周期性金属阵列结构的太赫兹透射光谱特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用太赫兹时域光谱技术(THz-TDS),研究了周期性金属小孔阵列结构的太赫兹透射光谱特性,并对影响共振透射的因素进行了细致的探讨。本论文主要研究了周期性金属阵列结构中的小孔形状、排列方式、阵列周期、小孔尺寸这几个因素对太赫兹透射特性的影响,探究了太赫兹波段透射增强现象的物理本质。
     本论文所做的主要工作包括:
     (1)研究了太赫兹波段周期性金属小孔阵列结构的透射增强现象,证实了这些结构的透射光谱具有明显的频率选择性。
     (2)研究了金属铜箔上周期性矩形孔阵列结构的太赫兹透射特性及小孔形状对太赫兹透射特性的影响。实验结果表明:孔的形状对透射峰的幅值和共振透射峰的频率位置有较大的影响,当矩形孔的长宽比增大时,透射峰的幅值会随着变大且共振透射峰的位置会向低频方向移动。
     (3)研究了矩形孔阵列结构对太赫兹的偏振依赖性。对于具有对称性结构的样品来说,样品的太赫兹透射光谱不依赖于入射太赫兹波的偏振方向,对于具有非对称性结构的样品来说,样品的太赫兹透射光谱依赖于入射太赫兹波的偏振方向。
     (4)研究了金属铜箔上周期性矩形孔斑图结构的太赫兹透射特性及排列方式对太赫兹透射特性的影响。
     (5)研究了硅衬底上亚波长周期性金属阵列结构的小孔尺寸和阵列周期对太赫兹透射光谱特性的影响。
     在进行实验研究的同时,本文还利用时域有限差分方法(FDTD)进行模拟来验证和分析了实验结果,进一步探讨了在太赫兹波段金属周期性结构透射增强现象的物理本质,为以后的工作提供了参考。
     总之,本论文主要从影响周期性金属阵列结构的太赫兹透射光谱特性的几个方面探讨了透射增强现象的本质,为太赫兹波段光学器件的发展提供了一定的参考。
In this thesis, the terahertz transmission characteristic of metallic periodic hole arrays are investigated by means of the terahertz time-domain spectroscopy (THz-TDS). The factors affected THz transmission properties are analyzed one by one. The main work of this thesis is focused on the relationship between the THz transmission properties and the hole shape, the array alignment, the period, the hole diameter of the periodic array of sub-wavelength holes. In order to understand the influence of these factors to the terahertz transmission properties, and to further understand the physical mechanism of the enhanced transmission in terahertz range. The main work in this thesis include as follows:
     Then we fabricated the periodic arrays of rectangular holes with different alignment in the copper foil. The influence of the array alignment to their terahertz transmission properties is studied. Finally, we fabricated the periodic arrays with the different aperture diameters and the different periods of apertures of the Au film on silicon substrate. The influence of the diameter and the period of apertures to their terahertz transmission properties are studied in detail.
     (1) The enhanced transmission phenomenon of the periodic arrays of holes is investigated in the terahertz range. The frequency selective properties of THz transmission of the metallic periodic array of holes are confirmed.
     (2) We fabricated the periodic arrays of rectangular holes and studied their THz transmission properties. These holes in the copper foils have the same areas but the different shape, the influence of the shape of holes to their terahertz transmission properties is studied. The shapes of holes strongly affect the amplitude and frequency position of the resonance transmission peak. Keeping the polarization angle of THz field and the incidence angle fixed, the positions of transmission peak shift towards lower frequencies and the maximum of transmission will be increased with the length-to-width ratio of the rectangular holes.
     (3) The polarization dependence of THz transmission of the periodic array of rectangular holes is studied. For the symmetrical samples, THz transmission characteristic of these samples independence of the polarization of incidence THz wave. For the nonsymmetrical samples, THz transmission characteristic of these samples depend on the polarization of incidence THz wave.
