hutton, W. C, 1983, "The Effect of Fatigue on the Lumbar Intervertebral Disc," J. Bone Jt. Surg., Br. Vol., 65, pp. 199-203.
    [137]Wade Johannessen, Edward J. Vresilovic, Alexander C. Wright. Intervertebral Disc Mechanics Are Restored following Cyclic Loading and Unloaded Recovery. Annals of Biomedical Engineering, Vol. 32, No. 1, January 2004 pp. 70-76.
    [138] Kaigle, A., L. Ekstrom, S. Holm, M. Rostedt, and T. Hansson. In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: Influence of load and degeneration. J. Spinal Disord. 11:65-70,1998.
    [139]Johannessen, W., Vresilovic, E. J., Wright, A. C, and Elliott, D. M., 2004,"Intervertebral Disc Mechanics are Restored Following Cyclic Loading and Unloaded Recovery," Ann. Biomed. Eng., 32, pp. 70-76.
    [140] Solomonow, M, B. He Zhou, R. V. Baratta, Y. Lu, M. Zhu, and M. Harris. Biexponential recovery model of lumbar viscoelastic laxity and reflexive muscular activity after prolonged cyclic loading. Clin. Biomech. 15:167-175, 2000.
    [141] Kaigle A, Ekstrom L, Holm S, Rostedt M, Hansson T (1998) In vivo dynamic stiffness of the porcine lumbar spine exposed to cyclic loading: influence of load and degeneration. J Spinal Disord 11:65-70.
    [142] Ishihara, H., McNally, D.S., Urban, J.P., Hall, A.C., 1996. Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J. Appl. Physiol. 80, 839-846.
    [143]Handa, T., Ishihara, H., Ohshima, H., Osada, R., Tsuji, H., Obata, K.,1997. Effects of hydrostatic pressure on matrix synthesis and matrix metalloproteinase production in the human lumbar intervertebral disc. Spine 22,1085-1091.
    [144] Liu, G.Z., Ishihara, H., Osada, R., Kimura, T., Tsuji, H., 2001. Nitric oxide mediates the change of proteoglycan synthesis in the human lumbar intervertebral disc in response to hydrostatic pressure. Spine 26,134-141.
    [145] Wang, J.Y., Baer, A.E., Kraus, V.B., Setton, L.A., 2001. Intervertebral disc cells exhibit differences in gene expression in alginate and monolayer culture. Spine 26,1747-1752.
    [146] Hasegawa, K., C. H. Turner, J. Chen, and D. B. Burr. Effect of disc lesion on microdamage accumulation in lumbar vertebrae under cyclic compression loading. Clin. Orthop. Relat. Res. 311:190-198, 1995.
    [147] Liu, Y. K., G. Njus, J. Buckwalter, and K. Wakano. Fatigue response of lumbar intervertebral joints under axial cyclic loading.Spine 8:857-865, 1983.
    [148] Adams, M. A., and W. C. Hutton. Gradual disc prolapse. Spine 10:524-531, 1985.
    [149] Gordon, S. J., K. H. Yang, P. J. Mayer, A. H. Mace Jr., V. L. Kish, and E. L. Radin. Mechanism of disc rupture.Apreliminary report. Spine 16:450-456, 1991.
    [150] Yoganandan, N., J. F. Cusick, F. A. Pintar, K. Droese, and J. Reinartz. Cyclic compression-flexion loading of the human lumbar spine. Spine 19:784-790; Discussion 791,1994.
    [151]Izambert, D. Mitton, M. Thourot. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Eur Spine J (2003) 12 : 562-566.
    [152] Jeffrey J. MacLean, Julia P. Owen, James C. Iatridis. Role of endplates in contributing to compression behaviors of motion segments and intervertebral discs. J. Biom 40 (2007) 55-63.
    [153]Ekstrom, L., Holm, S., Holm, A.K., Hansson, T., 2004. In vivo porcine intradiscal pressure as a function of external loading. Journal of Spinal Disorder Technology 17 (4), 312-316.
    [154]Kasra M, Shirazi-Adl A, Drouin G (1992) Dynamics of human lumbar intervertebral joints. Experimental and finite-element investigations. Spine 17:93-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700