减轻小胶质细胞功能紊乱可能是雷公藤氯内酯醇改善Alzheimer病淀粉样蛋白病理损害的机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们对β-淀粉样蛋白(amyloid-β,Aβ)介导的小胶质细胞免疫异常在阿尔茨海默病(Alzheimer's Disease, AD)发病机制中所起的关键性作用的认识,通过抑制脑内胶质细胞过度免疫激活所引起的Aβ神经毒性的策略已日益受到重视。AD脑内异常聚集的Aβ过度激活了小胶质细胞非特异性的免疫炎症反应并介导神经损伤。小胶质细胞表面相关的“受体”、细胞内丝裂原活化的蛋白激酶(MAPKs)、核因子-κB和细胞因子可能参与Aβ激活小胶质细胞的整个过程。同时,近年来人们对AD早期阶段的Aβ成分——可溶性Aβ寡聚体的研究也取得了重要的进展。研究Aβ寡聚体如何诱导小胶质细胞活化及其引发的神经毒性、明确其中的相应环节,对于探讨神经免疫炎症机制在AD发生、发展中的作用及寻找防治AD的药物靶标具有重要意义。
     天然植物减毒单体——雷公藤氯内酯醇(tripchlorolide, T4)具有很强的免疫抑制和抗炎活性。我们前期的研究发现,T4明显改善LPS诱导的小胶质条件培养基对皮层神经元的炎性损伤作用,并明显抑制LPS诱导的小胶质细胞产生炎症因子及细胞内氧自由基的产生。推测T4可能同样减轻寡聚态Aβ介导的胶质-炎症反应引起的神经毒性作用、并可能由此改善AD动物的认知能力。因此,本课题首先研究Aβ(1-42)对小胶质细胞活化、吞噬功能的影响及其机制;在此基础上观察T4对寡聚态Aβ(1-42)引发的胶质-炎症反应所产生的神经元毒性的影响,并探讨T4在Aβ介导小胶质细胞中MAPKs/NF-κB炎症信号通路的具体药理靶点和机制。最后选择快速老化小鼠P8(SAMP8)作为散发型AD的动物模型,从动物整体水平验证T4对SAMP8学习记忆功能的影响,并初步观察和评价药物的非临床安全性。结果总结如下:
     (一)Aβ(1-42)在AD炎症细胞模型中的作用及信号机制:
     1.Aβ(1-42)能够诱导小胶质细胞形态发生分枝化或阿米巴样改变,但凝聚态和寡聚态Aβ(1-42)诱导小胶质细胞形态的表型有所不同。
     2.寡聚态Aβ(1-42)激活小胶质细胞,能更早、更强烈地释放炎症介质(IL-1β、TNF-α、PGE2、NO)的产量、诱导细胞内氧自由基的产生,同时损害了小胶质细胞的吞噬功能。
     3.凝聚态Aβ(1-42)维持了小胶质细胞缓慢、相对缓和且持续性的炎症反应。
     4.寡聚态Aβ(1-42)损害了凝聚态Aβ(1-42)诱导的小胶质细胞的吞噬能力并与炎症介质水平的增高有关。早期抗炎和抗氧化治疗有助于改善AD炎症病理进程中小胶质细胞功能的损害。
     5.寡聚态Aβ(1-42)可通过激活JNK、ERK和NF-κB信号通路诱导小胶质细胞炎症反应,但不通过p38MAPK起作用。
     (二)T4在AD炎症细胞模型中的神经药理作用及其机制:
     1.T4对神经元及小胶质细胞活力的影响具有选择性:较高剂量的T4(≥20nM)对小胶质细胞的抑制效应远大于神经元。
     2.T4广谱、强效地抑制寡聚态Aβ(1-42)诱导小胶质细胞释放炎性介质(IL-1β、TNF-α、PGE2、NO)的产量及细胞内iNOS及COX-2蛋白的表达。
     3.T4减轻寡聚态Aβ(1-42)诱导的小胶质细胞-炎症反应引起的神经毒性并保护神经元,作用与其抑制小胶质细胞产生炎症介质水平的增高有关。
     4.一定剂量的T4(10nM)并无直接影响小胶质细胞的吞噬功能,但部分逆转寡聚态Ap对小胶质细胞吞噬的抑制。
     5.T4抑制寡聚态Aβ(1-42)诱导的小胶质细胞内JNK和NF-κB炎症信号的激活水平,但不影响p38MAPK及ERK活化水平。
     (三)T4对快速老化小鼠P8认知和行为障碍的影响及其非临床安全性观察
     1.低剂量(0.25~1.0μg/kg.d) T4长期腹腔注射给药25个月能够明显改善快速老化小鼠P8的视空间学习记忆及行为能力。
     2.低剂量T4长期慢性给药没有影响动物的生存率。
     3.T4长期慢性给药并不影响动物的外周血白细胞、血红蛋白、血小板水平,也未损害动物的心、肝、肾功能等生化指标。
     以上结果提示,早期AD病理事件中,β-淀粉样肽寡聚体诱导了小胶质细胞产生强烈的免疫炎症反应,随后抑制了细胞的吞噬功能;JNK、ERK和NF-κB是寡聚态Aβ激活小胶质细胞产生炎症反应的主要信号分子。雷公藤氯内酯醇(T4)可通过JNK及NF-κB信号通路抑制寡聚态Aβ诱导的胶质-炎症反应,并由此减轻炎症介导的神经毒性作用、保护神经元;同时T4改善了AD动物的认知和行为能力。因此,天然植物减单体T4有望成为防治AD有前途的候选药物。
Recent research has focused on soluble oligomeric assemblies ofβ-amyloid peptides (Aβ) as the proximate cause of neuroinflammation, synaptic loss and the eventual dementia associated with Alzheimer's disease (AD). Oligomeric AP (oAβ), which may be the major pathogenic form of Aβin the early stages of AD, can stimulate glia to induce a more profound inflammatory response and neurotoxicity than fibrillar AP (fAp). The inhibition of Ap-dependent activation of microglia could be an effective therapeutic approach to delay the progression of AD. Additionally, an aberrant expression of mitogen-activated protein kinases (MAPKs) and activation of nuclear factor-κB (NF-κB) in Aβ-induced microglia is directly correlated with pathogenic events of AD. Accordingly, strategies to suppress MAPKs and/or NF-κB activation may attenuate neuroinflammation and neuronal damage, which will be of benefit in treatment of AD.