     (4) THz transmissions of the pattern array of rectangular holes are studied.
     (5) THz transmissions of metallic aperture array on the silicon substrate are studied. The dependence of THz transmission on the hole size and array period are investigated in detail. At the same time, we investigate the physical mechanism of the enhanced THz transmission by means of The Finite-Difference Time-Domain (FDTD) Method. The calculated results are compared with the experimental one.
     In summary, the mechanism of the enhanced THz transmission of the metallic periodic array of holes is studied from several aspects of the hole shape, the hole size, the alignment of holes, and the period of array. This work will provide a significant reference for investigating the photonic devices in the terahertz frequency range.
引文
[1] B. Hecht , H. Bielefeldt, L. Novotny and D. W. Pohl, Phys. Rev. Lett., 77: 889-1892,1996
    [2] J. Pendry, Playing tricks with light. Science, 285: 1687-1688, 1999
    [3] W. L. Barnes, A. Dereux, T. W. Ebbesen. Nature, 424: 824-830, 2003
    [4] H. Raether, Surface plasmon on smooth and rough surfaces and on gratings. Berlin: Springer, 1988
    [5] R. H. Ritchie, Plasmon losses by fast electrons in thin film. Phys. Rev. 106: 874-881, 1957
    [6] Maier SA, Atwater, H. A. J. Appl. Phys., 98: 011101, 2005
    [7] K. Okamoto, I. Niki, Shvartser et al., Nature Mater., 3:601, 2004
    [8] Wang G P, Sugiura T, Kawata S., Appl. Opt., 40:3649, 2001
    [9] T Y .F Tsang, Opt. Lett, 21: 245-7, 1996
    [10] P. G. Kik, S. A. Maier, and H. A. Atwater, Phys. Rev. B,69: 45418, , 2004
    [11] P. Andrew, S. C. Kitson, W. L. Barnes, J. Mod. Opt., 44: 395, 1997
    [12] Westphalen M, Kreibig U, Rostalski J et al, Sol. Energy Mat. Sol. Cells, 61: 97, 2000
    [13] Tredicucci A et al., Appl. Phys. Lett., 76: 2164, 2000
    [14] J. L. Coutaz, M. Neviere, E. Pic et al., Rev. B., 32: 2227, 1985
    [15] Tsang T Y. F., Opt. Lett., 21: 245, 1996
    [16] Kneipp K et al., Phys. Rev. Lett., 78: 1667, 1997
    [17] X. G. Luo et al., Appl. Phys. Lett., 84: 4780, 2004
    [18] A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston/London, 1995
    [19] A. Taflove, Advance in Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House, Boston/London, 1998
    [20]葛德彪,闫玉波著.电磁波时域有限差分方法.西安电子科技大学出版社. 2002
    [21]王长清,祝西里著.电磁波计算中的有限差分方法.北京大学出版社. 1994
    [22] K. S. Yee, IEEE Trans. Antennas Propagate. AP-14(3): 302-307, 1996
    [23] G .Mur, IEEE Trans on Microwave Theory and Tech., 10: 1073. , 1981
    [24] J. P. Berenger, J .Comp, Phys., 114: 185, 1994
    [25] Stephen K Gray,Teobald Kupka,Phys. Rev. B, 68: 045415,2003
