基于钛酸铜钙、铌酸锂铁电材料的太赫兹波调制特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹功能器件是太赫兹研究领域中非常重要的一部分,其中基于铁电材料的太赫兹波调制器件,由于其重要的研究和应用价值而受到广泛关注。本论文着重于研究基于钛酸铜钙陶瓷和不同掺杂近化学计量比铌酸锂晶体等铁电材料在太赫兹波段的调制特性。通过建立模型,分析了太赫兹波与铁电材料相互作用的物理机制。利用太赫兹时域光谱系统对钛酸铜钙和不同掺杂近化学计量比铌酸锂晶体在太赫兹波段的物理性质和介电响应进行了研究,重点采用光控手段对这些铁电材料在太赫兹波段的介电常数进行调制,调制幅度分别达到了7%和5.5%,并且探讨了影响铁电材料在太赫兹波段介电响应的各种微观机制以及实验中观测到的光铁电现象。具体研究内容如下:
     (1)介绍了太赫兹技术和铁电体的基本概念。对太赫兹波的应用系统结构和太赫兹时域光谱技术进行了简介。讨论了铁电微观机制中的软模理论,它认为铁电相变是由晶体布里渊区中心的某个光学横模振动频率的下降引起的。我们利用德拜弛豫模型和振子模型来探讨铁电体的介电响应频谱,它们分别对应于有序无序型铁电体和位移型铁电体。介绍了一些常见的光铁电现象,重点讨论了反常光生伏打效应和光折变效应。
     (2)采用实验方法测量了室温下钛酸铜钙(CCTO)陶瓷在太赫兹波段的光谱特性。通过数据处理和计算得到了钛酸铜钙陶瓷在太赫兹波段的复介电常数色散曲线。CCTO在太赫兹波段的介电常数数值约为65~75,并没有表现出较强的巨介电性质。当对样品材料施加不同强度的外光场时,我们实现了对CCTO介电常数的调制,调制幅度可达7%。我们观察到样品折射率的变化与外加光场的强度成线性关系,这些变化被认为是由材料中光生载流子导致的自发极化的改变引起的。
     (3)采用实验方法测量了室温下掺铁近化学计量比铌酸锂单晶和掺铈近化学计量比铌酸锂单晶在太赫兹波段的光谱特性。通过数据处理和计算得到了两种晶体在太赫兹波段的复介电常数、吸收系数、复折射率色散曲线。在太赫兹波段,掺铁近化学计量比铌酸锂单晶的介电常数约为42~46,折射率约为6.5~6.8;吸收系数约为60~100cm~(-1),略大于无掺杂的近化学计量比铌酸锂单晶。在太赫兹波段,掺铈近化学计量比铌酸锂单晶的介电常数约为39~43,折射率约为6.3~6.6;吸收系数约为70~120cm~(-1),略大于无掺杂的近化学计量比铌酸锂单晶。
     (4)利用外加光场的方法实现了对掺铁近化学计量比铌酸锂单晶和掺铈近化学计量比铌酸锂单晶在太赫兹波段的介电常数和吸收系数的调制,对介电常数的调制幅度分别达到3%和1.8%,对吸收系数的调制幅度分别达到5.5%和4%。当光强较小时,晶体的折射率变化量随着外加光场强度的变化成线性关系,这一现象被认为是由光折变效应引起的,即光生载流子的空间位移在晶体内部产生了空间电荷场,它通过线性电光效应引起了晶体折射率的变化。其中掺铁近化学计量比铌酸锂单晶的光折变效应明显强于掺铈近化学计量比铌酸锂单晶。另外,当光强达到一定程度后,我们在两种晶体当中均观测到光折变效应的突然减弱,引起这一现象的原因被归结为光致畴反转。在掺铁近化学计量比铌酸锂单晶观察到光致畴反转现象所需的光强要低于掺铈近化学计量比铌酸锂单晶。
The terahertz functional device is an important part in the area of terahertz research.Especially, the terahertz modulation characteristics based on ferroelectric materials haveattracted much attention of researchers because of its unique physical property andapplication value. This manuscript focused on the dielectric behavior of CaCu_3Ti_4O_(12)(CCTO) ceramic and different doped near-stoichiometric LiNbO3(near-SLN) crystals inthe terahertz range. We analyses the physical mechanisms of the interaction betweenterahertz wave and ferroelectric materials. By employing a terahertz time-domainspectroscopy system, we measured the complex dielectric constants of CCTO and dopednear-SLN. When applying an external optical field, we have modulated the dielectricconstants of both CCTO and doped near-SLN, the modulation depths reached up to7%and5.5%, respectively. We discussed the micro mechanisms behind the observed effectsand some photo-ferroelectric phenomena. The details of my work are listed as following:
     (1) We introduced the concepts of THz technology and ferroelectrics. Then we talkedabout the THz application system structure and the THz time-domain spectroscopy system.We investigated the soft-mode theory, which is the most important micromechanism inferroelectric phase transition. The theory indicated that the phase transition was caused bythe frequency drop of an optical transverse mode in the center of Brillouin zone. Weinvestigated the Debye relaxation model and oscillator model for the dielectric behavior offerroelectrics, which corresponded to the displacement ferroelectrics and theorder-disorder ferroelectrics, respectively. We introduced some common photo-ferroelectric phenomena, emphatically talked about anomalous photovoltaic (APV) effectand photorefraction.
