宽带THz波的光谱整形及Kerr效应对THz波探测的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于光学整流原理的THz波时域光谱技术是一种非常有效的电磁辐射相位相干测试技术。该技术在当当今广泛的研究领域扮演着越来越重要的角色。本论文采用理论与实验相结合的方法,利用我们实验室自行搭建的THz时域光谱实验系统,对于THz波发射过程所诱导的Kerr效应进行了实验研究,同时研究了一种宽带THz波光谱整形方法。本论文主要包括以下几方面工作:
     1、在大量阅读文献的基础上,综述了THz科学技术的产生、探测和应用。
     2、介绍了基于光学整流原理的THz波产生和利用线性电光效应探测THz辐射的基本原理。
     3、在实验室原有的自行搭建的以自锁模Ti: sapphire飞秒激光器为激励源建立的THz波时域光谱实验装置的基础上,将其改装成迈克尔逊干涉仪型THz波光谱整形实验装置,进行了基于干涉原理对宽带THz波光谱整形的实验研究。
     4、详细讨论了基于光学整流的THz波产生过程中诱导的Kerr效应和类Kerr效应,并给出THz产生过程中所诱导的区分Kerr效应和二阶非线性级联的实验方法。
Terahertz time-domain spectrometry (THz-TDS) based on optical rectification is an effective phase-coherent photometric method by which one can directly measure the time-resolved electric-field both amplitude and phase of a subpicosecond THz radiation pulse generated by the mode-locked femtosecond pulse laser. At present, this technology is playing a more and more important role in many research fields. In this dissertation, some experimental research of THz is developed based on THz-TDS system. The main works are classified as follows:
     1. The most recent results of THz science and technology were reviewed.
     2. The principle of generating and detecting THz radiation is introduced.
     3. Using the homemade Self-mode-locked Ti: sapphire femtosecond pulse laser as a pump source,a THz Michelson interference setup based on THz-TDS is built. Using the setup, spectrum shaping based on the principle of interference is investigated in detail.
     4. Kerr nonlinearity and Kerr-like nonlinearity induced by femtosecond pulses via terahertz generation and electro-optical effect are investigated. A method to distinguish the two signals experimentally is proposed.
引文
[1] E. J. Nichols and J. D. Tear, “Joining. the infrared. and electric. wave spectra,”. Astrophyx. J., vol. 61,. pp. 17-37; 1925.
    [2] K. H. Yang, P. L. Richards and Y. R. Shen, Generation of far-infrared radiation by picosecond light pulses in LiNbO3, Appl. Phys. Lett. 1971, 19 (9) :320-322
    [3] R. L. Fork, B. I. Greene, and C. V. Shank, Generation of Optical Pulses Shorter Than 0.1 Picoseconds by Colliding Pulse Mode-locking, Applied Physics Letters, 1981, 38(9): 671-672
    [4] D. Dragoman, M. Dragoman, Terahertz fields and applications, IEEE, Progress in Quantum Electronics, 2004, 28: 1-66
    [5] A.G. Davies, E.H. Linfield and M. B. Johnston, The development of terahertz sources and their applications, Phys. Med. Biol. 2002, 47:3679-3689
    [6] M. Nagel, P. Haring Bolivar, M. Brucherseifer, and H. Kurz, Integrated THz technology for label-free genetic diagnostics, Appl. Phys. Lett., 2002, 80: 154-156
    [7] T. Dekorsky, H. Auer, C. Waschke, H. J. Bakker, H. G. Roskos, H. Kurz and P. Grosse, Emission of submillimeter electro-magnetic waves by coherent phonons Phys. Rev. Lett. 1995, 74:738 -741
    [8] A. G. Markelz, A. Roitberg, E. J. Heilweil, Pulsed terahertz spectroscopy of DNA ,bovine serum albumin and collagen between 0.1 and 2.0 THz, Chem. Phys Lett. 2000, 320: 42-48
    [9] M. wan Exter, C. Fattinger, and D. Grischkowsky, Optics Letters 14(20), pp. 1128-1130, 1989
    [10] R. A. Cheville and D. Grischkowsky, Optics Letters 23(7), pp. 531-533, 1998
    [11] F. G. Sun, Zhiping Jiang and X: C. Zhang, Applied Physics Letters 73(16), pp. 2233-2235, 1998
    [12] Zhiping Jiang and X.-C. Zhang, Applied Physics Letters 72(16), pp. 1945-1947, 1998
    [13] D, H, Auston, K, P, Cheung, and P. R. Smith, Picosecond photoconducting Hertzian dipoles, Appl. Phys. Lett. 1984, 45: 284–289