     Extracts of natural herb Tripterygium wilfordii Hook. F (TWHF) have been found to have potent anti-inflammatory and immunosuppressive functions and widely used in China for treatment of rheumatoid arthritis. Our previous findings demonstrated that tripchlorolide (T4), an extract of TWHF, even at nanomolar level exerted potent anti-inflammatory effects on LPS-stimulated microglial cells and protected neuronal cells from neuroinflammatory toxicity. It suggest that T4 could be a potential neuroprotective agent against neuroinflammatory process, such as AD.
     Here we firstly tested the effects of oAβ(1-42) versus fAβ(1-42) on the cells viability, the expression of inflammatory mediators, as well as phagocytosis function in microglial cells, and explored the activations of MAPKs and NF-κB signaling pathways in oA(3-induced microglia. Secondly, we investigated whether T4 suppressed oAβ-induced microglial activation and protected against microglia-mediated oAβneurotoxicity. Also, we gained insights into the anti-inflammatory molecular mechanisms of T4 in oAβ-stimulated microglial cells. Lastly, we chose senescence-accelerated mouse Prone 8 (SAMP8) as a model of sporadic AD to testify if T4 ameliorated learning and memory deficits.
     The results showed that oAβincreased interleukin-1β(IL-1β) level in a manner that was rapid, potent and transient. Also, it induced higher levels of tumor necrosis factor-α(TNF-α), nitric oxide (NO), prostaglandin E2 (PGE2) and intracellular SOA than fAβ. Interestingly, pretreatment of microglia with oAβfor 6~12h attenuated the capacity of microglial phagocytosis following fAβexposure. The further data was shown that a well inverse correlation between microglial phagocytosis and inflammatory mediators. Also, IL-1β, LPS and tert-butyl hydroperoxide (t-BHP) all decreased phagocytosis levels in fAβinduced-microglia, which could be relieved by NF-κB inhibitor, pyrrolidone dithiocarbamate (PDTC) and N-Acetyl-L-cysteine (NAC). Meanwhile, in microglia, the expressions of MAPKs (p38MAPK, ERK and JNK), I-κB and NF-κB were induced by oAβin a time-dependent manner. A peak activity of MAPKs and NF-κB was observed at 30-120min, and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were significantly elevated after oAβstimulation for 24h. Inductions of inflammatory mediators, iNOS and COX-2 were attenuated by JNK inhibitor (SP600125), ERK inhibitor (U0126) and PDTC, but not by p38 inhibitor (SB203580), in oAβ-stimulated microglia.
     Further, the conditioned media from oAβ-treated microglial cells (Aβ-CM) was applied to treat Neuro-2A and primary cortical neurons. The findings confirmed that the neuronal toxic effect of oAp was preferentially mediated by microglia. Therefore, Aβ-CM was applied to the examination of the neuroprotective effect of T4. As expected, T4 protected neuronal cells from microglia-mediated oAβtoxicity. It significantly attenuated oAβ-induced release of inflammatory productions, including TNF-α, IL-1β, NO and PGE2, in a dose-dependent manner (P<0.05). It also reversed oAβ-mediated microglial phagocytosis injury, as well as down-regulated the protein levels of iNOS and COX-2 in microglia. Further molecular mechanism study demonstrated that T4 inhibited the nuclear translocation of NF-κB without affecting I-κBαphosphorylation. It repressed AP-induced JNK phosphorylation but not ERK or p38 MAPK.
     Lastly, in order to testify if T4 would ameliorate cognitive deficits, the 7-month-old SAMP8 mice were chronically treated with T4 (0.25,1.0,4.0μg/kg per day, injected intraperitoneally for 2.5 months, respectively). The SAMR1 mice with the same age were used as "normal aging" control. A NF-κB inhibitor, PDTC-treated SAMP8 mice (50mg/kg per day, i.p.) were used as the drug treatment controls. The beneficial role of T4 was manifested to improve learning and memory function in 10.5-month-old SAMP8 mice by Y-maze and Morris water maze behaviour tests. The optimal dose of T4 was 0.25~1.0μg/kg per day, which did not show significant side-effects of T4 on the blood routine test, blood biochemical assays, as well as the survival of mice.
     Collectively, these results suggest that Aβoligomers induces a potent inflammatory response, subsequently exacerbates microglial phagocytosis in the early AD pathological affairs, and that activation of microglia by Aβoligomers is through NF-κB, JNK and ERK signaling which subsequently lead to the upregulation of inflammatory mediators. T4 protects neuronal cells by blocking inflammatory responses of microglia to Aβoligomers and that it acts on the signaling of NF-κB and JNK which are involved in the modulation of this process. Also, T4 ameliorates cognitive deficits in senescence-accelerated AD mice. Therefore, our findings may provide new insight for developing the clinical application of tripchlorolide to Alzheimer's disease.
引文
[1]Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging.1997,18(4):351-357.
    [2]Braak H, Braak E. Staging of Alzheimer-related cortical destruction. Int Psychogeriatr.1997,9 Suppl 1:257-261; discussion 269-272.