     (2) The dielectric properties of1050°C/12h sintered CaCu_3Ti_4O_(12)(CCTO) ceramicshave been investigated by using terahertz time domain spectroscopy in the frequencyrange of0.2~(-1).6THz at room temperature. CCTO do not show giant permittivityproperties in the THz range. When applying an external optical field, an obvious variationof dielectric constant was observed and reached up to7%. From the results, we found thatthe change of refractive index has a linear relationship on scale with the applied light intensity. These findings were attributed to the change of spontaneous polarization in theceramic caused by the excited free carriers.
     (3) The dielectric properties of near-stoichiometric LiNbO_:Fe and near-stoichiometric LiNbO_:Ce single crystals have been investigated by using a terahertz timedomain spectroscopy (THz-TDS) in a frequency range of0.7~(-1).6THz at room temperature.Through a Fourier transform, we got the transmission spectra and the intrinsic phase shiftsof the samples. The complex refractive index and permittivity were calculated from theTHz transmission spectra. In the terahertz range, the dielectric constant of near-SLN:Fe isabout42-46(corresponding refractive index is6.5-6.8), and the dielectric constant ofnear-SLN:Ce is about40-43(corresponding refractive index is6.3-6.6). The absorptioncoefficient of near-SLN:Fe in the terahertz range is about60~(-1)00cm~(-1), and the absorptioncoefficient of near-SLN:Ce in the terahertz range is about70~(-1)20cm~(-1). They are bothhigher than that of undoped CLN.
     (4) When coupled with an applied external optical field, obvious photorefractiveeffects were observed, resulting in the modulation of the complex dielectric constants forboth near-SLN:Fe and near-SLN:Ce. The variation of refractive index|Δn|has a linearrelationship on scale with the applied light intensity accompanied with a steplike decrease.These findings were attributed to the internal space charge field of photorefraction and thelight-induced domain reversal in the crystals. The light intensity at which the steplikedecrease of photorefraction takes place in near-SLN:Ce is a little higher than that ofnear-SLN:Fe crystal. It means that the coercive field of near-SLN:Ce is a little larger thanthat of near-SLN:Fe, which can also be attributed to the photorefraction resistancebehavior of near-SLN:Ce crystal.
