ZnO纳米材料的制备、物性及场发射原型器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第三代半导体材料中的ZnO和GaN的禁带宽度都在3.4 eV左右,它们的发光波长在紫外波段,这个属性使得它们在半导体材料中处于不可取代的位置。
     氧化锌(ZnO)是一种直接宽带隙化合物半导体材料,其室温禁带宽度为3.37eV,激子束缚能为60meV,远高于其它半导体材料,如已经在蓝紫光波段发光器件方面得到广泛应用的GaN材料的激子束缚能只有26meV;由于ZnO中的激子能够在室温及以上温度下稳定存在,而且由激子.激子散射诱发的受激辐射的阈值要比电子-空穴等离子体复合的受激辐射阈值低的多,故ZnO是制备室温和更高温度下的半导体激光器(LDs)的理想材料。ZnO还是目前所有材料中纳米结构最为丰富的材料,现在诸多研究者已成功生长了如纳米线、纳米管、纳米带、纳米环等,它们会具有量子限域效应;ZnO的纳米结构在制备纳米光电子器件和纳米电子器件方面有很好的应用价值,另外,ZnO的纳米结构还可以在场发射、医疗、生物传感等领域得到应用。
     为了实现纳米ZnO在微纳电子器件和发光器件方面的应用,采用非金属催化剂的自催化生长(采用金属催化剂,金属杂质会扩散进入材料中,并最终形成深能级缺陷,有可能影响器件的稳定性),获得高质量的纳米ZnO材料这也是值得研究的。在此基础上,对纳米结构进行有意的元素掺杂,提高ZnO纳米结构的导电性能以及稳定性也是以后制作微纳电子器件和发光器件所必需的。近年来,场发射显示技术作为一种新型的自发光平板显示技术,其具备以下优点:(1)冷阴极发射;(2)自发光和高亮度;(3)宽视角;(4)高速响应等。ZnO纳米阵列具有良好的场发射性能,是一种良好的场发射阴极材料,一些研究者进行了这一方面的研究,但仍处于探索阶段。如何进一步降低场发射阈值场强,如何进一步提高其场致发射性能的技术指标和稳定性并制作原型器件等等都需要研究。另外ZnO纳米线LED简单原型已有报道,将来有可能实现ZnO的纳米发光器件,为了拓宽纳米ZnO发光波长范围及获得更高效的发光,对其掺入Mg和Cd进行能带调控也是值得进行研究的。
     本文第一部分以热蒸发法实现了纳米ZnO非金属催化剂的自催化生长,分析了我们所采用的方法的生长机理。在此基础上,对生长的纳米ZnO阵列进行了Al掺杂的研究,深入分析了Al在ZnO禁带中的能级位置。在生长了掺Al纳米ZnO阵列的基础上,我们采用不同的缓冲层优化了纳米ZnO阵列的场发射性能,并制作了场发射显示原型器件。为了实现能带调制,进行了合金化Mg和Cd的研究。生长了两种具有特殊形貌的ZnMgO和ZnCdO纳米结构。主要结果如下:
     (1)首次采用醋酸锌(ZA)作为自催化生长纳米ZnO的原料,在两种不同的初始温度得到了辐射状和准阵列的ZnO纳米棒。分析认为不同形貌的直接原因在于两种样品的初始生长温度不同,形成了两种不同的形核层,从而使得最终的形貌呈现出两种结构。
     (2)在此基础上,首次生长了掺Al的准阵列的ZnO亚微米棒。C-AFM(导电探针原子力显微镜)的分析测试表明Al的掺入很明显的提高了ZnO亚微米棒的电学性能。
     光学性能的研究发现表明:①Al更确切的施主能级约~90meV;②在Al掺杂ZnO亚微米结构中,室温NBE是由束缚在表面缺陷上的激子复合和其一级LO声子叠加而成;③掺Al引起了吸收边蓝移,而室温PL却发生了红移。这些新的发现帮助我们更清楚地理解了Al在ZnO中的杂质能级。
     (3)以磁控溅射Au层作为初始的过渡层生长了Al掺杂的ZnO纳米阵列,测试了其场发射性能,其阈值电场为4.5V/μm。与最近一些文献报道的指标(阈值场强4.3V/μm-19.1V/μm)在同一水平,并获得了场致发射显示。
     (4)首次生长了树枝状的ZnMgO纳米棒。研究表明初始掺入的Mg是以MgO的分相形式存在的,经过800℃退火后MgO最终转变为六方相ZnMgO,并使其相应的PL谱中有蓝移现象,退火样品的带边辐射蓝移了6nm(0.05eV)。
     采用高纯Zn粉,醋酸锌(ZA)和氯化镉的混合粉生长了宝塔型的ZnCdO亚微米棒。掺入0.9at.%的Cd使得有效带隙成为3.23eV,小于ZnO的有效带隙。
     GaN作为已在商业领域获得很大成功的第三代半导体,依然是学术界研究的热点。如何在Si衬底上生长高质量GaN为以后的光电集成奠定基础也是GaN的研究者们所努力探索的一个方向。本文第二部分采用MOCVD法进行了Si衬底上生长GaN的研究。生长了无微裂的高质量GaN外延膜,并对其进行了结构、形貌等的测试分析研究,最后运用高分辨XRD对于位错以及外延关系进行了研究。现简要介绍如下:
     (5)预沉积合适的TMAl可以有效的防止Si衬底的氮化,采用1050℃生长的AlN可以很好的作为外延膜的缓冲层;采用AlN缓冲层生长完,并预沉积Ga的AlN/GaN多缓冲层,可以很好的增加初始Ga的表面浸润性,可以很好的实现早期三维生长向二维生长的转变,并生长出无微裂的GaN外延膜。
ZnO and GaN, the two outstanding materials among the third generation semiconductors, are indispensable materials because of their wide band gaps of about 3.4 eV, which lead to emission in the ultraviolet spectral range.
    Zinc oxide (ZnO) is a semiconductor with a direct wide band gap of 3.37eV at room temperature. Its exciton binding energy is 60 meV, much larger than that of GaN (26 meV), another wide-gap semiconductor (Eg~3.40eV at room temperature) which is widely used for production of blue-ultraviolet and white light-emitting devices. The larger exciton binding energy makes ZnO more competitive in obtaining efficient lasing by excitonic emission compared to other wide-band-gap semiconductors. Because exciton-exciton scattering-induced stimulated emission occurs at a threshold lower than that for the electron-hole plasma recombination, ZnO is an ideal material for fabricating semiconductor laser devices operating at room temperature and higher temperature. On the other hand, nanostructured ZnO has a diverse group of growth morphologies, which is regarded as the richest family among all the nanomaterials. Many kinds of ZnO nanostructures such as nanowires, nanotubes, nanobelts and nanorings have been obtained so far, and have attracted increasing attention. ZnO nanostructures have promising potentials in extensive applications and are the fundamental building blocks for fabricating nano-optoelectronics and nano-electronics devices, nanosized gas sensors, transducers, and field emitters etc.
    In order to realize the application of ZnO nanostructures in nano-optoelectronic and nano-electronic devices, it is necessary to obtain high quality ZnO nanostructures by using non-metal catalyst or catalyst-free method. Since, the metal impurities may diffuse into the nanostructures and lead to deep level defects (these are fatal to the stability of devices.) Also, it is necessary to increase the conductivity of ZnO nanostructures for fabricating nano-optoelectronic and nano-electronic devices by intentional n-type doping. Recently, the field emission display technology—a new kind of self-emitting panel display technology has obtained great attentions because
    of its merits—cold cathode emission, self-emission, high-brightness, broad visual angle and quick responsibility. Although many efforts have been made because of its good field emission property, the research of ZnO nanostructures' field emission is still on the groping way. It still needs further studies on many issues such as further lowering the threshold field of ZnO nanostructures, enhancing the stability and fabricating the prototype of the field emission display device, etc. On the other hand, the ZnO nano-LEDs (light emitting diodes) have been reported. It is possible to realize the actual ZnO nano-LEDs in future. In order to widen the spectral range of emission from ZnO based materials and obtain higher luminescence efficiency, alloying ZnO with Mg or Cd is imperative for adjusting the bandgap.
    In the first section of this thesis, the thermal evaporation using non-metal catalyst was used to grow ZnO nanostructures. The growth mechanisms of the two kinds of nanostructures were also studied. On these basis, we have doped ZnO nanoarray with Al. The exact defect level of the Al impurity was also identified. In the next segment of the section, we prepared Al-doped quasi-alined ZnO nanorods using two kinds of buffer layer to optimize the field emission property. The prototype of the field emission display device was made and tested. In the last segment, two kinds of ZnMgO and ZnCdO nanostructures with peculiar shape were prepared. The main results are as follows:
    (1)Two kinds of ZnO nanostructures were grown at different initial temperature by using zinc acetate dihydrate (ZA) as self-catalysis materials. We suggest that two kinds of initial layer were formed because of different initial temperature, hence lead to the different morphology of ZnO nanostructures.