    [3]Dong MJ, Peng B, Lin XT, et al. The prevalence of dementia in the People's Republic of China: a systematic analysis of 1980-2004 studies. Age Ageing.2007,36(6):619-624.
    [4]Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics. Science.2002,297(5580):353-356.
    [5]Dahlgren KN, Manelli AM, Stine WB, Jr., et al. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem.2002,277(35):32046-32053.
    [6]White JA, Manelli AM, Holmberg KH, et al. Differential effects of oligomeric and fibrillar amyloid-beta 1-42 on astrocyte-mediated inflammation. Neurobiol Dis.2005,18(3):459-465.
    [7]Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration:lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol.2007,8(2):101-112.
    [8]Lacor PN, Buniel MC, Furlow PW, et al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer's disease. J Neurosci.2007,27(4):796-807.
    [9]Wang Q, Rowan MJ, Anwyl R. Beta-amyloid-mediated inhibition of NMDA receptor-dependent long-term potentiation induction involves activation of microglia and stimulation of inducible nitric oxide synthase and superoxide. J Neurosci.2004,24(27):6049-6056.
    [10]Knobloch M, Farinelli M, Konietzko U, et al. Abeta oligomer-mediated long-term potentiation impairment involves protein phosphatase 1-dependent mechanisms. J Neurosci. 2007,27(29):7648-7653.
    [11]Poling A, Morgan-Paisley K, Panos JJ, et al. Oligomers of the amyloid-beta protein disrupt working memory:Confirmation with two behavioral procedures. Behav Brain Res.2008.
    [12]Cotman CW, Tenner AJ, Cummings BJ. beta-Amyloid converts an acute phase injury response to chronic injury responses. Neurobiol Aging.1996,17(5):723-731.
    [13]Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000,21(3):383-421.
    [14]Farfara D, Lifshitz V, Frenkel D. Neuroprotective and neurotoxic properties of glial cells in the pathogenesis of Alzheimer's disease. J Cell Mol Med.2008,12(3):762-780.
    [15]McDonald DR, Bamberger ME, Combs CK, et al. beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci. 1998,18(12):4451-4460.
    [16]Li Y, Liu L, Barger SW, et al. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci.2003,23(5):1605-1611.
    [17]Bonaiuto C, McDonald PP, Rossi F, et al. Activation of nuclear factor-kappa B by beta-amyloid peptides and interferon-gamma in murine microglia. J Neuroimmunol.1997,77(1):51-56.
    [18]Weiner HL, Frenkel D. Immunology and immunotherapy of Alzheimer's disease. Nat Rev Immunol.2006,6(5):404-416.
    [19]Okello A, Edison P, Archer HA, et al. Microglial activation and amyloid deposition in mild cognitive impairment:a PET study. Neurology.2009,72(1):56-62.
    [20]Seabrook TJ, Jiang L, Maier M, et al. Minocycline affects microglia activation, Abeta deposition, and behavior in APP-tg mice. Glia.2006,53(7):776-782.
    [21]Choi Y, Kim HS, Shin KY, et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. Neuropsychopharmacology. 2007,32(11):2393-2404.
    [22]Bacher M, Dodel R, Aljabari B, et al. CNI-1493 inhibits Abeta production, plaque formation, and cognitive deterioration in an animal model of Alzheimer's disease. J Exp Med. 2008,205(7):1593-1599.
    [23]Steiner JP, Connolly MA, Valentine HL, et al. Neurotrophic actions of nonimmunosuppressive analogues of immunosuppressive drugs FK506, rapamycin and cyclosporin A. Nat Med. 1997,3(4):421-428.
    [24]吕诚,胡小令,石嘉庆,等.雷公藤多甙对大鼠海马内注射Aβ所致学习记忆障碍的改善作用.中国行为医学科学.2005,14(1):39-40,52.
    [25]吕诚,胡小令,张宪郁,等.雷公藤多甙对大鼠海马内注射β-淀粉样蛋白后小胶质细胞反应的影响.解剖学杂志.2005,28(2):225-226.
    [26]Zhou HF, Liu XY, Niu DB, et al. Triptolide protects dopaminergic neurons from 参考文献inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol Dis.2005,18(3):441-449.
    [27]Pan XD, Chen XC, Zhu YG, et al. Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol. 2008,76(3):362-372.
    [28]Minghetti L. Role of inflammation in neurodegenerative diseases. Curr Opin Neurol. 2005,18(3):315-321.
    [29]Roher AE, Chaney MO, Kuo YM, et al. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J Biol Chem. 1996,271(34):20631-20635.
    [30]Zou J, Zhu F, Liu J, et al. Catalytic activity of human ADAM33. J Biol Chem. 2004,279(11):9818-9830.
    [31]Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia. Lancet.2001,358(9280):461-467.
    [32]Blasi E, Barluzzi R, Bocchini V, et al. Immortalization of murine microglial cells by a v-raf/v-myc carrying retrovirus. J Neuroimmunol.1990,27(2-3):229-237.
    [33]McCarthy KD, de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol.1980,85(3):890-902.
    [34]Stine WB, Jr., Dahlgren KN, Krafft GA, et al. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J Biol Chem. 2003,278(13):11612-11622.
    [35]Moore KJ, El Khoury J, Medeiros LA, et al. A CD36-initiated signaling cascade mediates inflammatory effects of beta-amyloid. J Biol Chem.2002,277(49):47373-47379.
    [36]Green LC, Wagner DA, Glogowski J, et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem.1982,126(1):131-138.
    [37]Choi HS, Kim JW, Cha YN, et al. A quantitative nitroblue tetrazolium assay for determining intracellular superoxide anion production in phagocytic cells. J Immunoassay Immunochem. 2006,27(1):31-44.
