提速线路精密测量、重构与优化整正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁路轨道的平顺性对列车的运行品质具有重要影响,提速线路对轨道平顺性提出了更高要求。目前,对既有提速铁路的线路长波平顺性检测与维护尚缺乏完整有效的方法和手段。论文在分析国内外相关研究现状的基础上,围绕既有提速铁路的线路精密测量与不平顺性维修养护技术进行相关研究,形成了一套基于CPIII精密控制网的线路精密测量、优化重构和精确整正的理论和方法。论文主要研究内容包括:
     针对提速线路长波平顺性检测要求,提出了基于CPIII精密控制网的提速线路测量方法。建立了全站仪自由设站平差计算模型和CPⅢ控制网点位稳定性检测模型,为线路三维空间坐标的连续精密测量和优化重构提供精确的数据来源。
     以全站仪设站坐标、棱镜测量数据和轨道内部几何检测数据为依据,构建了基于三维坐标变换的线路中线空间坐标计算模型。针对轨道内部几何参数检测数据中的粗大噪声,采用基于DB1小波基的三尺度小波分解方法对轨道内部几何参数检测信号进行分解,通过3σ准则识别并剔除信号中的高频成分后,对检测信号进行小波重构,从而有效滤除了轨道几何检测数据中的噪声信号。
     为实现线路平面曲线的优化重构,建立了基于夹直线最小二乘拟合的测点里程与偏距计算模型。构建了以夹直线交点坐标、曲线半径和缓和曲线长为优化目标的线路连续平面曲线重构优化模型,以单一平面曲线重构结果作为初始最优解,采用Powell-PSO混合优化算法实现了连续平面曲线参数的重构优化计算。
     在线路纵断面优化重构的研究中,引入抬压道量加权系数,以最小抬压道量为优化目标、变坡点里程和变坡点高程为优化变量,构建了纵断面连续纵坡优化模型。以单一纵坡的直线最小二乘重构结果作为初始最优解,采用PSO优化算法,实现了纵断面连续坡段的优化重构。在此基础上设计了竖曲线优化重构模型,采用定步长迭代搜索方法,实现了竖曲线半径的优化。
     针对提速线路长波、短波平顺性整正要求,依据线路精密测量数据和优化重构结果,提出了适合捣固施工的线路平、纵断面优化整正方案。在此基础上,进一步设计了线路特殊区段(如道岔区段、偏心桥梁区段和钢梁桥区段等)的短波和长波不平顺整正方案。
     在广深铁路Ⅰ、Ⅱ线K40-K65时速200km/h区段建成了CPⅢ精测精调试验网,对本文工作进行了试验验证。对该试验区段进行了线路绝对坐标精密测量,对线路平、纵断面进行了优化重构,进而利用重构后的线路参数及平、纵断面调整量,设计了满足长波、短波平顺性要求的线路精确整正方案。对大机养护前后的线路平顺性检测数据进行了对比分析,结果表明试验区段的长波和短波的平顺性水平得到了较大的提高,满足提速线路平顺性指标要求。
     围绕本文工作所进行的工程实践表明:本文提出的有关理论、方法与技术方案对提速线路不平顺检测与整正具有理论指导和工程应用价值。
The track regularity has an important influence on the running quality of the train. The raising speed railway has much more stringent requirements of track regularity. Currently, the detection and maintenance of long-wave regularity based on the raising speed railway are still lack of effective approaches and means. On the basis of the analysis of relevant research status at home and abroad, raising speed railway precise measurement and regularity maintenance technology are researched to form a set of theories, methods on track precise measurement, optimal reconstruction and precise adjustment, based on CPⅢ precise control network. The main research contents include:
     Aimed at the measurement requirements of long-wave regularity, a raising speed railway measurement technology plan based on CPⅢ precise control network is proposed. The compensating computation model of free-station of total station and stability test model of CPⅢ control point are introduced, which provide the accurate data source for continuous precise measurement and optimal reconstruction of railway three-dimensional space coordinates.
     On the basis of total station coordinates, prism measurement data and track inner geometric detection data, the space coordinate calculation model of track central line has been constructed based on the three-dimensional coordinate transformation. Considering the coarse noise in track inner geometric detection data, three-scale wavelet decomposition method based on DB1wavelet is utilized to decompose detection data, and3a criteria is used to identify and eliminate the high-frequency components of the signal, then the detection data is reconstructed using wavelet in order to filter out the noise signal in the track geometry detection data.