    (2)The quasi-aligned Al-doped ZnO submicro-rods were prepared and its conductivity were also characterized by C-AFM (conductance atomic force microscopy). It indicated that the conductivity of ZnO submicro-rods was enhanced evidently by Al-doping.
    Meanwhile, the investigation of the optical properties of the rods indicates: ①The exact donor-level of Al is about ~90meV. ②At room temperature, an excitonic
    emission and its first LO-phonon replica dominates the NBE emission. Also, we suppose that the excitonic emission can be attributed to exciton bound to surface
    defects. ③ The absorption edge of the Al-doped samples blueshifts, while the near
    band edge emission redshifts.These new findings can help us to understand the defect levels of Al in ZnO.
    (3)Al-doped quasi-aligned ZnO nanorods were prepared on Si substrates with Au buffer layer. Field emission measurements were also conducted. The threshold field is 4.5V/μm. It is comparable to the results(the threshold field 4.3V/μm-19.1V/μm) reported in the literatures. Also, field emission display was obtained.
    (4)Dendritic ZnMgO nanostructures were grown on Si substrates. The investigations indicate that Mg exist in separate phase (MgO) in as-grown ZnMgO nanostructures. It can be transformed into ZnMgO (hexagonal phase) by annealing at 800°C. The photoluminesence of ZnMgO nanostructures have a blue-shift of about 6nm (0.05eV).
    The pagoda-like ZnCdO micro-needles were prepared on Si(111) substrates using Zn, ZA and Cadmium chloride 2.5-hydrate (CdCl_2·2.5H_2O) as the source materials without using metal catalysts. Alloying ZnO with 0.9at.% Cd have changed the effective bandgap to 3.23 eV, which is smaller than that of the pure ZnO.
    GaN is still a highlight in semiconductor research at present. It is one outstanding material of the third generation semiconductors for its success in applications in our lives. Great efforts have been made to grow high-quality GaN on Si substrates for the potential integration between optical and electrical devices by many researchers. The second section of this thesis focuses on this issue. Crack-free GaN layers on Si substrates were grown by MOCVD. Meanwhile, the structure and morphology of the layers were investigated. The dislocation density and the epitaxial relation between the substrate and the epilayer were investigated by high resolution XRD. Detailed results are as follows:
    (5)The nitrification of Si substrates can be avoided by suitable predeposition of the TMAl. AlN grown at 1050°C can be a good buffer layer for the growth of GaN. After
    the growth of A1N, by adding a predeposition step of TMGa (it can increase the wetting-ablity of Ga on the buffer layer) and using AlN/GaN multi-buffers, early transformation from 3-D grwoth to 2-D growth can be induced. Crack-free GaN can be obtained by these processes.
引文
[1] H.Kobayashi, H.Mori, T.Ishida, and Y.Nakato, Zinc oxide/n-Si junction solar cells produced by spray-pyrolysis method, J.Appl.Phys., (1995),77,1301-1307.
    [2] T.T.Wu and W.S.Wang, An experimental study on the ZnO/sapphire layered surface acoustic wave device, J.Appl.Phys., (2004),96,5249-5253.
    [3] H.Nanto, T.Minami, and S.Takata, Zinc-oxide thin-film ammonia gas sensors with high sensitivity and excellent selectivity, J.Appl.Phys., (1986),60,482-484.
    [4] P.X.Gao, Y.Ding and Z.L.Wang, Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst, Nano lett., (2003),3,1315-1320.
    [5] P.X.Gao, C.S.Lao, W.L.Hughes, Z.L.Wang, Three-dimensional interconnected nanowire networks of ZnO, Chem.Phys.Lett., (2005),408,174-178.
    [6] Z.W.Pan, Z.R.Dai, Z.L.Wang, Nanobelts of semiconducting oxides, Science, (2001),291,1947-1949.
    [7] P.X.Gao, Y.Ding, W.J.Mai, W.L.Hughes, C.S.Lao, Z.L.Wang, Conversion of zinc oxide nanobelts into supperlattice-structured nanohelices, Science, (2005),309,1700-1704.
    [8] W.L.Hughes and Z.L.Wang, Controlled synthesis and manipulation of ZnO nanorings and nanobows, Appl.Phys.Lett., (2005),86,.043106.
    [9] C.S.Lao, P.X.Gao, R.S.Yang, Y.Zhang, Y.Dai and Z.L.Wang, Formation of double-side teethed nanocombs of ZnO and self-catalysis of Zn-terminated polar surface, Chem.Phys.Lett., (2005),417,359-363.
    [10] P.X.Gao and Z.L.Wang, Nanopropeller arrays of zinc oxide, Appl.Phys.Lett.,(2004),83,.2883-2885.
    [11] O.Dulub, L.A.Boatner and U.Diebold, STM study of the geometric and electronic structure of ZnO(0001)-Zn, (000-1)-O, (10-10), and (11-20) surfaces, Surf.Sci., (2002),519,201-217.
    [12] B.Meyer and D.Marx, Density-functional study of the structure and stability of ZnO surfaces, Phys.Rev.B.,(2003),67,035403.
    [13] 张立德,牟季美,纳米材料与纳米结构,科学出版社,2001.
    [14] Z.L.Wang and J.H.Song, Piezoelectric nanogenerators based on Zinc Oxide nanowire arrays, Science, (2005),309,1700-1704.
    [15] W.L.Hughes and Z.L.Wang, Nanobelts as nanocantilevers, Appl.Phys.Lett., (2003),82,2886-2888.
    [16] H.Q.Yan, R.R.He, J.Johnson, M.Law, R.J.Saykally and P.D.Yang, Dendritic nanowire ultraviolet laser array, J.AM.CHEM.SOC., (2003),125,4728-4729.
    [17] P.D.Yang, Semiconductor nanowire array, Proc of SPIE, (2002),4806,222-224.
    [18] H.Q.Yan, R..R.He, J.Pham, P.D.Yang, Morphogenesis of one-dimensional ZnO nano- and microcrystals, Adv.Mater., (2003),15,402-405.
    [19] M.H.Huang, S.Mao, H.Feick, H.Q.Yan, Y.Y.Wu, H.Kind, E.Weber, R.Russo and P.D.Yang, Room-temperature ultraviolet nanowire nanolasers, Science, (2001),292, 1897-1899.
    [20] J.Johnson, H.Q.Yan,P.D.Yang and R.J.Saykally, Optical cavity effects in ZnO nanowire lasers and waveguides, J.Phys.Chem.B., (2003),107,8816-8828.
    [21] P.D.Yang, From nanowire lasers to quantum wire Lasers, Proc of SPIE., (2004),5349,18-23.
    [22] Y.Dai, Y.Zhang,Y.Q.Bai and Z.L.Wang, Bicrystalline zinc oxide nanowires, Chem.Phys.Lett., (2003),375,96-101.
    [23] Y.Zhang, H.B.Jia, X.H.Luo, X.H.Chen, D.P.Yu and R.M.Wang, Synthesis, microstructure, and growth mechanism of dendrite ZnO nanowires, J.Phys.Chem.B., (2003), 107,8289-8293.
    [24] P.X.Gao and Z.L.Wang, Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals, J.Am.Chem.Soc., (2003), 125,11299-11305.
    [25]Y.B.Li, Y.Bando, T.Sato and K.Kurashima, ZnO nanobelts grown on Si substrate, Appl.Phys.Lett., (2002),81,144-146.
    