引文
[1] R. K hler, A. Tredicucci, F. Beltram, et al. High-performance continous-waveoperation of superlattice terahertz quantum-cascade lasers. Appl. Phys. Lett.,2003,82(10):1518-1520
    [2] K. Kawase, Y. Ogawa, Y. Watanabe. Non-destructive terahertz imaging of illicitdrugs using spectral fingerprints. Opt. Express,2003,11(20):2549-2554
    [3] K. L. Wang, D. Mittleman. Meta wires for terahertz wave guiding. Nature,2004,432:376-379
    [4] P. H. Siegel. Terahertz technology in biology and medicine. IEEE Trans. Micro.Theory and Tech.,2004,52:1575-1578
    [5] Y. C. Shen, T. Lo, P. F. Taday, et al. Detection and identification of explosives usingterahertz pulsed spectroscopicimaging. Appl. Phys. Lett.,2005,86(24):241116
    [6]孙博,姚建铨,王卓.利用各向同性半导体晶体差频产生可调谐THZ辐射的理论研究.物理学报,2007,56(3):1390-1396
    [7]张开春,刘盛纲.周期极化铌酸锂中光整流THz波辐射.物理学报,2007,56(9):5258-5262
    [8]韦戌,康琳,史生才等.300GHz超导SIS接收机系统的设计与构建.低温物理学报,2005,27(3):203-206
    [9] Z. Li, Y. Zhang, B. Li. Terahertz photonic crystal switch in silicon based onself-imaging principle. Optics Express,2006,14(9):3887-3892
    [10] X. Xie, J. Dai, X. C. Zhang. Coherent Control of THz Wave Generation in Ambient Air.Physical Review Letters,2006,96(7):075005
    [11] J. C. Cao. Interband impact ionization and nonlinear absorption of terahertzradiation in semiconductor heterostructures. Phys. Rev. Lett.,2003,91(23):237401
    [12] Wei Shi, Yu Jie Ding. Tunable terahertz waves generated by mixing twocopropagating infrared beams in GaP. Optics Letters,2005,30(9):1030-1032
    [13] Fitch M. J., Osiander R. Terahertz waves for communications and sensing. JohnsHopkins Apl Technical Digest,2004,25(4):348-355
    [14] Hirori H. Attenuated total reflection spectroscopy in time domain using terahertzcoherent pulses. Japanese Journal of Applied Physics Part2-Letters&ExpressLetters,2004,43(10A): L1287-L1289
    [15] Kawase K. Non-destructive terahertz imaging of illicit drugs using spectralfingerprints. Optics Express,2003,11(20):2549-2554
    [16] Yamashita M. Noncontact inspection technique for electrical failures in semiconductordevices using a laser terahertz emission microscope. Applied Physics Letters,2008,93(4):041117-3
    [17]张雯,雷银照.太赫兹无损检测的进展.仪器仪表学报,2008,29(7):1563-1568
    [18] Tonouchi M. Cutting-edge terahertz technology. Nature Photonics,2007,1(2):97-105
    [19] Woodward R. M. Terahertz pulse imaging in reflection geometry of human skincancer and skin tissue. Physics in Medicine and Biology,2002,47(21):3853-3863
    [20] M. Nagel, P. Haring Bolivar, M. Brucherseifer. Integrated THz technology forlabel-free genetic diagnostics, Appl. Phys. Lett.,2002,80(1):154-156
    [21] P. Y. Han, X. C. Zhang. Time-domain transillumination of biological tissues withterahertz pulses, Opt. Lett.,2000,25(4):242-245
    [22] John F. Federici1, Brian Schulkin, Feng Huang, et al. THz imaging and sensing forsecurity applications-explosives, weapons and drugs, Semicond. Sci. Technol.,2005,20(7): S266-S280
    [23] D. M. Mittleman, M. Gupta, R. Neelamani. Recent advances in terahertz imaging,Appl. Phys. B,1999,68(6):1085-1094
    [24] Kemp M. C., Taday P. F., Cole B. E., et al. Security applications of terahertztechnology. Proc. SPIE,2003,5070:44-52
    [25] DARROW J. T., Zhang X. C., AUSTON D. H. Power scaling of large-aperturephoto conducting antennas. Appl. Phys. Lett.,1991,58(1):25-27
    [26] DRAGOMAN D., DRAGOM AN M. Terahertz fields and applications. Progress inQuantum Electron,2004,28(1):1-66