    [26] T. W. Ebbesen, H. J. Lezec, H. F. Gaemi, T. Thio and P. A. Wolff, Nature,, 391: 667,1998
    [27] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W, Phys. Rev. Lett., 86: 1114, 2001
    [28] Porto J A, Garcia-Vidal F J and Pendry J B, Phys. Rev. Lett., 83: 2845, 1999
    [29] Collin S, Pardo F, Teissier R and Pelouard J L, Phys. Rev. B, 2001,63: 033107-1
    [30] Lee S H, SPIE, CR49, 1993
    [31] Erez H, Ze'ev B, Avi N, Opt. Comm., 209: 45 , 2002
    [32] Motamedi M E, Opt. Eng., 36: 1282 , 1997
    [33]袁惠,周进,王晓伟,黄信凡,中国激光, 29: 795 , 2002
    [34] Dustin W C, Sullivan J P, Friedmann T A, Opt. Lett., 28: 1636, 2003
    [35] Wang J, Sun X Y, Chen L, Chou S Y, Appl. Phys. Lett. 75: 2767, 1999
    [36] Chou S Y, Krauss P R, Renstrom P J, Science, 272: 85 , 1996
    [37] Hua Cao and Ajay Nahata 12, Opt. Express, 12, 1004, 2004
    [38] Dongxia Qu, Grischkowsky D, and Weili Zhang, Opt. Lett., 29, 896, 2004
    [39] Sobnack M B, Tan. W. C, Wanstall N P, Preist T W, Phys. Rev. Lett., 80, 5667, 1998
    [40] XING Qi-Rong, LI Shu-Xin, ZHANG Wei-Li, LANG Li-Ying, MAO Fang-Lin, XU Shi-Xiang, CHAI Lu, WANG Qing-Yue, Chin. Phys. Lett., 22, 1821, 2005
    [41]王宏飞,全球科技经济瞭望, 4, 60, 2005
    [42]贾刚,汪力,张希成,学科进展与展望, 4, 200, 2002
    [43]王秀敏,徐新龙,李福利,首都师范大学学报(自然科学版), 24, 17, 2003
    [44] Ordal M A,Long L L et al., Appl. Opt., 22, 1099, 1983
    [45]赵凯华,陈熙谋,电磁学,北京:人民教育出版, 1978
    [46]梁绍荣,刘昌年,盛正华等,电磁学[M]1,北京:高等教育出版社, 1993
    [47]郭硕鸿,电动力学,北京:高教出版社, 1995
    [48] Bethe H A, Phys. Rev., 66, 163, 1944
    [49] Grupp D E, Lezec H J, Ebbesen T W, Pellerin K M and Tineke Thio, Appl. Phys. Lett., 77, 1569, 2000
    [50] W. L. Barnes et al., Nature, 424, 824, 2003
    [51] T. J. Kim et al., Opt. Lett. 24, 256, 1999
    [52] L. Martin-Moreno et al., Phys. Rev. Lett. 86, 1114, 2001
    [53] S. C. Hohng et al., Appl. Phys. Lett. 81, 3239, 2002
    [54] R. Gordon et al., Phys. Rev. Lett. 92, 037401, 2004
    [55] A. Degiron et al., Appl. Phys. Lett. 81, 4327, 2002
    [56] E. Altewischer et al., Nature, London, 418, 304, 2002.
    [57] E. Devaux et al., Appl. Phys. Lett. 83, 4936, 2003
    [58] W. L. Barnes et al., Phys. Rev. Lett. 92, 107401, 2004
    [59] A. Dogariu et al., Appl. Phys. B: Lasers Opt. 74, S69, 2002
    [60] Q. Cao and P. Lalanne, Phys. Rev. Lett. 88, 057403, 2002
    [61] Y. H. Ye and J. Y. Zhang, Appl. Phys. Lett. 84, 2977, 2004
    [62] J. Gomez Rivas et al., Phys. Rev. B 68, 201306, 2003
    [63] D. Qu and D. Grischkowsky, Phys. Rev. Lett. 93, 196804, 2004
    [64] F. Miyamaru and M. Hangyo, Appl. Phys. Lett. 84, 2742, 2004
    [65] J. G. Rivas et al., Opt. Express 13, 847, 2005.