    [26]Z.R.Dai, Z.W.Pan and Z.L.Wang, Novel nanstructures of functional oxides synthesized by thermal evaporation, Adv.Funct.Mater., (2003), 13,9-24.
    
    [27]R.S.Wagner and W.C.Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl.Phys.Lett, (1964),4,89-90.
    
    [28]A.Bachtold, P.Hadley, T.Nakanishi and C.Dekker, Logic circuits with carbon nanorube transistors, Science, (2001 ),294,1317-1320.
    
    
    [29]M.H.Huang, Y.Y.Wu, H.Feick, N.Tran, E.Webber and P.D.Yang, Catalytic growth of zinc oxide nanowires by vapor transport, Adv.Mater., (2003),13,l 13-116.
    
    [30]J.Q.Hu, X.L.Ma, Z.Y.Xie, N.B.Wong, C.S.Lee and S.T.Lee, Characterization of zinc oxide crystal whiskers grown by thermal evaporation, Chem.Phys.Lett., (2001), 344,97-100.
    
    [31]S.Y.Li, C.Y.Lee and T.Y.Tseng, Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process, J.Cryst.Growth., (2003),247,357-362.
    
    [32]M.Haupt, A.Ladenburger, R.Sauer, K.Thonke, R.Glass, W.Roos, J.P.Spatz, H.Rauscher, S.Riethmuller and M.Moller, Ultraviolet-emitting ZnO nanowhiskers prepared by a vapor transport process on prestructured surfaces with self-assembled polymers, J.Appl.Phys., (2003),93,6252-6257.
    
    [33]Y.Ding, P.X.Gao and Z.L.Wang, Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO., J.Am.Chem.Soc, (2004), 126,2066-2072.
    
    [34]P.X.Gao, Y.Ding, and Z.L.Wang, Crystallographic orientation-aligned ZnO nanorods grown by a tin catalyst, Nano.Lett., (2003),3,1315-1320.
    
    [35]P.X.Gao and Z.L.Wang, Self-assembled nanowire-nanoribbon junction arrays of ZnO, J.Phys.Chem.B., (2002),106,12653-12658.
    
    [36]J.G.Wen, J.Y.Lao, D.Z.Wang, T.M.Kyaw, Y.L.Foo and Z.F.Ren, Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons, Chem.Phys.Lett., (2003),372,717-722.
    
    [37]J.Y.Lao, J.G.Wen and Z.F.Ren, Hierarchical ZnO nanostructures, Nano.Lett., (2002),2,1287-1291.
    [38] J.Y.Lao, J.Y.Huang, D.Z.Wang and Z.F.Ren, ZnO nanobridges and nanonails, Nano lett., (2003),3,235-238.
    [39] S.C.Lyu, Y.Zhang and C.J.Lee, Low temperature growth of ZnO nanowire array by a simple physical vapor-deposition method, Chem.Mater., (2003), 15,3294-3299.
    [40] 李凤生,杨毅,纳米/微米复合技术及应用,国防工业出版社,(2002),p96-97.
    [41] X.D.Wang, C.J.Summers, Z.L.Wang, Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays, Nano Lett., (2004),4,423-426.
    [42] 丁秉钧,纳米材料,机械工业出版社,(2003),p55-57.
    [43] C.H.Liu, W.C.Yiu, F.C.K.Au, J.X.Ding, C.S.Lee and S.T.Lee, Electrical properties of zinc oxide nanowires and intramolecular p -n junctions, Appl.Phys.Lett., (2003),83,3168-3170.
    [44] C.Pacholski, A.Kornowski and H.Weller, Self-assembly of ZnO: from nanodots to nanorods, Angew.Chem.Int.Ed, (2002),41,1188-1191.
    [45] W.I.Park, D.H.Kim, S.W.Jung and G.C.Yi, Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods, Appl.Phys.Lett., (2002),80,4232-4234.
    [46] K.Ogataa, K.Maejima, Sz.Fujitac and Sg.Fujitab, Growth mode control of ZnO toward nanorod structures or high-quality layered structures by metal-organic vapor phase epitaxy, J.Cryst.Growth., (2003),248,25-30.
    [47] W.II.Park, G.C.Yi, J.W.Kim and S.M.Park, Schottky nanocontacts on ZnO nanorod arrays, Appl.Phys.Lett., (2003),82,4358-4360.
    [48] W.II.Park, J.S.Kim and G.C.Yi, Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors, Appl.Phys.Lett., (2004),85, 5052-5054.
    [49] W.II.Park,G.C.Yi, M.Kim, S.J.Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterstructures, Adv.Mater., (2003),15,526-529.
    [50] W.Z.Xu, Z.Z.Ye, D.W.Ma, H.M.Lu, L.P.Zhu, B.H.Zhao, X.D.Yang and Z.Y.Xu, Quasi-aligned ZnO nanotubes grown on Si substrates, Appl.Phys.Lett., (2005),87, 093110.
    
    [51]W.Z.Xu, Z.Z.Ye, L.P.Zhu, Y.J.Zeng, L.Jiang and B.H.Zhao, ZnO nanostructures networks grown on silicon substrates, J.Cryst.Growth., (2005),277,490-495.
    
    [52]Y.J.Zeng, Z.Z.Ye, W.Z.Xu, L.P.Zhu and B.H.Zhao, Well-aligned ZnO nanowires grown on Si substrates via metal-organic chemical vapor deposition, Appl.Surf.Sci., (2005),250,280-283.
    
    [53]C.R.Martin, Nanomaterials: a membrane-based synthetic approach, Science, (1994),266,1961-1966.
    