    [27] S. L. Chuang, B. I. Greene. Optical rectification a t semiconductor surfaces. Phys.Rev. Lett.,1992,68(1):102-105
    [28] Uhd Jepsen P., Keiding S. R. Radiation patterns from lens-coupled terahertzantennas. Optics Letters,1995,20(8):807-809
    [29] Rudd J. V., Johnson J., Mittleman D. M. Quadrupole radiation from terahertz dipoleantennas. Optics Letters,2000,25(20):1556-1558
    [30] Nahata A., Auston D. H., Heinz T. F. Coherent detection of freely propagatingterahertz radiation by electro-optic sampling. Appl. Phys. Lett.,1996,68(2):150-152
    [31] Wu Q., Zhang X-C. Electro-optic sampling of freely propagating THz field. Optics&Quantum Electronics,1996,28(7):945-951
    [32]许景周,张希成.太赫兹科学技术和应用.北京:北京大学出版社,2007:48-56
    [33] T. K. Ostmann, K. Pierz, G. Hein, et al. Audio signal transmission over THzcommunication channel using semiconductor modulator. Electron. Lett.,2004,40(2):124-126
    [34] T. Nagatsuma. Exploring sub-terahertz waves for future wireless communications.31th IRMMW-THz Conference, Shanghai,2006, PL-4:4
    [35] R. Kersting, G. Strasser, K. Unterrainer. Terahertz phase modulator. Electron. Lett.,2000,36(13):1156-1158
    [36] T. K. Ostmann, P. Dawson, K. Pierz, et al. Room temperature operation of anelectrically driven terahertz modulator. Appl. Phys. Lett.,2004,84(18):3555-3557
    [37] H. T. Chen, W. J. Padilla, J. M. O. Zide, et al. Active terahertz metamaterialsdevices. Nature,2006,444:597-600
    [38] Jiusheng Li. Terahertz modulator using photonic crystals. Optics Communications,2007,269:98-101
    [39] L. Fekete, F. Kadlec. Fast one-dimentional photonic crystal modulator for theterahertz range. Opt Express,2007,15(14):8898-8912
    [40] W. J. Padilla, A. J. Taylor, C. Highstrete, et al. Dynamical electric and magneticmetamaterials response at terahertz frequencies. Phys. Rev. Lett.,2006,96(10):107401
    [41] H. T. Chen, J. F. O’Hara, et al. Experimental demonstration of frequency-agileterahertz metamaterials. Nature Photonics,2008,2:295-298
    [42] Z. Ghattan, T. Hasek, R. Wilk, et al. Sub-Terahertz on-off switch based on a twodimensional photonic crystal infiltrated by liquid crystal. Optics Communications,2008,281:4623-4625
    [43] O. Paul, C. Imhof, B. lgel, et al. Polarization independent active metamaterial forhigh frequency terahertz modulation. Opt. Express,2009,17(2):819
    [44] J. M. Manceau, N. H. Shen, M. Kafesaki, et al. Dynamic response of metamaterialsin the terahertz regime: Blueshift tunability and broadband phase modulation. Appl.Phys. Lett.,2010,96(2):021111
    [45] Vincenzo Giannini, Audrey Berrier, Stefan A. Maier, et al. Scattering efficiency andnear field enhancement of active semiconductor plasmonic antennas at terahertzfrequencies. Opt. Express,2010,18(3):2797-2807
    [46] Petr Ku el, Filip Kadlec. Tunable structures and modulators for THz light. C. R.Physique,2008,9:197-214
    [47] A. K. Tagantsev, V. O. Sherman. Ferroelectric materials for microwave tunableapplications. Journal of Electroceramics,2003,11:5-66
    [48]钟维烈.铁电体物理学.北京:科学出版社,1996:1-3
    [49] W. Cochran. Crystal Stability and the Theory of Ferroelectricity. Phys. Rev. Lett.,1959,3(9):412-414
    [50] W. Cochran. Crystal stability and the theory of ferroelectricity. Adv. Phys.,1960,9:387-423
    [51] P. G. De Gennes. Collective motions of hydrogen bonds. Solid State Commun.,1963,1(6):132-137
    [52] N. S. Gills. Phase transitions in a simple model ferroelectric. II. Comments on theself-consistent phonon approximation. Phys. Rev. B,1975,11(1):309-317