    [38]Koenigsknecht J, Landreth G. Microglial phagocytosis of fibrillar beta-amyloid through a betal integrin-dependent mechanism. J Neurosci.2004,24(44):9838-9846.
    [39]Zierler S, Kerschbaum HH. Blockade of chloride conductance antagonizes PMA-induced ramification in the murine microglial cell line, BV-2. Brain Res.2005,1039(1-2):162-170.
    [40]Woo MS, Jang PG, Park JS, et al. Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells. Brain Res Mol Brain Res.2003,113(1-2):86-96.
    [41]Ito S, Sawada M, Haneda M, et al. Amyloid-beta peptides induce cell proliferation and macrophage colony-stimulating factor expression via the PI3-kinase/Akt pathway in cultured Ra2 microglial cells. FEBS Lett.2005,579(9):1995-2000.
    [42]Zhou J, Zhang S, Zhao X, et al. Melatonin impairs NADPH oxidase assembly and decreases superoxide anion production in microglia exposed to amyloid-betal-42. J Pineal Res. 2008,45(2):157-165.
    [43]Du Yan S, Zhu H, Fu J, et al. Amyloid-beta peptide-receptor for advanced glycation endproduct interaction elicits neuronal expression of macrophage-colony stimulating factor:a proinflammatory pathway in Alzheimer disease. Proc Natl Acad Sci U S A. 1997,94(10):5296-5301.
    [44]Morgan D. Modulation of microglial activation state following passive immunization in amyloid depositing transgenic mice. Neurochem Int.2006,49(2):190-194.
    [45]Simard AR, Soulet D, Gowing G, et al. Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron.2006,49(4):489-502.
    [46]Takahashi K, Prinz M, Stagi M, et al. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med.2007,4(4):e124.
    [47]Neumann H, Kotter MR, Franklin RJ. Debris clearance by microglia:an essential link between degeneration and regeneration. Brain.2009,132(Pt 2):288-295.
    [48]Fiala M, Lin J, Ringman J, et al. Ineffective phagocytosis of amyloid-beta by macrophages of Alzheimer's disease patients. J Alzheimers Dis.2005,7(3):221-232; discussion 255-262.
    [49]Streit WJ. Microglia and neuroprotection:implications for Alzheimer's disease. Brain Res Brain Res Rev.2005,48(2):234-239.
    [50]Flanary BE, Sammons NW, Nguyen C, et al. Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res.2007,10(1):61-74.
    [51]Miller KR, Streit WJ. The effects of aging, injury and disease on microglial function:a case for cellular senescence. Neuron Glia Biol.2007,3(3):245-253.
    [52]Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer's disease mice. J Neurosci.2008,28(33):8354-8360.
    [53]Wojtowicz WM, Farzan M, Joyal JL, et al. Stimulation of enveloped virus infection by beta-amyloid fibrils. J Biol Chem.2002,277(38):35019-35024.
    [54]El Khoury J, Hickman SE, Thomas CA, et al. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature.1996,382(6593):716-719.
    [55]Tamagno E, Bardini P, Guglielmotto M, et al. The various aggregation states of beta-amyloid 1-42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med.2006,41(2):202-212.
    [56]Kopec KK, Carroll RT. Alzheimer's beta-amyloid peptide 1-42 induces a phagocytic response in murine microglia. J Neurochem.1998,71(5):2123-2131.
    [57]Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005,25(36):8240-8249.
    [58]Shimizu E, Kawahara K, Kajizono M, et al. IL-4-induced selective clearance of oligomeric beta-amyloid peptide(1-42) by rat primary type 2 microglia. J Immunol. 2008,181(9):6503-6513.
    [59]Sheng JG, Zhu SG, Jones RA, et al. Interleukin-1 promotes expression and phosphorylation of neurofilament and tau proteins in vivo. Exp Neurol.2000,163(2):388-391.
    [60]Buxbaum JD, Oishi M, Chen HI, et al. Cholinergic agonists and interleukin 1 regulate processing and secretion of the Alzheimer beta/A4 amyloid protein precursor. Proc Natl Acad Sci U S A.1992,89(21):10075-10078.
    [61]Li Y, Liu L, Kang J, et al. Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci.2000,20(1):149-155.
    [62]Sheng JG, Griffin WS, Royston MC, et al. Distribution of interleukin-1-immunoreactive microglia in cerebral cortical layers:implications for neuritic plaque formation in Alzheimer's disease. Neuropathol Appl Neurobiol.1998,24(4):278-283.
    [63]Schubert P, Rudolphi K. Interfering with the pathologic activation of microglial cells and0020astrocytes in dementia. Alzheimer Dis Assoc Disord.1998,12 Suppl 2:S21-28.
    [64]Lee SC, Dickson DW, Brosnan CF. Interleukin-1, nitric oxide and reactive astrocytes. Brain Behav Immun.1995,9(4):345-354.
    [65]Kim YJ, Hwang SY, Oh ES, et al. IL-lbeta, an immediate early protein secreted by activated microglia, induces iNOS/NO in C6 astrocytoma cells through p38 MAPK and NF-kappaB pathways. J Neurosci Res.2006,84(5):1037-1046.
    [66]Combs CK, Karlo JC, Kao SC, et al. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci.2001,21(4):1179-1188.
    [67]Floden AM, Li S, Combs CK. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci. 2005,25(10):2566-2575.
    [68]Lee P, Son D, Lee J, et al. Excessive production of nitric oxide induces the neuronal cell death in lipopolysaccharide-treated rat hippocampal slice culture. Neurosci Lett.2003,349(1):33-36.
    [69]He Y, Imam SZ, Dong Z, et al. Role of nitric oxide in rotenone-induced nigro-striatal injury. J Neurochem.2003,86(6):1338-1345.