    [54]S.W.Kim, T.Kotani and M.Ueda, Selective formation of ZnO nanodots on nanopatterned substrates by metalorganic chemical vapor deposition, Appl.Phys.Lett., (2003),83,3593-3595.
    
    
    [55]J.S.Jie, G.Z.Wang, X.H.Han, J.P.Fang, Q.X.Yu, Y.Liao, B.Xu, Q.T.Wang and J.G.Hou, Growth of ternary oxide nanowires by gold-catalyzed vapor-phase evaporation, J.Phys.Chem.B, (2004), 108,8249-8253.
    
    [56]C.X.Xu, X.W.Sun, B.J.Chen, and P.Shum, Nanostructural zinc oxide and its electrical and optical properties, J.Appl.Phys., (2004),95,661-666.
    
    [57]M.Yan, H.T.Zhang, E.J.Widjaja, and R.P.H.Chang, Self-assembly of well-aligned gallium-doped zinc oxide nanorods, J.Appl.Phys., (2003),94,5240-5246.
    
    [58]C.Xu, M.Kim, J.Chun and D.Kim, Growth of Ga-doped ZnO nanowires by two-step vapor phase method, Appl.Phys.Lett., (2005),86,133107.
    
    [59]J.Zhong, S.Muthukumar, Y.Chen and Y.Lu, Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition, Appl.Phys. Lett., (2003),83,3401-3403.
    
    [60]C.X.Xu, X.W.Sun and B.J.Chen, Field emission from gallium-doped zinc oxide nanofiber array, Appl.Phys.Lett., (2004),84,1540-1542.
    
    [61]T.Makino, Y.Segawa, M.Kawasaki, A.Ohtomo, R.Shiroki, K.Tamura, T.Yasuda and H.Koinuma, Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films, Appl.Phys.Lett., (2001),78,1237-1239.
    
    [62]K.Sakurai, T.Kubo, D.Kajita, T.Tanabe, H.Takasu, Sz.Fujita and Sg.Fujita, Blue photoluminescence from ZnCdO films grown by molecular beam epitaxy, Jpn.J.Appl.Phys., (2000),39,Ll 146-L1148.
    
    [63]K.Sakurai, T.Takagi, T.Kubo, D.Kajita, T.Tanabe, H.Takasu, Shizuo.Fujita and Shigeo.Fujita, Spatial composition fluctuations in blue-luminescent ZnCdO semiconductor films grown by molecular beam epitaxy, J.Cryst.Growth., (2002),237- 239,514-517.
    
    [64]Z.Z.Ye, D.W.Ma, J.H.He, J.Y.Huang, B.H.Zhao, X.D.Luo and Z.Y.Xu, Structural and photoluminescent properties of ternary Zn_(1-x)Cd_xO crystal films grown on Si(111) substrates, J.Cryst.Growth., (2003),256,78-82.
    
    [65]Q.Wan, Q.H.Li, Y.J.Chen, T.H.Wang, X.L.He, X.G.Gao and J.P.Li, Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires, Appl.Phys.Lett., (2004),84,3085-3087.
    
    [66]S.M.Zhou, X.M.Meng, X.H.Zhang, X.Fan, K.Zou, S.K.Wu and S.T.Lee, Large- scale fabrication and characterization of Cd-doped ZnO nanocantilever arrays, Micron, (2005),36,55-59.
    
    [67]F.Z.Wang, Z.Z.Ye, D.W.Ma, L.P.Zhu, F.Zhuge and H.P.He, Synthesis and characterization of quasi-aligned ZnCdO nanorods, Appl.Phys.Lett., (2005),87, 143101.
    
    [68]F.Z.Wang, Z.Z.Ye, D.W.Ma, L.P.Zhu, F.Zhuge, Formation of quasi-aligned ZnCdO nanorods and nanoneedles, J.Cryst.Growth., (2005),283,373-377.
    
    [69]M..Lorenz, E.M.Kaidashev, A.Rahm, Th.Nobis, J.Lenzner, G.Wagner, D.Spemann, H.Hochmuth and M.Grundmann MgxZnl-x(0    
    [70]L.P.Zhu, M.J.Zhi, Z.Z.Ye and B.H.Zhao, Catalyst-free two-step growth of quasi- aligned ZnMgO nanorods and their properties, Appl.Phys.Lett., (2006), 88,113106.
    [71]K.Ip, R.M.Frazier, Y.W.Heo, D.P.Norton, C.R.Abernathy, S.J.Pearton, J.Kelly, R.Rairigh, A.F.Hebard, J.M.Zavada and R.G.Wilson, Ferromagnetism in Mn- and Co-implanted ZnO nanorods, J.Vac.Sci.Technol.B, (2003),21,1476-1481.
    [72]T.W.Odom, J.L.Huang, P.Kim and C.M.Lieber, Atomic structure and electronic properties of single-walled carbon nanotubes, Nature, (1998),391,62-64.
    [73]D.D.D.Ma, C.S.Lee and S.T.Lee, Scanning tunneling microscopic study of boron- doped silicon nanowires, Appl.Phys.Lett., (2001),79,2468-2470.
    [74]S.W.Chung, J.Y.Yu and J.R.Heath, Silicon nanowire devices, Appl.Phys.Lett., (2000),76,2068-2070.
    
    [75]Y.W.Heo, D.P.Norton, L.C.Tien, Y.Kwon, B.S.Kang, F.Ren and S.J.Pearton, ZnO nanowire growth and devices, Mater.Sci.Eng.B., (2004),R47,l-47.
    [76]K.Ip, Y.W.Heo, K.H.Baik, D.P.Norton, S.J.Pearton, S.Kim, J.R.LaRoche and F. Ren, Temperature-dependent characteristics of Pt Schottky contacts on n-type ZnO, Appl.Phys.Lett.,(2004),84,2835-2837.
    
    [77]J.Kong, N.R.Franklin, C.W.Zhou, M.G.Chapline, S.Peng, Y.Cho and H.J.Dai, Nanotube molecular wires as chemical sensors, Science, (2000),287,622-625.
    [78]F.Favier, E.C.Walter, M.P.Zach, T.Benter and R.M.Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays, Science, (2001),293, 2227-2231.
    
    [79]X.T.Zhou, J.Q.Hu, C.P.Li, D.D.D.Ma, C.S.Lee and S.T.Lee, Silicon nanowires as chemical sensors, Chem.Phys.Lett., (2003),369,220-224.
    
    [80]Z.Y.Fan and J.G.Lu, Chemical sensing with ZnO nanowire FETs, Proc of SPIE, (2005),6008,60080H1-8.
    
    [81]J.C. Johnson, K.P.Knutsen, H.Q.Yan, M.Law, Y.F.Zhang, P.D.Yang and R.S.Saykally, Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers, Nano.Lett., (2004),4,197-204.
    
    [82]C.H.Liu, J.A.Zapien, Y.Yao, X.M.Meng, C.S.Lee, S.S.Fan, Y.Lifshitz and S.T.Lee, High-density, ordered ultraviolet light-emitting ZnO nanowire arrays, Adv.Mater., (2003),15,838-841.
    
    [83]K.Govender, D.S.Boyle, P.O.'Brien, D.Binks, D.West and D.Coleman, Room- temperature lasing observed from ZnO nanocolumn growth from aqueous solution deposition, Adv.Mater., (2002),14,1221-1224.
    