     In order to achieve the optimal reconstruction of plane curve, the mileage and offset distance calculation model, which is modeled on least square fitting of straight line between curves, is built. The optimal reconstruction model of continuous plane curve is built using intersection of straight line between curves, curve radius and length of transition curve as optimization goals. By using the reconstruction result of single plane curve as the initial optimal solution, a Powell-PSO hybrid optimization algorithm is proposed to achieve the optimal reconstruction calculation of continuous plane curve parameters.
     In the study of profile optimal reconstruction, the weighted coefficients of lift and pressure amount are introduced and the optimization model of profile continuous slope is built, the minimum lift and pressure mount is used as optimization objective, the mileage and elevation of gradient change points are used as optimization variables. Using the linear least square fitting construction result of profile single gradient as initial optimal solution, PSO optimization algorithm is utilized to achieve the optimal reconstruction calculation of continuous slope. On this basis, the optimal model of vertical curve is designed. The optimization of vertical curve radius is achieved by fixed step iterative search methods.
     Considering the adjustment requirements of long-wave and short-wave regularity of raising speed railway, according to the line precision measurement data and reconstruction result, an optimal adjustment program of line plane and profile is built which fits the construction of tamping machine. On this basis, the adjustment program of long-wave and short-wave regularity for special sections (such as switch section, eccentric bridge section, and steel beam bridge section) is further designed.
     The CPIII precise measurement and adjustment trial network is built in the region from K40to K65of Guangzhou-Shenzhen Railway with the speed of200km/h to verify the work of this paper. The absolute coordinate measurement based on CPIII precision control network is completed in the trial region, and the parameters of plane curve and profile are reconstructed. Then the reconstructed parameters are utilized to formulate the adjustment plan of plane and profile which meet the regularity of long wave and short wave. The contrast of before and after detection data of construction of tamping machine shows that:the level of long-wave and short-wave regularity of the trial region has been greatly improved, which meet th]e requirements of raising speed railway.
     The engineering practice around the work of this dissertation shows that:the relevant theory, method and technology scheme applied to track irregularity detection and adjustment of raising speed railway have theoretical and engineering application value.
引文
[1]罗林.轮轨系统轨道平顺状态的控制(精装)[M].北京:中国铁道工业出版社,2006.
    [2]魏世斌,刘伶萍,刘维桢,等.提速线路轨道长波不平顺检测技术[J].中国铁道科学,2010,31(02):141-144.
    [3]储孝巍.客运专线轨道检测及维修技术的分析探讨[J].铁道标准设计,2005(2):29-32.
    [4]丁克良,刘大杰,周全基.既有铁路曲线整正平差算法[J].测绘学报,2004(3):195-199.
    [5]王霏涵.既有线改建纵断面测量及优化设计方法研究[J].科技信息(科学教研),2008(06):22-56.
    [6]丁克良,刘成,卜庆颢,等.GPS RTK技术在铁路既有线勘测中的应用[J].中国铁道科学,2005,26(2):52-56.
    [7]李孟山,李少元.数值积分法计算线路中线坐标[J].石家庄铁道学院学报,1999(3):51-53.
    [8]李伟,蒲浩,彭先宝.基于方向加速法的铁路既有线平面重构优化算法[J].铁道科学与工程学报,2009,6(3):47-51.
    [9]李红艳,陈治亚,邢诚,等.铁路既有线曲线复测计算方法[J].中国铁道科学,2009,30(2):18-22.
    [10]叶霞飞,许恺.铁路纵断面设计优化的动态规划模型[J].上海铁道大学学报,2000,21(10):90-95.
    [11]叶霞飞.铁路线路设计优化的三维动态规划模型[J].上海铁道大学学报,1997(4):75-82.
    [12]徐志飞,刘卫星,许玉德.利用动态规划法进行既有线纵断面改建的优化设计[J].上海铁道大学学报,1997(3):11-15.
    [13]李海峰,许玉德,吕益恕.既有线改建纵断面设计优化CAD系统[J].上海铁道大学学报(理工辑),1998(10):51-54.
    [14]许玉德,李海峰,吕益恕.既有线改建纵断面设计优化中目标函数的改进及其实现[J].上海铁道大学学报(理工辑),1998(10):47-50.