    [66] T. Thio et al., J. Opt. Soc. Am. B 16, 1743, 1999
    [67] A. K. Azad et al., Appl. Phys. Lett. 86, 141102, 2005
    [68] A. Degiron and T.W. Ebbesen, Opt. Express 12, 3694-3700, 2004
    [69] N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Neviere, Opt. Express 11, 482-490,2003
    [70] Xiang Shou, Amit Agrawal and Ajay Nahata, Opt. Express 13, 9834, 2005
    [71] Je Hong Kim and Patrick J.Moyer, Opt. Express 14, 6595, 2006
    [72] Ghaemi H F, Thio T, Gupp D E, Ebbesen T W, et al., Phys. Rev. B, 58, 6779, 1998
    [73] Thio T, Ghaemi H F et al., J. Opt. Soc. Am. B, 16, 1743, 1999
    [74] Kim T J, Thio T, Ebbesen T W , et al.,Opt. Lett. 24, 256, 1999
    [76] Traecy M M, Appl. Phys. Lett., 75, 606, 1999
    [77] Andrewartha J R, Fox J R et al.,Opt. Acta, 26, 69, 1979
    [78] Cao Q and Lalanne Ph, Phys. Rev. Lett., 88, 057403, 2002
    [79] Y Takakura, Phys. Rev. Lett., 86, 5601, 2001
    [80] F Yang and J. R. Sambles, Phys. Rev. Lett., 89, 063901, 2002
    [81] H. E. Went, A P Hibbins, et al., Appl. Phys. lett., 77, 2789, 2000
    [82]易永祥,汪国平,龙拥兵,单红,物理学报,第52卷第3期,604-607,2003
    [83] Jiang Z P, Zhang X C, THz Sensing and Imaging Technology, Springer-Verlag, 2001
    [84] Grischkowsky D, Ketchen M B et al., IEEE J Quantum Electronics, 24, 221, 1988
    [85] Rudd J V, Johnson J and Mittleman D M, Opti.Lett. 25, 1556, 2000
    [86] Wu Q and Zhang X C, Optics & Quantum Electronics, 98, 945, 1996
    [87] Nahata A,Auston D H and Heinz T F, et al., Appl. Phys. Lett. , 68, 150, 1996
    [88] Cecilie Ronne, Soren Rud Keiding, Journal of Molecular Liquids, 101, 199, 2002
    [89] Nuss M C, IEEE Circuits and Devices, 12, 25, 1996
    [90]刘盛钢,中国基础科学,科学前沿, 1, 7, 2006
    [91] Peter R. Smith, David H. Auston, and Martin C. Nuss, IEEE Journal of Quantum Electronics, QE-24, 255, 1988
    [92] Rodrigrez, G., A. J. Taylor, Optics Letters, 21(14), 1046, 1996
    [93] G. Zhao, R. N. Schouten et al., Review of scientific instruments, 73(4), 1715, 2002
    [94] X. C. Zhang, B. B. Hu, J. T. Darrow, et al., Appl. Phys. Lett., 56(11), 1011, 1990
    [95] P. Y. Han, X. G. Huang, and X.C. Zhang, Appl. Phys. Lett., 77(18), 2864, 2000
    [96] X.-C. Zhang, Y. Jin, L. E. Kingsley, et al., Appl. Phys. Lett., 62(20), 2477, 1993
    [97] M. B. Johnston, D. M. Whittaker, et al., Journal of Applied Physics, 91(4), 2104, 2002
    [98] J. N. Heyman, P. Neocleous, D. Hebert, et al., Physical Review B, 64, 085202, 2001
    [99] B. B. Hu, X. C. Zhang and D.H. Auston, et al., Appl. Phys. Lett., 6(6), 506, 1990
    [100] L. Wu, X. C. Zhang and D. H. Auston, Appl. Phys. Lett., 61, 1784, 1992
    [101] P. Y. Han and X.C. Zhang, Measurement Science and Technology, 12, 1747-1756, 2001
    [102] R. Huber, F. Tauser and A. Brodschelm, et al., Nature, 414, 286-289, 2001
    [103] Traecy. M. M, Appl. Phys. Lett. 75, 606, 1999
    [104] Andrewartha. J. R, Fox J R and Wilson I J, Opt. Acta 26, 69, 1979

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700