    [84]C.A.Spindt, I.Brodie, L.Humphrey, Physical properties of thin film field emission cathode with molybdenum cones, J.Appl.Phys., (1976),47,5248-5263.
    [85]A.Modinos, Field, thermionic, and secondary electron emission spectroscopy, New York: Plenum Press, (1984), 282-290.
    
    [86]C.L.Hsu, S. J.Chang, H.C.Hung, Y.R.Lin, T.H.Lu, Y.K.Tseng and I.C.Chen, Selective growth of vertical ZnO nanowires on ZnO:Ga/Si_3N_4/SiO_2/Si templates, J.Vac.Sci.Technol.B, (2005)23,2292-2296.
    
    [87]J.B.Cui, C.P.Daghlian, U.J.Gibson, R.Pusche, P.Geithner and L.Ley, Low- temperature growth and field emission of ZnO nanowire arrays, J.Appl.Phys., (2005), 97,044315.
    
    [88]L.Liao, J.C.Li, D.H.Liu, C.Liu, D.F.Wang, W.Z.Song, Self-assembly of aligned ZnO nanoscrews:Growth, configuration, and field emission, Appl.Phys.Lett., (2005), 86,083106.
    [1] A.Kaschner, U.Haboeck, Mar.Strassburg, Mat.Strassburg, G.Kaczmarczyk, A.Hoffrnann, C.Thomsen, A.Zeuner, H.R.Alves, D.M.Hofmann and B.K.Meyer, N-related local vibrational modes in ZnO:N, Appl.Phys.Lett., (2002),80,1909-1911.
    [2] J.M.Calleja and M.Cardona, Raman scattering properties of amorphous As and Sb, Phys.Rev.B, (1977), 15,3863-3871.
    [3] W.II.Park, G.C.Yi, .M.Kim, S.J.Pennycook, ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy, Adv.Mater., (2002),14,1841-1843.
    [4] R.S.Wagner and W.C.Ellis, Vapor-liquid-solid mechanism of single crystal growth, Appl.Phys.Lett., (1964),4,89-90.
    [5] F.D.Paraguay, W.L.Estrada, D.R.N.Acosta, E.Andrade, M.Miki-Yoshida, Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis, Thin Solid Films, (1999),350,192-202.
    [6] B.P.Zhang, N.T.Binh, Y.Segawa, Y.Kashiwaba and K.Haga, Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11-20) substrates, Appl.Phys.Lett., (2004), 84,586-588.
    [7]K.Vanheusden, W.L.Warren, C.H.Seager, D.R.Tallant, J.A.Voigt, B.E.Gande, Mechanisms behind green photoluminescence in ZnO phosphor powders, J.Appl.Phys.,(1996),79,7983-7990.
    
    [8]M.Rajalakshmi, A.K.Arora, B.S.Bendre and S.Mahamuni, Optical phonon confinement, in zinc oxide nanoparticles, J.Appl.Phys., (2000),87,2445-2448.
    
    [9]H.Q.Yan, R..R.He, J.Pham, P.D.Yang, Morphogenesis of one-dimensional ZnO nano- and microcrystals, Adv.Mater., (2003),15,402-405.
    
    [10]C.H.Ye, X.S.Fang, Y.F.Hao, X.M.Teng and L.D.Zhang, Zinc oxide nanostructures: morphology derivation and evolution, J.Phys.Chem.B., (2005),109,19758-19765.
    
    
    [11]R.A.Laudise, A.A.Ballman, Hydrothermal synthesis of zinc oxide and zinc sulfide, J.Phys.Chem., (1960),64,688-691.
    
    [12]L.Liao, J.C.Li, D.H.Liu, C.Liu, D.F.Wang, W.Z.Song, Self-assembly of aligned ZnO nanoscrews:Growth, configuration, and field emission, Appl.Phys.Lett., (2005),86,083106.
    
    [13]H.J.Fan, R.Scholz, F.M.Kolb, M.Zacharias and U.Gosele, Growth mechanism and characterization of zinc oxide microcages, Solid.State.Commun., (2004), 130,517-521.
    
    [14]P.X.Gao, Z.L.Wang, Mesoporous polyhedral cages and shells formed by textured self-assembly of ZnO nanocrystals, J.Am.Chem.Soc, (2003),125,l 1299-11305.
    [1] C.X.Xu, X.W.Sun and B.J.Chen, Field emission from gallium-doped zinc oxide nanofiber array, Appl.Phys.Lett, (2004),84,1540-1542.
    [2] J.S.Jie, G.Z.Wang, X.H.Han, Q.X.Yu, Y.Liao, G.P.Li and J.G.Hou, Indium-doped zinc oxide nanobelts, Chem.Phys.Lett., (2004),387,466-470.
    [3] C.Ronning, EX.Gao, Y.Ding, Z.L.Wang and D.Schwen, Manganese doped ZnO nanobelts for spintronics, Appl.Phys.Lett, (2004),84,783-785.
    [4] Y.B.Geng, G.Z.Wang, Z.Jiang, T.Xie, S.H.Sun, G.W.Meng and L.D.Zhang, Synthesis and optical properties of S-doped ZnO nanowires, Appl.Phys.Lett, (2003),82,4791-4793.
    
    [5]S.Y.Bae, H.W.Seo and J.Park, Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition, J.Phys.Chem.B.(2004), 108,5206-5210.
    
    [6]S.Zafar, C.S.Ferekides and D.L.Morel, Characterization and analysis of ZnO:Al deposited by reactive magnetron sputtering, J.Vac.Sci..Technol.A.,(1995), 13,2177- 2182.
    
    [7]K.H.Kim, K.C.Park and D.Y.Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, J.Appl.Phys.,(1997),81,7764-7772.
    
    [8]Z.L.Pei, C.Sun, M.H.Tan, J.Q.Xiao, D.H.Guan, R.F.Huang and L.S.Wen, Optical and electrical properties of direct-current magnetron sputtered ZnO:Al films, J.Appl.Phys.,(2001),90,3432-3436.
    
    [9]M.Kumar, R.M.Mehra, A.Wakahara, M.Ishida and A.Yoshida, Epitaxial growth of high quality ZnO:Al film on silicon with a thin γ-Al_2O_3 buffer layer, J.Appl.Phys.,(2003),93,3837-3843.
    
    [10]J.M.Calleja and M.Cardona, Raman scattering properties of amorphous As and Sb, Phys.Rev.B, (1977), 15,3863-3871.
    
    
    [11]M.Rajalakshmi, A.K.Arora, B.S.Bendre and S.Mahamuni, Optical phonon confinement, in zinc oxide nanoparticles, J.Appl.Phys., (2000),87,2445-2448.
    
    [12]D.Erts, B.Polyakov, B.Daly, M.A.Morris, S.Ellingboe, J.Boland and J.D.Holmes, High density germanium nanowire assemblies: contact challenges and electrical characterization, J.Phys.Chem.B., (2006), 110,820-826.
    
    [13]J.Zhong, S.Muthukumar, Y.Chen, Y.Lu, M.H.Ng, W.Jiang and E.L.Garfunkel, Ga-doped ZnO single-crystal nanotips grown on fused silica by metalorganic chemical vapor deposition, Appl.Phys.Lett., (2003),83,3401-3403.
    