    [53] S. J. Aubry. A unified approach to the interpretation of displacive and order-disordersystems. J. Chem. Phys.,1975,62(8):3217-3229
    [54] S. Stamenkovic, N. M. Plakide, V. L. Aksienov, et al. On a possible unified theoryof ferroelectricity. Ferroelectrics,1976,14(1):655-659
    [55] S. C. Abrahams, J. Ravez. Dielectric and related properties of fluorine-octahedraferroelectrics. Ferroelectrics,1992,135(1):21-37
    [56] S. Sawada, S. Nomura, S. Fujii, et al. Ferroelectricity in NaNO2. Phys. Rev. Lett.,1958,1(9):320-321
    [57] S. Yoshino, Y. Okaya, R. Pepinsky. Crystal Structure of the Ferroelectric Phase of(Glycine)3·H2SO4. Phys. Rev.,1959,115(2):323-330
    [58] V. Dvoraak. Theoretical aspects of phase transitions in betaine compounds.Ferroelectrics,1990,104(1):135-146
    [59] G. Schaack. Experimental results on phase transitions in betaine compounds.Ferroelectrics,1990,104(1):147-158
    [60] H. Muller. Properties of Rochelle Salt. Phys. Rev.,1940,57(9):829-839
    [61] H. Muller. Properties of Rochelle Salt. III. Phys. Rev.,1940,58(6):565-573
    [62] A. F. Devonshire. Theory of barium titanate Part I. Phil. Mag.,1949,40(309):1040-1063
    [63] A. F. Devonshire. Theory of barium titanate—Part II. Phil. Mag.,1951,42(333):1065-1079
    [64] A. F. Devonshire. Theory of ferroelectrics. Adv. Phys.,1954,3(10):85-130
    [65] J. C. Slater. Theory of the transition in KH2PO4. J. Chem. Phys.,1941,9:16-33
    [66] J. C. Slater. The Lorentz Correction in Barium Titanate. Phys. Rev.,1950,78(6):748-761
    [67] R. D. King-Smith, D. Vanderbilt. First-principles investigation of ferroelectricity inperovskite compounds. Phys. Rev. B,1994,49(9):5828-5844
    [68] R. Resta, M. Posternak, A. Baldereschi. Towards a quantum theory of polarizationin ferroelectrics: The case of KNbO3. Phys. Rev. Lett.,1993,70(7):1010-1013
    [69] W. G. Liu, L. B. Kong, L. Y. Zhang, et al. Study of the surface layer of lead titanatethin film by x-ray diffraction. Solid State Commun.,1995,93(8):653-657
    [70] W. L. Zhong, B. D. Qu, P. L. Zhang, et al. Thickness dependence of the dielectricsusceptibility of ferroelectric thin films. Phys. Rev. B,1994,50(17):12375-12380
    [71] B. D. Qu, W. L. Zhong, P. L. Zhang. Curie temperature of a ferroelectric superlatticedescribed by the transverse Ising model. Phys. Lett. A,1994,189(5):419-422
    [72] R. B. Meyer, I. Liebert, L. Sterzelecki, et al. Ferroelectric liquid crystals. J. Phys.(Paris) Lett.,1975,36(3):69-71
    [73] J. Funfschilling. Liquid Crystals and Liquid Crystal Displays. Condensed MatterNews,1991,1(1):12-16
    [74] I. Drevensek, R. Blinc. Nonlinear optical properties of ferroelectric liquid crystals.Condensed Matter News,1992,1(5):14-24
    [75] R. G. Kepler, R. A. Anderson. Ferroelectric polymers. Adv. Phys.,1992,41(1):1-57
    [76] R. A. Newman, J. I. Scheinbeim, J. W. Lee, et al. A new class of ferroelectricpolymers, the odd-numbered nylons. Ferroelectrics,1992,127(1):229-234
    [77] J. F. Scott, C. A. Paz de Araujo. Ferroelectric memories. Science,1989,246:1400-1405
    [78] A. M. Glass, D. Vonder Linde. Photovoltaic, photoconductive and excited statedipole mechanisms for optical storage in pyroelectrics. Ferroelectrics,1976,10(1):163-166
    [79] P. Gunter, P. Micheron. Photorefractive effects and photocurrents in KNbO3: Fe.Ferroelectrics,1978,18(1):27-38
    [80] F. Micheron. Sensitivity of the photorefractive processes. Ferroelectrics,1978,18(1):153-159
    [81] A. Asbkin, G. D. Boyd, J. M. Dzjedzic, et al. Optically-induced refractive indexinhomogeneities in LiNbO3and LiTaO3. Appl. Phys. Lett.,1962,9(1):72-74