    [15]许玉德,吕益恕,郑其昌.铁路既有线改建纵断面优化设计[J].上海铁道学院学报,1995,16(2):43-48.
    [16]Chan W T, Sim Y P, Others. Optimal vertical alignment analysis for highway design[J]. Journal of transportation engineering,2002, 128(5):395-402.
    [17]Jong J C, Schonfeld P. An evolutionary model for simultaneously optimizing three-dimensional highway alignments[J]. Transportation Research Part B:Methodological,2003,37(2):107-128.
    [18]Jha M K. Criteria-based decision support system for selecting highway alignments[J]. Journal of transportation engineering,2003, 129(1):33-41.
    [19]Jha M K, Schonfeld P. A highway alignment optimization model using geographic information systems[J]. Transportation Research Part A: Policy and Practice,2004,38(6):455-481.
    [20]Jha M K, Mccall C, Schonfeld P. Using GIS, genetic algorithms, and visualization in highway development[J]. Computer-Aided Civil and Infrastructure Engineering,2001,16(6):399-414.
    [21]Jha M K, Kim E. Highway route optimization based on accessibility, proximity, and land-use changes[J]. Journal of transportation engineering,2006,132:435.
    [22]杨名.基于蚁群算法的道路纵断面优化设计[D].长沙:中南大学,2008.
    [23]陈秀玲.基于遗传算法的公路纵断面优化设计方法[J].公路,2004(6):36-38.
    [24]冯晓,杨佳,李敏,等.基于遗传算法的公路纵断面优化应用分析[J].重庆大学学报(自然科学版),2007,30(7):83-87.
    [25]高华.基于遗传算法和多目标决策体系的公路选线整体优化[D].长沙:中南大学,2007.
    [26]李良英.基于遗传算法的铁路纵断面优化设计方法[J].甘肃科技,2006,22(8):157-159.
    [27]随东丽.公路设计中纵断面优化设计算法的研究[D].洛阳:河南科技大学,2001.
    [28]孙晓丽.基于遗传算法的既有线平面及纵断面整正优化设计[D].长沙:中南大学,2010.
    [29]涂鹏,王星华,蒋红斐.道路平面线形优化方法的研究及实现[J].公路工程,2007,32(6):106-109.
    [30]许金良,王海君,杨少伟.基于遗传算法的公路纵断面优化[J].交通运输工程学报,2003,3(2):48-52.
    [31]阎保定,郭跟成,随东丽,等.基于遗传算法的公路纵断面优化设计方法[J].河南科技大学学报(自然科学版),2003,24(2):56-58.
    [32]杨献波.基于遗传算法的公路纵断面优化研究[D].南京:东南大学,2006.
    [33]周林.基于遗传算法的道路选线优化方法研究[D].长沙:长沙理工大学,2009.
    [34]张国锋,高晓蓉,王黎,等.数字逆滤波技术在轨道不平顺检测中的应用[J].信号处理,2004(6):667-670.
    [35]杜鹤亭.长波长轨道不平顺检测中的数字滤波方法[J].中国铁道科学,2000,21(4):60-67.
    [36]黄剑飞.高速铁路无砟轨道三维检测系统研制及误差分析[D].西安:长安大学,2011.
    [37]蔡军.基于光纤陀螺仪的轨道方向不平顺检测系统的研究[D].南昌:南昌大学,2007.
    [38]李光林,张新奎,朱利民.提速200km/h线路长波长不平顺的养护维修技术[J].铁道建筑,2007(04):101-102.
    [39]司炳新,王帅.高速铁路CPⅢ控制网测量误差来源及外业操作注意事项[J].中国科技信息,2011(09):279-280.
    [40]蔡士毅,李博峰,石德斌,等.无碴轨道高速铁路精密测量数据处理[J].大地测量与地球动力学,2008,28(1):114-117.
    [41]徐小左,刘成龙,杨友涛.无砟轨道精调中CPⅢ网点稳定性检测方法的研究[J].铁道工程学报,2008,25(9):21-25.
    [42]铁道部.新建时速200公里客货共线铁路设计暂行规定[Z].中国铁道出版社,2005.
    [43]张超,杨志义,马峻岩.限幅滤波算法在WSN数据预处理中的应用[J].科学技术与工程,2011,11(6):1207-1212.
    [44]Donoho D L. De-noising by soft-thresholding[J]. Information Theory, IEEE Transactions on,1995,41(3):613-627.
    [45]Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1989,11(7):674-693.