    [70]Medeiros R, Prediger RD, Passos GF, et al. Connecting TNF-alpha signaling pathways to iNOS expression in a mouse model of Alzheimer's disease:relevance for the behavioral and synaptic deficits induced by amyloid beta protein. J Neurosci.2007,27(20):5394-5404.
    [71]Munch G, Gasic-Milenkovic J, Dukic-Stefanovic S, et al. Microglial activation induces cell death, inhibits neurite outgrowth and causes neurite retraction of differentiated neuroblastoma cells. Exp Brain Res.2003,150(1):1-8.
    [72]Kawano T, Anrather J, Zhou P, et al. Prostaglandin E2 EP1 receptors:downstream effectors of COX-2 neurotoxicity. Nat Med.2006,12(2):225-229.
    [73]Casolini P, Catalani A, Zuena AR, et al. Inhibition of COX-2 reduces the age-dependent increase of hippocampal inflammatory markers, corticosterone secretion, and behavioral impairments in the rat. J Neurosci Res.2002,68(3):337-343.
    [74]Lim GP, Yang F, Chu T, et al. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol Aging.2001,22(6):983-991.
    [75]Min KJ, Jou I, Joe E. Plasminogen-induced IL-lbeta and TNF-alpha production in microglia is regulated by reactive oxygen species. Biochem Biophys Res Commun.2003,312(4):969-974.
    [76]Kang J, Park EJ, Jou I, et al. Reactive oxygen species mediate A beta(25-35)-induced activation of BV-2 microglia. Neuroreport.2001,12(7):1449-1452.
    [77]May MJ, Ghosh S. Signal transduction through NF-kappa B. Immunol Today.1998,19(2):80-88.
    [78]Baeuerle PA, Baltimore D. NF-kappa B:ten years after. Cell.1996,87(1):13-20.
    [79]Kaltschmidt B, Uherek M, Volk B, et al. Transcription factor NF-kappaB is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc Natl Acad Sci U S A.1997,94(6):2642-2647.
    [80]Akama KT, Albanese C, Pestell RG, et al. Amyloid beta-peptide stimulates nitric oxide production in astrocytes through an NFkappaB-dependent mechanism. Proc Natl Acad Sci U S A.1998,95(10):5795-5800.
    [81]Bales KR, Du Y, Holtzman D, et al. Neuroinflammation and Alzheimer's disease:critical roles for cytokine/Abeta-induced glial activation, NF-kappaB, and apolipoprotein E. Neurobiol Aging. 2000,21(3):427-432; discussion 451-423.
    [82]Chen J, Zhou Y, Mueller-Steiner S, et al. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. J Biol Chem. 2005,280(48):40364-40374.
    [83]Qiu D, Zhao G, Aoki Y, et al. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation. J Biol Chem.1999,274(19):13443-13450.
    [84]Cai H, Wang Y, McCarthy D, et al. BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. Nat Neurosci.2001,4(3):233-234.
    [85]Paris D, Patel N, Quadros A, et al. Inhibition of Abeta production by NF-kappaB inhibitors. Neurosci Lett.2007,415(1):11-16.
    [86]Bourne KZ, Ferrari DC, Lange-Dohna C, et al. Differential regulation of BACE1 promoter activity by nuclear factor-kappaB in neurons and glia upon exposure to beta-amyloid peptides. J Neurosci Res.2007,85(6):1194-1204.
    [87]Kim SH, Smith CJ, Van Eldik LJ. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging.2004,25(4):431-439.
    [88]Giri RK, Selvaraj SK, Kalra VK. Amyloid peptide-induced cytokine and chemokine expression in THP-1 monocytes is blocked by small inhibitory RNA duplexes for early growth response-1 messenger RNA. J Immunol.2003,170(10):5281-5294.
    [89]Bodles AM, Barger SW. Secreted beta-amyloid precursor protein activates microglia via JNK and p38-MAPK. Neurobiol Aging.2005,26(1):9-16.
    [90]Sondag CM, Dhawan G, Combs CK. Beta amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation.2009,6:1.
    [91]Tao X, Cush JJ, Garret M, et al. A phase I study of ethyl acetate extract of the chinese antirheumatic herb Tripterygium wilfordii hook F in rheumatoid arthritis. J Rheumatol. 2001,28(10):2160-2167.
    [92]Yu DQ, Zhang DM, Wang HB, et al. [Structure modification of triptolide, a diterpenoid from Tripterygium wilfordii]. Yao Xue Xue Bao.1992,27(11):830-836.
    [93]Cheng XX, Li FQ, Huang M, et al. [Protective effect of tripchlorolide on dopaminergic neurons in partially lesioned rat model of Parkinson's disease]. Yao Xue Xue Bao.2002,37(5):339-342.
    [94]Cho BP, Sugama S, Shin DH, et al. Microglial phagocytosis of dopamine neurons at early phases of apoptosis. Cell Mol Neurobiol.2003,23(4-5):551-560.
    [95]Chen XC, Chen LM, Zhu YG, et al. Involvement of CDK4, pRB, and E2F1 in ginsenoside Rgl protecting rat cortical neurons from beta-amyloid-induced apoptosis. Acta Pharmacol Sin. 2003,24(12):1259-1264.
    [96]Gan L, Ye S, Chu A, et al. Identification of cathepsin B as a mediator of neuronal death induced by Abeta-activated microglial cells using a functional genomics approach. J Biol Chem. 2004,279(7):5565-5572.
    [97]Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science.2003,302(5651):1760-1765.
    [98]Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia.2006,53(5):551-556.
    [99]Li FQ, Cheng XX, Liang XB, et al. Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F, on dopaminergic neurons. Exp Neurol.2003,179(1):28-37.