    [82] S. Ducherme, J. C. Scott, R. J. Twieg, et al. Observation of the photorefractive effectin a polymer. Phys. Rev. Lett.,1991,66(14):1846-1849
    [83] J. J. Amodei, D. L. Staebler, A. N. Stephaphens. Holographic Pattern Fixing inElectroopticCrystals. Appl. Phys. Lett.,1971,18(12):540-542
    [84] W. Philliphs, J. J. Amodei, D. L. Staebler. Optical and Holographic StorageProperties of Transition Metal Doped Lithium Niobate. RCA Review,1972,33:94-109
    [85] J. G. Zhong, J. Jin, Z. K. Wu. Measurement of Optically Induced Refractive-IndexDamage of Lithium Niobate Doped with Different Concentrateion of MgO.11thInternational Quantum Electronics Conference, New York, IEEE Catalog. No.80,CH1561-0,1980:631
    [86] T. R. Volk, V. I. Pryalkin, N. M. Rubinina. Optical Damage Resistant LiNbO3: ZnCrystal. Opt. Lett.,1990,15(18):996-998
    [87] Y. F. Kong, J. K. Wen, H. F. Wang. New Doped Lithium Niobate Crystal with HighResistance to Photorefraction-LiNbO3: In. Appl. Phys. Lett.,1995,66(3):280-281
    [88]李树奇,刘士国,孔勇发等.四价掺杂铌酸锂晶体抗光折变性能研究.人工晶体学报,2006,35:474-477
    [89] S. Q. Li, S. G. Liu, Y. F. Kong, et al. The optical damage resistance and absorptionspectra of LiNbO3: Hf crystals. J. Phys.: Condens. Matter,2006,18:3527-3534
    [90] S. Q. Li, S. G. Liu, Y. F. Kong, et al. Enhanced photorefractive properties of LiNbO3:Fe crystals by HfO2codoping. Appl. Phys. Lett.,2006,89:101-126
    [91] M. A. Subramanian, L. Dong, N. Duan, et al. High dielectric constant in ACu3Ti4O12and ACu3Ti3FeO12phases. J. Solid State Chem.,2000,151(2):323-325
    [92] Y. Liu, R. L. Withers, X. Y. Wei. Structurally frustrated relaxor ferroelectricbehavior in CaCu3Ti4O12. Phys. Rev. B,2005,72(13):134104
    [93] C. C. Homes, T. Vogt, S. M. Shapiro, et al. Optical response of high-dielectric-constant perovskite-related oxide. Science,2001,293(5530):673-676
    [94] S. Ke, H. Huang, H. Fan. Relaxor behavior in CaCu3Ti4O12ceramics. Appl. Phys.Lett.,2006,89(18):182904
    [95] Y. Zhu, J. C. Zheng, L. Wu, et al. Nanoscale disorder in CaCu3Ti4O12: a new routeto the enhanced dielectric response. Phys. Rev. Lett.,2007,99(3):037602
    [96] L. X. He, J. B. Neaton, M. H. Cohen, et al. First-principles study of the structureand lattice dielectric response of CaCu3Ti4O12. Phys. Rev. B,2002,65(21):214112
    [97] D. C. Sinclair, T. B. Adams, F. D. Morrison, et al. CaCu3Ti4O12: one-step internalbarrier layer capacitor. Appl. Phys. Lett.,2002,80(12):2153-2155
    [98] T. B. Adams, D. C. Sinclair, A. R. West. Giant barrier layer capacitance effects inCaCu3Ti4O12ceramics. Adv. Mater.(Deerfield Beach Fla.),2002,14(18):1321-1323
    [99] A. R. West, T. B. Adams, F. D. Morrison, et al. Novel high capacitance materials:BaTiO3: La and CaCu3Ti4O12. J. Eur. Ceram. Soc.,2004,24(6):1439-1448
    [100] L. Fang, M. Shen, F. Zheng, et al. Dielectric responses and multirelaxationbehaviors of pure and doped CaCu3Ti4O12ceramic. J. Appl. Phys.,2008,104(6):064110
    [101] P. Lunkenheimer, V. Bobnar, A. V. Pronin, et al. Origin of apparent colossaldielectric constants. Phys. Rev. B,2002,66(5):052105
    [102] L. Zhang, Z. J. Tang. Polaron relaxation and variable-range-hopping conductivity inthe giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B,2004,70(17):174306
    [103] A. Tselev, C. M. Brooks, S. M. Anlage, et al. Evidence for power-law frequencydependence of intrinsic dielectric response in the CaCu3Ti4O12. Phys. Rev. B,2004,70(14):144101