    [46]Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. Information Theory, IEEE Transactions on,1992, 38(2):617-643.
    [47]Donoho D L, Johnstone I M, Kerkyacharian G, et al. Wavelet shrinkage: asymptopia[J]. Journal of the Royal Statistical Society. Series B (Methodological),1995:301-369.
    [48]Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the american statistical association,1995, 90(432):1200-1224.
    [49]陈宪麦,王澜,陶夏新,等.基于小波分析理论的轨道不平顺分析[J].铁道工程学报,2008,25(1):57-61.
    [50]蒋淑霞,傅勤毅,文振华.小波变换在轨道静态功率谱密度获取中的应用[J].交通运输工程学报,2004,4(2):33-35.
    [51]金卓睿.变压器局部放电超高频监测分形天线与最优小波去噪及信号识别研究[D].重庆:重庆大学,2008.
    [52]李智强,李天瑞.小波阈值去噪在动车组数据处理中的应用[J].计算机工程,2011,37(21):235-237.
    [53]曲铭,许玉德.基于小波的列车加速度和轨道不平顺关系分析[J].华东交通大学学报,2008,25(5):36-41.
    [54]王建波,栾元重,许君一,等.小波分析桥梁变形监测数据处理[J].测绘科学,2012,37(3):79-81.
    [55]翁梁锋,林建辉.基于小波的轨道不平顺信号分析[J].中国测试技术,2006,32(1):62-63.
    [56]杨宗凯.小波去噪及其在信号检测中的应用[J].华中理工大学学 报,1997(02):2-5.
    [57]姚胜利.地震信号的小波去噪方法研究[D].长沙:中南大学,2007.
    [58]曾守桢.小波去噪及其在信号处理中的应用[D].天津:天津大学,2007.
    [59]张洁,陈春俊,林建辉.基于小波变换的轨道不平顺信号分析[J].西南交通大学学报,2004,39(4):469-471.
    [61]周伟.基于MATLAB的小波分析应用[M].西安:西安电子科技大学出版社,2010.
    [62]刘辉.基于视觉诱发的P300脑电信号处理算法研究[D].广州:广东工业大学,2011.
    [63]刘春媛.小波变换轮廓术理论和技术研究[D].哈尔滨:黑龙江科技学院,2010.
    [64]翁梁锋,林建辉.基于小波的轨道不平顺信号分析[J].中国测试技术,2006(01):62-63.
    [65]Ding Y, Reuben R L, Steel J A. A new method for waveform analysis for estimating AE wave arrival times using wavelet decomposition [J]. NDT \& E International,2004,37(4):279-290.
    [66]刘志平.检测仪表中粗大误差的剔除分析[J].电子测量技术,2009,32(11):55-57.
    [67]王兆祥.铁道工程测量[M].北京:中国铁道出版社,1998.
    [68]郝瀛.铁路选线设计[M].北京:中国铁道出版社,1988.
    [69]何华武,刘增杰,刁晓明,等.既有线提速200km/h平纵断面技术标准研究与验证[J].铁道学报,2007(02):64-70.
    [70]刘鑫,刘增杰.秦沈客运专线高速试验段线路缓和曲线动力学仿真分析[J].铁道学报,2004,26(1):82-87.
    [71]李远富.线路勘测设计[M].北京:高等教育出版社,2009.
    [72]李富强,陈斐,王强.已知点坐标换算路线里程的方法及程序[J].山西交通科技,2005(4):65-67.
    [73]张佃友.任意路线与匝道曲线数字化放样原理及程序[D].桂林:桂林工学院,2008.
    [74]贾金民,马彦涛,关学生.浅议用坐标法计算既有线曲线[J].铁道建筑,2010(2):102-105.
    [75]王霏涵.既有线改建纵断面测量及优化设计方法研究[J].科技信息(科学教研),2008(06):22-56.
    [76]孔兵,王昭,谭玉山.基于圆拟合的激光光斑中心检测算法[J].红外与激光工程,2002,31(3):275-279.
    [77]Powell M J D. An efficient method for finding the minimum of a function of several variables without calculating derivatives [J]. Computer,1964,1(7):155-162.
    [78]郭乙木,王双连,蔡新.工程优化-原理、算法与实施[M].北京:机械工业出版社,2008.
    [79]吴建辉,章兢,陈红安.融合Powell搜索法的粒子群优化算法[J].控制 与决策,2012(3):343-348.