    [100]Haas J, Storch-Hagenlocher B, Biessmann A, et al. Inducible nitric oxide synthase and argininosuccinate synthetase:co-induction in brain tissue of patients with Alzheimer's dementia and following stimulation with beta-amyloid 1-42 in vitro. Neurosci Lett.2002,322(2):121-125.
    [101]Parvathy S, Rajadas J, Ryan H, et al. Abeta peptide conformation determines uptake and interleukin-1alpha expression by primary microglial cells. Neurobiol Aging. 2008,doi:10.1016/j.neurobiolaging.2008.01.011
    [102]Watson D, Castano E, Kokjohn TA, et al. Physicochemical characteristics of soluble oligomeric Abeta and their pathologic role in Alzheimer's disease. Neurol Res.2005,27(8):869-881.
    [103]Stagi M, Dittrich PS, Frank N, et al. Breakdown of axonal synaptic vesicle precursor transport by microglial nitric oxide. J Neurosci.2005,25(2):352-362.
    [104]Peng H, Whitney N, Wu Y, et al. HIV-1-infected and/or immune-activated macrophage-secreted TNF-alpha affects human fetal cortical neural progenitor cell proliferation and differentiation. Glia.2008,56(8):903-916.
    [105]Bal-Price A, Brown GC. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci.2001,21(17):6480-6491.
    [106]Dhir A, Naidu PS, Kulkarni SK. Neuroprotective effect of nimesulide, a preferential COX-2 inhibitor, against pentylenetetrazol (PTZ)-induced chemical kindling and associated biochemical parameters in mice. Seizure.2007,16(8):691-697.
    [107]Dai YQ, Jin DZ, Zhu XZ, et al. Triptolide inhibits COX-2 expression via NF-kappa B pathway in astrocytes. Neurosci Res.2006,55(2):154-160.
    [108]Fiala M, Cribbs DH, Rosenthal M, et al. Phagocytosis of amyloid-beta and inflammation:two faces of innate immunity in Alzheimer's disease. J Alzheimers Dis.2007,11 (4):457-463.
    [109]Kim YH, Lee SH, Lee JY, et al. Triptolide inhibits murine-inducible nitric oxide synthase expression by down-regulating lipopolysaccharide-induced activity of nuclear factor-kappa B and c-Jun NH2-terminal kinase. Eur J Pharmacol.2004,494(1):1-9.
    [110]Zhou R, Zheng SX, Tang W, et al. Inhibition of inducible nitric-oxide synthase expression by (5R)-5-hydroxytriptolide in interferon-gamma- and bacterial lipopolysaccharide-stimulated macrophages. J Pharmacol Exp Ther.2006,316(1):121-128.
    [111]Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNF-induced NF-kappaB and JNK activation in hepatocytes. Biochem Pharmacol.2006,72(9):1090-1101.
    [112]Ishikawa T, Morris PL. Interleukin-1beta signals through a c-Jun N-terminal kinase-dependent inducible nitric oxide synthase and nitric oxide production pathway in Sertoli epithelial cells. Endocrinology.2006,147(11):5424-5430.
    [113]Rushing GD, Britt LD. Inhibition of NF-KB does not induce c-Jun N-terminal kinase-mediated apoptosis in reperfusion injury. J Am Coll Surg.2007,204(5):964-967; discussion 967-968.
    [114]Sharma RK, Sodhi A, Batra HV. Involvement of c-Jun N-terminal kinase in rFl mediated activation of murine peritoneal macrophages in vitro. J Clin Immunol.2005,25(3):215-223.
    [115]Kriehuber E, Bauer W, Charbonnier AS, et al. Balance between NF-kappaB and JNK/AP-1 activity controls dendritic cell life and death. Blood.2005,106(l):175-183.
    [116]Olde Rikkert MG, van der Vorm A, Burns A, et al. Consensus statement on genetic research in dementia. Am J Alzheimers Dis Other Demen.2008,23(3):262-266.
    [117]Takemura M, Nakamura S, Akiguchi I, et al. Beta/A4 proteinlike immunoreactive granular structures in the brain of senescence-accelerated mouse. Am J Pathol.1993,142(6):1887-1897.
    [118]Strong R, Reddy V, Morley JE. Cholinergic deficits in the septal-hippocampal pathway of the SAM-P/8 senescence accelerated mouse. Brain Res.2003,966(1):150-156.
    [119]Tha KK, Okuma Y, Miyazaki H, et al. Changes in expressions of proinflammatory cytokines IL-lbeta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res.2000,885(1):25-31.
    [120]Malm TM, Iivonen H, Goldsteins G, et al. Pyrrolidine dithiocarbamate activates Akt and improves spatial learning in APP/PS1 mice without affecting beta-amyloid burden. J Neurosci. 2007,27(14):3712-3721.
    [121]Vorhees CV, Williams MT. Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nat Protoc.2006,1(2):848-858.
    [122]Sarter M, Bodewitz G, Stephens DN. Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist beta-carbolines. Psychopharmacology (Berl).1988,94(4):491-495.
    [123]Katz RJ, Schmaltz K. Dopaminergic involvement in attention. A novel animal model. Prog Neuropsychopharmacol.1980,4(6):585-590.
    [124]Morris RG, Garrud P, Rawlins JN, et al. Place navigation impaired in rats with hippocampal lesions. Nature.1982,297(5868):681-683.
    [125]Hong Z, Wang G, Gu J, et al. Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice. Eur J Neurosci.2007,26(6):1500-1508.
    [126]Flood JF, Morley JE. Age-related changes in footshock avoidance acquisition and retention in senescence accelerated mouse (SAM). Neurobiol Aging.1993,14(2):153-157.