    [104] C. C. Wang, L. W. Zhang. Polaron relaxation related to localized charge carriersinCaCu3Ti4O12. Appl. Phys. Lett.,2007,90(14):142905
    [105] Shao S. F., Zhang J. L., Zheng P., et a1. Microstrueture and electrical properties ofCaCu3Ti4O12ceramics. J. Appl. Phys.,2006,99(8):084106
    [106]周小莉,杜丕一.磁控溅射法制备的薄膜.物理学报,2005,54(4):1809-1813
    [107] Cai J. N., Lin Y. H., Cheng B. Dielectric and nonlinear electrical behaviors observedin Mn-doped CaCu3Ti4O12ceramic. Appl. Phys. Lett.,2007,91(25):252905
    [108] Fang L., Shen M. R., Cao W. W. Effects of post-anneal conditions on the dielectricpropeflies of CaCu3Ti4012thin films prepared on Pt/Ti/SiO2/Si substrate. J. Appl.Phys.,2004,95(11):6483-6485
    [109] Si W., Cruz E. M., Johnson, et a1. Epitaxial thin films of the giant dielectricconstant material CaCu3Ti4O12grown by pulsed laser deposition. Appl. Phys. Lett.,2002,81(11):2056-2058
    [110] Lin Y., Chen Y. B., Garret T., et a1. Epitaxial growth of dielect fie CaCu3Ti4O12thinfilms on (001) LaAlO3by pulsed laser deposition. Appl. Phys. Lett.,2002,81(4):631-633
    [111] K. M. Johnson. Variation of dielectric constant with voltage in ferroelectrics and itsapplication to parametric devices. J. Appl. Phys.,1962,33(9):2826-2831
    [112] Y. C. Chen, L. Wu, Y. P. Chou, et al. Curve-fitting of direct-current field dependenceof dielectric constant and loss factor of Al2O3-doped barium strontium titanate.Mater. Sci. Eng. B,2000,76(2):95-100
    [113] W. D. Johnston. Optical index damage in LiNbO3and other pyroelectric insulators.J. Appl. Phys.,1970,41(8):3279-3285
    [114] F. S. Chen. Optically Induced Change of Refractive Indices in LiNbO3and LiTaO3.J. Appl. Phys.,1969,40(8):3389-3396
    [115] B. Shri Prakash, K. B. R. Varma. Ferroelectriclike and pyroelectric behavior ofCaCu3Ti4O12ceramics. Appl. Phys. Lett.,2007,90:082903
    [116] P. Gunter, J.-P. Huignard. Photorefractive materials and their applications I and II.Springer-VerlagH, eidelberg.1988,1989
    [117] Kenji Kitamura, Hideki Hatano, Shunji Takekawa, et al. Large pyroelectric effect inFe-doped lithium niobate induced by a high-power short-pulse laser. Appl. Phys.Lett.,2010,97(8):082903
    [118] G. P. Banfi, P. K. Datta, V. Degiorgio, et al. Wavelength shifting and amplification ofoptical pulses through cascaded second-order processes in periodically poledlithium niobate. Appl. Phys. Lett.,1998,73(2):136-138
    [119] V. Bermúdez, J. Capmany, J. García Solé, et al. Growth and second harmonicgeneration characterization of Er3+doped bulk periodically poled LiNbO3. Appl.Phys. Lett.,1998,73(5),593-595
    [120] V. Pruneri, J. Webj rn, P. St. J. Russell, et al.532nm pumped optical parametricoscillator in bulk periodically poled lithium niobate. Appl. Phys. Lett.,1995,67(15):2126-2128
    [121] Y. Sasaki, A. Yuri, K. Kawase, et al. Terahertz-wave surface-emitted differencefrequency generation in slant-stripe-type periodically poled LiNbO3crystal. Appl.Phys. Lett.,2002,81(18):3323-3325
    [122] J. A. Abernethy, C. B. E. Gawith, R. W. Eason, et al. Demonstration and opticalcharacteristics of electro-optic Bragg modulators in periodically poled lithiumniobate in the near-infrared. Appl. Phys. Lett.,2002,81(14):2514-2516
    [123] K. Gallo, G. Assanto. All-optical diode in a periodically poled lithium niobatewaveguide. Appl. Phys. Lett.,2001,79(3):314-316
    [124] F. Kahmann, R. Pankrath, R. A. Rupp. Photoassisted generation of ferroelectricdomain gratings in SBN. Opt. Commun.,1994,107(1-2):6-10