    [80]Bratton D, Kennedy J. Defining a Standard for Particle Swarm Optimization[C]. Swarm Intelligence Symposium,2007:120-127.
    [81]Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE International Conference on Neural Networks,1995:1942-1948.
    [82]Kwok N M, Liu D K, Tan K C, et al. An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization[C]. IEEE Congress on Evolutionary Computation,2006:823-830.
    [83]Moore P W, Venayagamoorthy G K. Empirical Study of an Unconstrained Modified Particle Swarm Optimization[C]. IEEE Congress on Evolutionary Computation,2006:1477-1482.
    [84]Ibrahim S, Khalid N E A, Manaf M. Empirical study of brain segmentation using particle swarm optimization[C]. International Conference on Information Retrieval Knowledge Management,2010:235-239.
    [85]Shi Y, Eberhart R C. Empirical study of particle swarm optimization[C]. IEEE Congress on Evolutionary Computation,1999:1950-1953.
    [86]Maeda Y, Matsushita N. Empirical study of simultaneous perturbation particle swarm optimization[C]. SICE Annual Conference,2008:2545-2548.
    [87]Zhixiong L. Empirical study of the random number parameter setting for particle swarm optimization algorithm[C]. IEEE Fifth International Conference on Bio-Inspired Computing:Theories and Applications (BIC-TA), 2010:246-252.
    [88]Eberhart R C, Shi Y. Guest Editorial Special Issue on Particle Swarm Optimization[J]. Evolutionary Computation,2004,8(3):201-203.
    [89]谭佳琳.粒子群优化算法研究及其在海底地形辅助导航中的应用[D].哈尔滨:哈尔滨工程大学,2010.
    [90]方江晓.短期风速和风电功率预测模型的研究[D].北京:北京交通大学,2011.
    [91]陈震亦.粒子群优化算法研究及其在TSP问题中的应用[D].福州:福州大学,2005.
    [92]郭文忠,陈国龙.离散粒子群优化算法及其应用[M].北京:清华大学出版社,2012.
    [93]Shi Y, Eberhart R. Monitoring of particle swarm optimization[J]. Frontiers of Computer Science in China,2009,3(1):31-37.
    [94]罗春松.改进的粒子群算法及其在控制器参数整定中的应用[D].长沙:湖南大学,2009.
    [95]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2001.
    [96]Yuhui S, Eberhart R C. Fuzzy adaptive particle swarm optimization[C]. Evolutionary Computation,2001:101-106.
    [97]李丽,牛奔.粒子群优化算法[M].北京:冶金工业出版社,2009.
    [98]Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. Evolutionary Computation,2004,8(3):240-255.
    [99]陈水利,蔡国榕,郭文忠,等.PSO算法加速因子的非线性策略研究[J].长江大学学报(自科版)理工卷,2007,4(4):1-4.
    [100]Li-Ping Z, Huan-Jun Y, Shang-Xu H. Optimal choice of parameters for particle swarm optimization[J]. Journal of Zhejiang University Science A,2005(6).
    [101]张义虎.高速铁路竖曲线高程计算软件设计[J].科技创新导报,2012(2):37-38.
    [102]易思蓉.铁路选线设计[M].成都:西南交通大学出版社,2001.
    [103]白宝英.高速铁路线路纵断面设计标准及其应用研究[J].铁道标准设计,2010(7):4-7.
    [104]柳世辉.客货共线运行铁路线路纵断面设计标准的制订[J].铁道标准设计,2005(10):101-103.
    [105]许金良,张雨化.公路CAD技术[M].北京:人民交通出版社,1999.
    [106]铁道第一勘察设计院.铁路线路设计规范[Z].国家质检总局,2006.
    [107]蒋刚.D09-32型连续式捣固车拨道原理分析[J].科技信息(学术研究),2008(21):240-241.
    [108]郑瑞武,刁伯仁.大型养路机械线路作业的残留偏差[J].铁道建筑,2000(10):27-29.
    [109]杜荣长.08-32型正线捣固车和08-475型道岔捣固车拨道系统几何原理分析[J].机车电传动,2002(4):32-35.
    [110]刘刚.捣固车起道、抄平原理分析[J].铁道建筑,2009(1):78-80.
    [111]蔡杰.提速线路绝对坐标测量系统与大型养路机械作业关联技术研究[D].长沙:中南大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700