    [14] Masahiko Tani, Michael Herrmann, and Kiyomi Sakai, Generation and detection of terahertz pulsed radiation with photoconductive antennas and its application to imaging, Meas. Sci. Technol. 2002, 13:1739-1745
    [15] R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, and H. L. Hartnagel, Spectral Characterization of Broadband THzAntennas by Photoconductive Mixing: Toward Optimal Antenna Design, IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2005, 4:85-88
    [16] Jacob B. Khurgin, Optical rectification and terahertz emission in semiconductors excited above the band gap, JOSA B, 1994, 11(12):2492
    [17] Ajay Nahata, Tony F. Heinz, Generation of sub-picosecond electrical pulses by optical rectification, Optics Letters, 1998, 23(11):867-869
    [18] A. Di Falco, C. Conti, G. Assanto, Terahertz pulse generation via optical rectification in photonic crystal microcavities, Optics Letters, 2005,30(10):1174-1176
    [19] David Citrin, Quasi-half-cycle terahertz pulse generation via optical rectification in quantum wells using shaped optical pulses, Optics Express, 1997, 1(12): 376-384
    [20] X.-C. Zhang, Y. Jin, and X. F. Ma, Coherent measurement of THz optical rectification from electro-optic crystals, Appl. Phys. Lett. 1992, 61:2764-2766
    [21] Ajay Nahata, Aniruddha S. Weling, and Tony F. Heinz, A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling, Appl. Phys. Lett. 1996, 69, 2321-2323
    [22] M. Reid and R. Fedosejevs, Terahertz emission from surface optical rectification in n-InAs,Proc. SPIE Int. Soc. Opt. Eng. 2004, 5577:659
    [23] Hashimshony D,Zigler A,Papadopoulos D.Phys.Rev.Lett.2001,86:2806
    [24] van der Weide D W, Murakowski J, Keilmarm F, IEEE Trans.Microwave Theory Tech.,2000, 48:740
    [25] 周泽魁,张同军,张光新,太赫兹波科学和技术,自动化仪表,2006,27(3):1-6
    [26] 廖复疆,微型真空电子器件和太赫兹辐射源技术进展,电子学报,2003,21(9):1361—1364
    [27] Taniuchi T,Nakanishi H.Continuously tunable terahertz-wave generation inGaP crystal by collinear difference frequency mixing.Electronics Letters,2004.3,4o(5):327—328.
    [28] Taniuehi T. Shikata J. Tunable terahertz-wave generation in DAST crystal with dual wavelength KTP optical parametric oscillator. Electronics Letters,2000,36(16):1414—1416.
    [29] G. M. H. Knippels, X. Yan, A. M. MacLeod, W. A. Gillespie, M. Yasumoto, D. Oepts and A. F. G. van derMeer, Generation and complete electric-field characterization of intense ultrashort tunable far-infrared laser pulses, Phys. Rev. Lett. 1999, 83:1578-1581
    [30] Mark Sherwin, Applied physics: Terahertz power, Nature, 2002, 42(6912): 131-132
    [31] E. Gerecht, C. F. Musante, Y. Zhuang, K. S. Yngevesson, T. Goyetter,J. C. Dickinson, J. Waldman, P. A. Yagoubov, G. Gol'tsman, B. M.Voronov, and E. M. Gershenzon, NbN hot-electron bolometricmixers-a new technology for low-noise THz receivers, IEEE Trans.Microwave Theory Tech. 1999, 47:2519-2527
    [32] P. Dieleman, T. M. Klapwijk, J. R. Gao, and H. van de Stadt, Analysis of Nb superconductor insulator superconductor tunnel junctions with Al striplines for THz radiation detection, IEEE Trans. Applied Superconductivity 1997, 7:2566-2569
    [33] A. A. Madej, K. J. Siemsen, Absolute heterodyne frequency measurement of the 88Sr+ 455-THz S-D single ion transition, Optics Letters, 1996, 21(11): 824-826
    [34] G. Mourou, C. V. Stancampiano, and D. Blumenthal, Picosecond microwave pulse generation, Appl. Phys. Lett. 1981, 38: 470 -472
    [35] D. H. Auston, K. P. Cheung, and P. R. Smith, Picosecond photoconducting Hertzian dipoles Appl. Phys. Lett. 1984, 45:284-286