    [14]N.Pan, X.P.Wang, K.Zhang, H.L.Hu, B.Xu, F.Q.Li and J.GHou, An approach to control the tip shapes and properties of ZnO nanorods, Nanotechnology, (2005), 16,1069-1072.
    
    [15]B.K.Meyer, H.Alves, D.M.Hofmann, W.Kriegseis, D.Forster, F.Bertram, J.Christen, A.Hoffmann, M.Straβburg, M.Dworzak, U.Haboeck and A.V.Rodina, Bound exciton and donor-acceptor pair recombinations in ZnO, Phys. Status Solidi B., (2004),241,231-260.
    
    [16]T.B.Hur, Y.H.Hwang and H.K.Kim, Impurity band characteristics near the band edge of Al-doped ZnO, J.Appl.Phys., (2004),96,1507-1510.
    
    [17]L.S.Vlasenko and GD.Watkins, Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO, Phys.Rev.B., (2005),71, 125210.
    
    [18]A.Janotti and C.GVan de Walle, Oxygen vacancies in ZnO, Appl.Phys.Lett., (2005),87,122102.
    
    [19]Y.Nakano, T.Morikawa, T.Ohwaki and Y.Taga, Deep-level characterization of N-doped ZnO films prepared by reactive magnetron sputtering, Appl.Phys.Lett., (2005),87,232104.
    
    [20]M.Leroux, N.Grandjean, B.Beaumont, G.Nataf, F.Semond, J.Massies and P.Gibart, Temperature quenching of photoluminescence intensities in undoped and doped GaN, J.Appl.Phys., (1999),86,3721-3728.
    
    [21]E.Burstein, Anomalous optical absorption limit in InSb, Phys.Rev., (1954),93, 632-633.
    
    [22]Y.R.Ryu,T.S.Lee and H.W. White, Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition Appl.Phys.Lett., (2003),83,87-89.
    
    [23]K.Nakahara, H.Takasu, P.Fons, A.Yamada, K.Iwata, K.Matsubara, R.Hunger and S.Niki, Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy, Appl.Phys.Lett., (2001),79,4139-4141.
    
    [24]J.F.Rommeluere, L.Svob, F.Jomard, J.M.Arroyo, A.Lusson, V.Sallet and Y.Marfaing, Electrical activity of nitrogen acceptors in ZnO films grown by metalorganic vapor phase epitaxy, Appl.Phys.Lett., (2003),83,287-289.
    
    [25]D.C.Look, D.C.Reynolds, C.W.Litton, R.L.Jones, D.B.Eason and G.Cantwell, Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy, Appl.Phys.Lett., (2002),81,1830-1832.
    
    [26]L.J.Wang and N.C.Giles, Temperature dependence of the free-exciton transition energy in zinc oxide by photoluminescence excitation spectroscopy, J.Appl.Phys., (2003),94,973-978.
    
    [27]C.F.Li, Y.S.Huang, L.Malikova and F.H.Pollak, Temperature dependence of the energies and broadening parameters of the interband excitonic transitions in wurtzite GaN, Phys.ReV.B., (1997),55,9251-9254.
    
    [28]J.Gutowski, N.Presser and I.Broser, Acceptor-exciton complexes in ZnO: A comprehensive analysis of their electronic states by high-resolution magnetooptics and excitation spectroscopy, Phys.Rev.B., (1988),38,9746-9758.
    
    [29]B.P.Zhang, N.T.Binh, Y.Segawa, Y.Kashiwaba and K.Haga, Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (11-20) substrates, Appl.Phys.Lett, (2004), 84,586-588.
    
    [30]T.Makino, Y.Segawa, S.Yoshida, A.Tsukazaki, T.Ohtomo, M.Kawasaki and H.Koinuma, Spectral shape analysis of ultraviolet luminescence in n-type ZnO:Ga, J.Appl.Phys., (2005),98,093520.
    
    [31]D.C.Reyolds, D.C.Look and B.Jogai, Fine structure on the green band in ZnO, J.Appl.Phys., (2001 ),89,6189-6191.
    
    [32]N.Y.Garces, L.Wang, L.Bai, N.C.Giles, L.E.Halliburton and G.Cantwell, Role of copper in the green luminescence from ZnO crystals, Appl.Phys.Lett., (2002),81, 622-624.
    
    [33]R.Dingle, Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide, Phys.Rev.Lett., (1969),23, 579-581.
    
    [34]D.C.Look, D.C.Reynolds, J.R.Sizelove, R.L.Jones, C.W.Litton, G.Cantwell and W.C.Harsch, Electrical properties of bulk ZnO, Solid.State.Commun, (1998), 105, 399-401.
    [1] 电子显示,田民波,清华大学出版社,(2001),p260.
    [2] C.X.Xu, X.W.Sun, Field emission from zinc oxide nanopins, Appl.Phys.Lett., (2003),83,3806-3808.
    [3] S.H.Jo, J.Y.Lao, Z.F.Ren, Field emission studies on thin films of zinc oxide nanowires, Appl.Phys.Lett., (2003),83,4821-4823.
    [4] C.X.Xu, X.W.Sun, B.J.Chen, Field emission from gallium-doped zinc oxide nanofiber array, Appl.Phys.Lett., (2004),84,1540-1542.
    [5] Y.B.Li, Y.Bando, D.Golberg, ZnO nanoneedles with tip surface perturbations: excellent field emitters, Appl.Phys.Lett., (2004),84,3603-3605.
    [6] S.H.Jo, D.Banerjee, Z.F.Ren, Field emission of zinc oxide nanowires grown on carbon cloth, Appl.Phys.Lett., (2004),84,1407-1409.
    [7] Q.H.Li, Q.Wan, Y.J.Chen, T.H.Wang, Stable field emission from tetrapod like ZnO nanostructures, Appl.Phys.Lett., (2004),84,636-638.
    [8] Q.Wan, K.Yu, T.H.Wang, C.L.Lin, Low field emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation, Appl.Phys.Lett., (2003),83,2253-2255.
    [9] Q.Zhao, H.Z.Zhang, Y.W.Zhu, S.Q.Feng, X.C.Sun, J.Xu, D.P.Yu, Morphological effects on the field emission of ZnO nanorods arrays, Appl.Phys.Lett., (2005),86, 203115.
    [10] R.C.Wang, C.P.Liu, J.L.Huang, ZnO nanopencil: Efficient field emitters, Appl.Phys.Lett., (2005),87,013110.
    [11] Q.Zhao, X.Y.Xu, X.F.Song, X.Z.Zhang, D.P.Yu, C.P.Li, L.Guo, Enhanced field emission from ZnO nanorods via thermal annealing in oxygen, Appl.Phys.Lett., (2006),88,033102.
    [12] Y.H.Yang, B.Wang, N.S.Xu, G..W.Yang, Field emission of one-dimensional micro- and nanostructures of zinc oxide, Appl.Phys.Lett., (2006),89,043108.
    [1] L.Zou, Z.Z.Ye, J.Y.Huang and B.H.Zhao, Structural characterization and pluminescent properties of Zn_(1-x)Mg_xO films on silicon, Chin. Phys. Lett., 2002,19 1350-1352.
    [2] W.II.Park, G.C.Yi and H.M.Jany, Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn_(1-x)Mg_xO (0≤x≤0.49) thin films, Appl.Phys.Lett., 2001,79,2022-2024.
    [3] O.Vigil, L.Vaillant, F.Cruz, G.Santana, A.Morales-Acevedo and G. Contreras-Puente, Spray pyrolysis deposition of cadmium-zinc oxide thin films, (2000), 53,361-362.
    [4] A.Ohtomo, M.Kawasaki, I.Ohkubo, H.Koinuma, T.Yasuda and Y.Segawa, Structure and optical properties of ZnO/Mg_(0.2)Zn_(0.8)O superlattices, Appl.Phys.Lett., 1999,75,980-982.
    [5] B.P.Zhang, N.T.Binh, K.Wakatsuki, C.Y.Liu, Y.Segawa and N.Usami, Growth of ZnO/MgZnO quantum wells on sapphire substrates and observation of the two-dimensional confinement effect, Appl.Phys.Lett., 2005,86,032105.
    [7] L.P.Zhu, M.J.Zhi, Z.Z.Ye and B.H.Zhao, Catalyst-free two-step growth of quasialigned ZnMgO nanorods and their properties, Appl.Phys.Lett., (2006), 88,113106.
    [7] 马德伟,叶志镇,黄靖云,赵炳辉,直流反应磁控溅射Zn_(1-x)Cd_xO薄膜的研究,半导体学报,(2003),24,,1053-1056.
    [8] Z.Z.Ye, D.W.Ma, J.H.He, J.Y.Huang, B.H.Zhao, X.D.Luo and Z.Y.Xu, Structural and photoluminescent properties of ternary Zn_(1-x)Cd_xO crystal films grown on Si(111) substrates, J.Cryst.Growth 2003,256,78-82.
    [9] Q.Wan, Q.H.Li, Y.J.Chen, T.H.Wang, X.L.He, X.G.Gao and J.P.Li, Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires, Appl.Phys.Lett., (2004),84,3085-3087.
    [10]S.M.Zhou, X.M.Meng, X.H.Zhang, X.Fan, K.Zou, S.K.Wu and S.T.Lee, Large- scale fabrication and characterization of Cd-doped ZnO nanocantilever arrays, Micron, (2005),36,55-59.
    