    [127]Yagi H, Katoh S, Akiguchi I, et al. Age-related deterioration of ability of acquisition in memory and learning in senescence accelerated mouse:SAM-P/8 as an animal model of disturbances in recent memory. Brain Res.1988,474(1):86-93.
    [128]Ohta A, Hirano T, Yagi H, et al. Behavioral characteristics of the SAM-P/8 strain in Sidman active avoidance task. Brain Res.1989,498(1):195-198.
    [129]Zhao H, Li Q, Zhang Z, et al. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res.2009,1256:111-122.
    [130]Okuma Y, Nomura Y. Senescence-accelerated mouse (SAM) as an animal model of senile dementia:pharmacological, neurochemical and molecular biological approach. Jpn J Pharmacol. 1998,78(4):399-404.
    [131]Ikegami S, Shumiya S, Kawamura H. Age-related changes in radial-arm maze learning and basal forebrain cholinergic systems in senescence accelerated mice (SAM). Behav Brain Res. 1992,51(1):15-22.
    [132]Cheng G, Whitehead SN, Hachinski V, et al. Effects of pyrrolidine dithiocarbamate on beta-amyloid (25-35)-induced inflammatory responses and memory deficits in the rat. Neurobiol Dis.2006,23(1):140-151.
    [133]Pan XD, Chen XC. [Advances in the study of immunopharmacological effects and mechanisms of extracts of Tripterygium wilfordii Hook. f. in neuroimmunologic disorders]. Yao Xue Xue Bao.2008,43(12):1179-1185.
    [134]Puel A, Picard C, Ku CL, et al. Inherited disorders of NF-kappaB-mediated immunity in man. Curr Opin Immunol.2004,16(1):34-41.
    [135]Ahtoniemi T, Goldsteins G, Keksa-Goldsteine V, et al. Pyrrolidine dithiocarbamate inhibits induction of immunoproteasome and decreases survival in a rat model of amyotrophic lateral sclerosis. Mol Pharmacol.2007,71(1):30-37.
    [1]马伟光,张滔,张超,等.有毒药物雷公藤的研究及展望.中华中医药杂志.2006,21(2):117-120.
    [2]Lu X. [The isolation and structure of tripchlorolide (T4) from Tripterygium wilfordii]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao.1990,12(3):157-161.
    [3]Zhou R, Zhang F, He PL, et al. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide analog mediates immunosuppressive effects in vitro and in vivo. Int Immunopharmacol. 2005,5(13-14):1895-1903.
    [4]Wong KF, Chan JK, Chan KL, et al. Immunochemical characterization of the functional constituents of Tripterygium wilfordii contributing to its anti-inflammatory property. Clin Exp Pharmacol Physiol.2008,35(1):55-59.
    [5]Schumacher M, Guennoun R, Robert F, et al. Local synthesis and dual actions of progesterone in the nervous system:neuroprotection and myelination. Growth Horm IGF Res.2004,14 Suppl A:S18-33.
    [6]Zhang MM, Liu PL, Ye WY. Effect of Tripterygium Wilfordii on adrenal cortex in rat with adjuvant arthritis. J Tongji Med Univ.1994,14(3):158-161.
    [7]Wang YM, Zhang SL, Xia SX, et al. Toxicity of Tripterygium wilfordi. Sichuan Journal of Physiological Sciences (四川生理科学杂志).2008,30(1):28-31.
    [8]Zhang F, Li YC. Progress in structure modification of triptolide. Acta Pharmaceutica Sinica (药 学学报).2004,39(10):857-864.
    [9]Liu MX, Dong J, Yang YJ, et al. Preparation and toxicity of triptolide-loaded poly (D, L-lactic acid) nanoparticle. Acta Pharm Sin (药学学报). 2004,39(7):556-560.
    [10]Walker DG, Lue LF. Investigations with cultured human microglia on pathogenic mechanisms of Alzheimer's disease and other neurodegenerative diseases. J Neurosci Res. 2005,81(3):412-425.
    [11]McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer's disease:a review of 17 epidemiologic studies. Neurology. 1996,47(2):425-432.
    [12]吕诚,胡小令,石嘉庆,等.雷公藤多甙对大鼠海马内注射Aβ所致学习记忆障碍的改善作用.中国行为医学科学.2005,14(1):39-40,52.
    [13]吕诚,胡小令,张宪郁,等.雷公藤多甙对大鼠海马内注射β-淀粉样蛋白后小胶质细胞反应的影响.解剖学杂志.2005,28(2):225-226.
    [14]Gu M, Zhou HF, Xue B, et al. [Effect of Chinese herb Tripterygium wilfordii Hook F monomer triptolide on apoptosis of PC12 cells induced by Abetal-42]. Sheng Li Xue Bao. 2004,56(1):73-78.
    [15]Chen H, Zhang SM, Hernan MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol.2003,60(8):1059-1064.
    [16]Hong Z, Wang G, Gu J, et al. Tripchlorolide protects against MPTP-induced neurotoxicity in C57BL/6 mice. Eur J Neurosci.2007,26(6):1500-1508.
    [17]Cheng XX, Li FQ, Huang M, et al. [Protective effect of tripchlorolide on dopaminergic neurons in partially lesioned rat model of Parkinson's disease]. Yao Xue Xue Bao.2002,37(5):339-342.
    [18]Li FQ, Cheng XX, Liang XB, et al. Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F, on dopaminergic neurons. Exp Neurol.2003,179(1):28-37.
    [19]Zhou HF, Liu XY, Niu DB, et al. Triptolide protects dopaminergic neurons from inflammation-mediated damage induced by lipopolysaccharide intranigral injection. Neurobiol Dis.2005,18(3):441-449.