    [125] Wenjie Wang, Yongfa Kong, Hongde Liu, et al. Light-induced domain inversal indoped lithium niobate crystals. J. Appl. Phys.,2009,105(4):043105
    [126] S. C. Abrahams, W. C. Hamilton, J. M. Reddy. Etude par correlation angulaire γ-γperturbee des aspects statiques et dynamiques de la structure du heptafluorohafniatede sodium. J. Phys. Chem. Solids,1966,37(11):1019-1029
    [127] S. C. Abrahams, E. Buehler, W. C. Hamilton, et al. Ferroelectric lithiumtantalate—III. Temperature dependence of the structure in the ferroelectric phaseand the para-electric structure at940°K. J. Phys. Chem. Solids,1973,34(3):521-532
    [128] R. S. Weis, T. K. Gaylord. Lithium niobate: Summary of physical properties andcrystal structure. Applied Physics A,1985,36(4):191-203
    [129] G. I. Malovichko, V. G. Grachev, L. P. Yurchemko, et al. Improvement of LiNbO3microstructure by crystal growth with postassium. Phys. Stat. Sol (a),1992,133:k29-k32
    [130]王忠敏.铌酸锂晶体的发展简况.人工晶体学报,2002,31(2):173-175
    [131] Kenji Kitamura, Yasunori Furukawa, Nobuo Iyi. Progress in single crystal growth ofLiNbO3using double crucible Czochralski method. Ferroelectrics,1997,202:21-28
    [132] K. Kitamura, J. K. Yamamoto, N. Iyi, et al. Stoichiometric LiNbO3single crystalgrowth by double crucible Czochralski method using automatic powder supplysystem. Journal of Crystal Growth,1992,116(3-4):327-332
    [133] S. C. Abrahams, P. Marsh. Defect structure dependence on composition in lithiumniobate. Acta Crystallorgr. Sect. B,1986,42:61-65
    [134] J. Blumel, E. Born, T. Metzger. Solid state NMR study supporting the lithiumvacancy defect model in congruent lithium niobate. J. Phys. Chem. Solids,1994,55:589-593
    [135] S. Kojima. Composition variation of optical phonon damping in lithium niobatecrystals. Jpn. Appl. Phys.,1993,32(9S):4373-4378
    [136] A. P. Wilkinson, A. K. Cheetham, R. H. arman. The defect structure of congruentlymelting lithium niobate. J. Appl. Phys.,1993,74(5):3080-3086
    [137] N. Zotov, H. Boysen, F. Frey, et al. Substitution models of congruent LiNbO3investigated by X-ray and neutron powder diffraction. J. Phys. Chem. Solids,1994,55:145-153
    [138] B. H. Kang, B. K. Rhee, G. T. Joo, et al. Measurements of photovolataic constantand photoconductivity in Ce, Mn: LiNbO3crystal. Optics Communications,2006,266(1):203-206
    [139] D. R. Evans, J. L. Carns, S. A. Basun, et al. Understanding and eliminatingphotovoltaic induced instabilities in contra-directional two-beam coupling inphotorefractive LiNbO3: Fe. Optical Materials,2005,27(11):1730-1732
    [140] H. F. Wang, G. T. Shi, Z. K. Wu. Photovoltaic effect in LiNbO3: Mg. Phys. Stat.Solids,1985,89: k211-k214
    [141] G. W. Burr, D. Psaltis. Effects of the oxidation state of LiNbO3: Fe on the diffractionefficiency of multiple holograms. Opt. Lett.,1996,21(12):893-895
    [142] L. Pálfalvi, J. Hebling, J. Kuhl, et al. Temperature dependence ofthe absorption andrefraction of Mg-doped congruent and stoichiometric LiNbO3in the THz range. J.Appl. Phys.,2005,97(12):123505
    [143] Tonya Vitova, Josef Hormes, Matthias Falk, et al. Site-selective investigation of sitesymmetry and site occupation of iron in Fe-doped lithium niobate crystals. J. Appl.Phys.,2009,105(1):013524
    [144] J. H. Haeni, P. Irvin, et al. Room-temperature ferroelectricity in strained SrTiO3.Nature,2004,430:758-761
    [145] D. C. Ma. Phase-field simulationof domain structure for PbTiO3/SrTiO3superlattices. Acta Materialia,2009,57:4736-4744

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700