    [11]J.Y.Lao, J.G. Wen and Z.F.Ren, Hierarchical ZnO nanostructures, Nano lett., (2002),2,1287-1291.
    
    [12]J.G. Wen, J.Y.Lao, D.Z.Wang, T.M.Kyaw, Y.L.Foo and Z.F.Ren, Self-assembly of semiconducting oxide nanowires, nanorods, and nanoribbons, Chem.Phys.Lett., (2003),372,717-722.
    
    [13]J.Y.Lao, J.Y.Huang, D.Z.Wang and Z.F.Ren, ZnO nanobridges and nanonails, Nano lett., (2003),3,235-238.
    
    [14]A.Kaschner, U.Haboeck, Mar.Strassburg, Mat.Strassburg, GKaczmarczyk, A.Hoffmann, C.Thomsen, A.Zeuner, H.R.Alves, D.M.Hofmann and B.K.Meyer, N-related local vibrational modes in ZnO:N, Appl.Phys.Lett., (2002),80,1909-1911.
    [15]X.Q.Wang, S.R.Yang, J.Z.Wang, M.T.Li, X.Y.Jiang, GT.Du, X.Liu and R.P.H. hang, Nitrogen doped ZnO film grown by the plasma-assited metal organic chemical vapor deposition, J.Cryst.Growth., (2001),226,123-129.
    
    [16]F.Reuss, C.Kirchner, Th,Gruber, R.Kling, S.Maschek, W.Limmer, A.Waag and P.Ziemann, Optical investigations on the annealing behavior of gallium- and nitrogen-implanted ZnO, J.Appl.Phys., (2004),95,3385-3390.
    [17]C.Bundesmann, N.Ashkenov, M.Schubert, D.Spemann, T.Butz, E.M.Kaidashev, M.Lorenz and M.Grundmann, Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga and Li, Appl.Phys.Lett., (2003),83,1974-1976.
    
    [18]J.B.Wang, H.M.Zhong, Z.F.Li and W.Lu, Raman study of N~+ -implanted ZnO, Appl.Phys.Lett., (2006),88,101913.
    
    [19]F.J.Manj6n, B.Mari, J.Serrano and A.H.Romero, Silent Raman modes in zinc oxide and related nitrides, J.Appl.Phys., (2005),97,053516.
    
    [20]F.Decremps, J.P.Porres, A.M.Saitta, J.C.Chervin and A.Polian, High-pressure Raman spectroscopy study of wurtzite ZnO, Phys.Rev.B., (2002),65,092101.
    
    [21]M.Rajalakshmi, A.K.Arora, B.S.Bendre and S.Mahamuni, Optical phonon confinement, in zinc oxide nanoparticles, J.Appl.Phys., (2000),87,2445-2448.
    
    [22]S.W.Whangbo, H.K.Jang, S.GKim, M.H.Cho, K.Jeong and C.N.Whang, Properties of ZnO thin films grown at room temperature by using ionized cluster beam deposition, J.Korean Phys.Soc, (2000),37,456-460.
    
    [23]T.Makino, Y.Segawa, M.Kawasaki, A.Ohtomo, R.Shiroki, K.Tamura, T.Yasuda and H.Koinuma, Band gap engineering based on Mg_xZn_(1-x)O and Cd_yZn_(1-y)O ternary alloy films, Appl.Phys.Lett., (2001),78,1237-1239.
    
    [24]Y.H.Kwon, GH.Gainer, S.Bidnyk, Y.H.Cho and J.J.Song, Structural and optical characteristics of In_xGa_(1-x)N/GaN multiple quantum wells with different In compositions, Appl.Phys.Lett., (1999),75,2545-2547..
    
    [25]L.W.Yang, X.L.Wu, Y.Xiong, Y.M.Yang, GS.Huang, P.K.Chu and GGSiu, Formation of zinc oxide micro-disks via layer-by-layer growth and growth mechanism of ZnO nanostructures, J.Crystal.Growth., (2005),283,332-338.
    
    [26]Z.Y.Zhang and M.GLagally, Atomic-scale mechanisms for surfactant-mediated layer-by-Iayer growth in homoepitaxy, Phys Rev Lett., (1994),72,693-696.
    [1] B.Monemar, Ⅲ-Ⅴ nitrides-important future electronic materials, J.Materials Science: Materials in electronics, (1999), 10,227-254.
    [2] S.Nakamura, T.Mukai and M.Senoh, Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes, Appl.Phys.Lett., (1994),64,1687-1689.
    [3] H.Amano, N.Sawaki, I.Akasaki and Y.Toyada, Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer, Appl.Phys.Lett. (1986),48,353-355.
    [4] A.Reiher, J.Blasing, A.Dadgar, A.Diez and A.Krost, Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlNinterlayers, J.Cryst.Growth, (2003),248,563-567.
    [5] R.F.Davis, T.Gehrke, K.J.Linthicum, E.Preble, P.Rajagopal, C.Ronning, C.Zorman and M.Mehregany, Conventional and pendeo-epitaxial growth of GaN(0001) thin films on Si(111) substrates, J.Cryst.Growth, (2001),231,335-341.
    [6] S.Zamir, B.Meyler and J.Salzman, Lateral confined epitaxy of GaN layers on Si substrates, J.Cryst.Growth, (2001),230,341-345.
    [7] J.Cao, D.Pavlidis, A.Eisenbach, A.Philippe, C.B.Chevallier and G.Guillot, Photo- luminescence properties of GaN grown on compliant silicon-on-insulator substrates, Appl.Phys.Lett.,(1997),71,3880-3882.
    