    [20]Ramirez F, Mason D. Induction of resistance to active experimental allergic encephalomyelitis by myelin basic protein-specific Th2 cell lines generated in the presence of glucocorticoids and IL-4. Eur J Immunol.2000,30(3):747-758.
    [21]刘颖,刘华,马太花,等.雷公藤和地塞米松联合使用对实验性自身免疫性脑脊髓炎单核细胞趋化蛋白-1的影响.中国神经免疫学和神经病学杂志.2006,13(2):73-76.
    [22]Fu YF, Zhu YN, Ni J, et al. (5R)-5-hydroxytriptolide (LLDT-8), a novel triptolide derivative, prevents experimental autoimmune encephalomyelitis via inhibiting T cell activation. J Neuroimmunol.2006,175(1-2):142-151.
    [23]Wang Y, Mei Y, Feng D, et al. Triptolide modulates T-cell inflammatory responses and ameliorates experimental autoimmune encephalomyelitis. J Neurosci Res.2008,in Press, doi: 10.1002/jnr.21683.
    [24]张旭,夏君慧.雷公藤多甙对格林-巴利综合征患者血清和脑脊液IL-6,sIL-2R的影响研究.中国免疫学杂志.2001,17(1):53-54.
    [25]Qiu D, Zhao G, Aoki Y, et al. Immunosuppressant PG490 (triptolide) inhibits T-cell interleukin-2 expression at the level of purine-box/nuclear factor of activated T-cells and NF-kappaB transcriptional activation. J Biol Chem.1999,274(19):13443-13450.
    [26]肖波,邵宏元,等.协同刺激分子在实验性变态反应性神经炎发病中的作用及雷公藤多甙的影响.卒中与神经疾病.2001,8(2):67-70.
    [27]周颖,肖波,周文斌.趋化因子MCP-1在EAN中的作用及雷公藤多甙的影响.免疫学杂志.2007,23(2):216-218.
    [28]Barone FC, Schmidt DB, Hillegass LM, et al. Reperfusion increases neutrophils and leukotriene B4 receptor binding in rat focal ischemia. Stroke.1992,23(9):1337-1347; discussion 1347-1338.
    [29]Bowes MP, Zivin JA, Rothlein R. Monoclonal antibody to the ICAM-1 adhesion site reduces neurological damage in a rabbit cerebral embolism stroke model. Exp Neurol. 1993,119(2):215-219.
    [30]Stagliano NE, Dietrich WD, Prado R, et al. The role of nitric oxide in the pathophysiology of thromboembolic stroke in the rat. Brain Res.1997,759(1):32-40.
    [31]Wei DM, Huang GZ, Zhang YG, et al. [Influence of triptolide on neuronal apoptosis in rat with cerebral injury after focal ischemia reperfusion]. Zhongguo Zhong Yao Za Zhi. 2004,29(11):1089-1091,1116.
    [32]Tanaka K, Wada N, Ogawa N. Chronic cerebral hypoperfusion induces transient reversible monoaminergic changes in the rat brain. Neurochem Res.2000,25(2):313-320.
    [33]张艳,贾丹辉,刘宗文,等.雷公藤多甙对局灶性脑缺血再灌注大鼠脑组织单胺类递质含量的影响.郑州大学学报:医学版.2005,40(6):1061-1064.
    [34]李作孝,张泽兰,等.重症肌无力患者雷公藤多甙治疗后周围血细胞免疫功能变化的研究.四川医学.2001,22(2):124-125.
    [35]张剑宇,彭岚,刘定华.雷公藤对重症肌无力外周血T淋巴细胞亚群的影响.中国医药导报.2008,5(6):80-81.
    [36]吕广能,周玲.雷公藤多甙影响蟾蜍神经-肌接头传递初探.华西医科大学学报.1997,28(2):145-148.
    [37]李克勇,吕广能.雷公藤多甙对蟾蜍缝匠肌终板膜乙酰胆碱受体的作用.四川大学学报:医学版.2003,34(2):286-288.
    [38]王涛,张云,吕广能,等.雷公藤多甙对实验性重症肌无力动物骨骼肌复合动作电位的影响.四川大学学报:医学版.2004,35(3):379-381.
    [39]Pan XD, Chen XC, Zhu YG, et al. Neuroprotective role of tripchlorolide on inflammatory neurotoxicity induced by lipopolysaccharide-activated microglia. Biochem Pharmacol. 2008,76(3):362-372.
    [40]Zhou R, Zheng SX, Tang W, et al. Inhibition of inducible nitric-oxide synthase expression by (5R)-5-hydroxytriptolide in interferon-gamma- and bacterial lipopolysaccharide-stimulated macrophages. J Pharmacol Exp Ther.2006,316(1):121-128.
    [41]He Q, Zhou H, Xue B, et al. [Neuroprotective effects of Tripterygium Wilforddi Hook F monomer T10 on glutamate induced PC12 cell line damage and its mechanism]. Beijing Da Xue Xue Bao.2003,35(3):252-255.
    [42]薛冰,矫健,张雷,等.雷公藤单体T10对过氧化氢所致PC12细胞损伤的保护作用及其机制的研究.中华神经医学杂志.2006,5(12):1194-1198.
    [43]Wu F, Wilson JX. Triptolide Inhibits NADPH Oxidase Activity and iNOS Expression in LPS+IFN-y-Stimulated Microvascular Endothelial Cells. FASEB J.2007,21(5):A361-b.
    [44]Xue B, Jiao J, Zhang L, et al. Triptolide upregulates NGF synthesis in rat astrocyte cultures. Neurochem Res.2007,32(7):1113-1119.
    [45]Valerio A, Boroni F, Benarese M, et al. NF-kappaB pathway:a target for preventing beta-amyloid (Abeta)-induced neuronal damage and Abeta42 production. Eur J Neurosci. 2006,23(7):1711-1720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700