    [8]T.Takeuchi, H.Amano, K.Hiramatsu, N.Sawaki and I.Akasaki, Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. J.Cryst.Growth, (1991 ),115,634-638.
    
    [9]A.Strittmatter, A.Krost, V.Turck, M.Straβburg, D.Bimberg, J.Blasing, T.Hempel, J. Christen, B.Neubauer, D.Gerthsen, T.Christmann and B.K.Meyer, LP-MOCVD growth of GaN on silicon substrates: comparison between AlAs and ZnO nucleation layers, Materials Science and Engineering B, (1999),59,29-32.
    [10]I.Akasaki, H.Amano, Y.Koide, K.Hiramatsu and N.Sawaki, Effects of an buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga_xAl_xN(0    
    [11]S.Nakamura, T.Mukai, M.Senoh and N.Iwasa, Thermal annealing effects on P-type Mg-doped GaN films, Jpn. J.Appl.Phys., (1992),31,L139-L142.
    [12]S.Guha and N.A.Bojarczuk, Ultraviolet and violet GaN light emitting diodes on silicon, Appl.Phys.Lett., 1998,72,415-417.
    
    [13]E.Feltin, S.Dalmasso, P.Mierry, B.Beaumont, H.Lahrcche, A.Bouille, H.Haas, M.Leroux and P.Gibart, Green InGaN light-emitting diodes grown on silicon (111) by metalorganic vapor phase epitaxy, JpnJ.Appl.Phys., 2001,40,L738-L740.
    [14]A.Dadgar, M.Poschenrieder, J.Blasing, K.Fehse, A.Diwz and A.Krost, Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature A1N inter- layers and in situ Si_xN_y masking, Appl.Phys.Lett, (2002),80,3670-3672.
    [15]T.Egawa, T.Moku, H.Ishikawa, K.Ohtsuka and T.Jimbo, Improved characteristics of blue and green InGaN-based light-emitting diodes on Si grown by metalorganic chemical vapor deposion, JpnJ.Appl.Phys., (2002),41,L663-L664.
    [16]C.L.Mo, W.Q.Fang, Y.Pu, H.C.Liu and F.Y.Jiang, Growth and characterization of InGaN blue LED structure on Si(lll) by MOCVD, J.Cryst.Growth, (2005),285,312- 317.
    [17] 莫春兰,硅衬底GaN基蓝光LED材料生长及其器件研制,南昌大学博士学位论文,(2006),p84.
    [18] H.X.Zhang, Z.Z.Ye, B.H.Zhao, H.X.Liu, Epitaxy growth of wurtzite GaN on Si(111) by a vacuum reactive evaporation, J.Appl.Phys., (2000),87,2830-2834.
    [19] H.X.Zhang, Z.Z.Ye, B.H.Zhao, H.X.Liu, Investigation of preparation and properties of epitaxial growth GaN film on Si(111) substrate, J.Cryst.Growth, (2000), 210,511-515.
    [20] G.B.Stringfellow, Organometallic vapor-phase epitaxy: theory and practice, second edition, Academic Press, (1999).
    [21] S.Nakamura, GaN growth using GaN buffer layer, Jpn.J.Appl.Phys., (1991), 30,L1705-1707.
    [22] H.Ishikawa, K.Yamamoto, T.Egawa, T.Soga, T.Jimbo and M.Umeno, J.Cryst. Growth, (1998), 189/190,178.
    [23] A.Dadgar, M.Poschenrieder, J.Blasing, O.Contreras et al., MOVPE growth of GaN on Si(111) substrates, J.Cryst.Growth., (2003),248,556-562.
    [24] J.J.Wu, X.X.Han, J.M.Li, D.B.Li, Y.Lu, H.Y.Wei,G.W.Cong, X.L.Liu, Q.S.Zhu and Z.G.Wang, Crack-free GaN/Si(111) epitaxial layers grown with InAlGaN alloy as compliant interlayer by metalorganic chemical vapor deposition, J.Cryst.Growth., (2005),279,335-340.
    [25] A.Able, W.Wegscheider, K.Engl and J.Zweck, Growth of crack-free GaN on Si(111) with graded AlGaN buffer layers, J.Cryst.Growth., (2005),276,415-418.
    [26] K.Y.Zang, L.S.Wang, S.J.Chua and C.V.Thompson, Structural analysis of metalorganic chemical vapor deposited AIN nucleation layers on Si(111), J.Cryst.Growth., (2004),268,515-520.
    [27] 微电子制造科学原理与工程技术,S.A.Campbell,电子工业出版社,(2003),p379.
    [28] B.Giled, Group III nitride semiconductor compounds,physics and applications, Oxford science publications, (1998),p13.
    [29] O.H.Nam, M.D.Bremser, T.S.Zheleva et al., Lateral epitaxy of low defect density GaN layers via organometallic vapor phase epitaxy, Appl.Phys.Lett., 1997,(71),2638- 2640.
    [30] 吴自勤,王兵,薄膜生长,科学出版社,(2001),p186.
    [31] 程光煦,拉曼布里渊散射—原理及应用,科学出版社,(2001).
    [32] C.A.Arguello, D.L.Rousseau, S.P.S.Porto, First order Raman effect in wurtzite type crystals, Phys.Rev., (1969), 181,1351-1363.
    [33] R.Loudon, The Raman effect in crystals, Advances in Physics, (1964), 13,423-482.
    [34] S.Tripathy, P.Chen and Z.L.Miao, Micro-Raman investigation of strain in GaN and Al_xGa_(1-x)N/GaN heterostructures grown on Si(111), J.Appl.Phys., (2002),92, 3503-3510.
    [35] I.H.Lee, I.H.Choi, C.R.Lee, E.J.Shin, D.Kim, S.K.Noh, S.J.Son, K.Y.Lim and H.J.Lee, Stress relaxation in Si-doped GaN studied by Raman spectroscopy, J.Appl. Phys. (1998),83,5787-5791.
    [36] 李国华,韩和相,汪兆平,段树琨,王晓亮,GaN外延层的拉曼散射研究,光散射学报,(1997),9,152-154.
    [37] H.Heinke, V.Kirchner, S.Einfeldt and D.Hommel, X-ray diffraction analysis of the defect structure in epitaxial GaN, Appl.Phys.Lett., (2000),77,2145-2147.
    [38] T.Metzger, R.Hopler, E.Born, O.Ambacher, M.Stutzmann, R.Stommer, M.Schuster, H.Gobel, S.Christiansen, M.Albrecht and H.P.Strunk, Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry, Philos.Mag.A., (1998),77,1013-1025.
    [39] H.Heinke, V.Kirchner, S.Einfeldt and D.Hommel., Analysis of the defect structure of epitaxial GaN, Phys.Status Solidi.A., (1999), 176,391-395.
    [40] B.Heying, X.H.Wu, S.Keller, Y.Li, D.Kapolnek, B.P.Keller, S.P. Denbaars and J.S.Speck, Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films, Appl.Phys.Lett., (1996),68,645-647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700