    [36] A. P. DeFonzo, M. Jarwala, and C. R. Lutz, Transient response of planar integrated optoelectronic antennas, Appl. Phys. Lett. 1987, 50:1155-1157
    [37] Ch. Fattinger and D. Grischkowsky, Point source terahertz optics, Appl. Phys. Lett. 1988, 53:1480-1482
    [38] P. R. Smith, D. H. Auston, and M. C. Nuss, Subpicosecond Photoconducting dipole antennas, IEEE J. Quantum Electron. 1988, 24:255-260
    [39] Shunsuke Kono, Masahiko Tani, Ping Gu, and Kiyomi Sakai, Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses, Appl. Phys. Lett. 2000, 77(25):4104-4106
    [40] D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, Cherenkov Radiation from Femtosecond Optical Pulses in Electro-Optic Media, Phys. Rev. Lett. 1984, 53:1555-1558
    [41] Viatcheslav Grebenev and Ludwig Bartels Simplified setup for electro-optic sampling of terahertz pulses, APPLIED OPTICS, 2003, 42(9): 1721-1725
    [42] T. Dekorsy, P. Leisching, K. K?hler, and H. Kurz, Electro-optic detection of Bloch oscillations, Phys. Rev. B 1994, 50: 8106–8109
    [43] S. G. Park, M. R. Melloch, and A. M. Weiner, Comparison of terahertz waveforms measured by electro-optic and photoconductive sampling, Appl. Phys. Lett. 1998, 73(22):3184-3186
    [44] Arno Schneider, Ivan Biaggio, and Peter Günter, Terahertz-induced lensing and its use for the detection of terahertz pulses in a birefringent crystal, Appl. Phys. Lett. 2004, 84(13): 2229-2231
    [45] A. Brodsehelm, F. Tauser, R. Huber, In: Ultrafast Phenomena XII (eds. T. Elsaesser, S. Mukhamel, M. M. Mumane). Berlin: Springer, 2000
    [46] J. M. Holloway, R. A. Dahlgren, B. Hansen, W. H. Casey, Contribution of bedrock nitrogen to high nitrate concentrations in stream water, Nature, l998, 392: 785-788
    [47] B. B. Hu, and M. C. Nuss, Imaging with terahertz waves, Optics Letters, 1995, 20(16):1716-1718
    [48] D. M. Mittleman, Rune H. Jacobsen, and Martin C. Nuss, T-ray imaging, IEEE Journal of Selected Topics in Quantum Electronics, 1996 2:679-692
    [49] Torsten ffler, T. Bauer, Karsten Siebert, Hartmut Roskos, Terahertz dark-field imaging of biomedical tissue, Optics Express, 2001, 9(12): 616-621
    [50] R. A. Cheville, D. Grischkowsky, Far-infrared terahertz time-domain spectroscopy of flames, Optics Letters, 1995, 20(15):1646-1648
    [51] Bradley Ferguson, 张希成, 太赫兹科学与技术研究回顾, 物理, 2003, 32(5):286-293
    [52] Q. Chen, Z. P. Jiang, G. X. Xu X.-C. Zhang, Near-field terahertz imaging with a dynamic aperture OPTICS LETTERS, 2000, 25(15):1122-1124
    [53] John F. Federici, Dale Gary, Brian Schulkin, Feng Huang, Hakan Altan Robert Barat David Zimdars, Terahertz imaging using an interferometric array, Appl. Phys. Lett. 2003, 83(12):2477-2479
    [54] B. Fergason, S. H. Wang, D. Gray, Tray computedtomography,Optics Letters, 2002,27:1312-1314
    [55] Wei Shi, Yujie J. Ding, Nils Fernelius, Konstantin Vodopyanov, Efficient, tunable, and coherent 0.18 5.27-THz source based on GaSe crystal, Optics Letters, 2002, 27(16): 1454-1456
    [56] Abdellah Menikh, Robert MacColl, Carmen A. Mannella, Xi-Cheng Zhang, Terahertz Biosensing Technology: Frontiers and Progress CHEMPHYSCHEM 2002, 3:655- 658
    [57] A. G. Markelz, A. Roitberg, and E. J. Heilweil, Pulsed Terahertz Spectroscopy of DNA, Bovine Serum Albumin and Collagen between 0.06 to 2.00 THz, Chem. Phys. Lett. 2000, 320:42-48
    [58] M. Walther, B. Fischer, M. Schall, H. Helm and P. Uhd Jepsen, Far-infrared vibrational spectra of all-trans, 9-cis and 13-cis retinal measured by THz time-domain spectroscopy, Chem. Phys. Lett. 2000, 332:389-395
    [59] S. P. Mickan, A. Menikhu, H. Liu, C. A. Mannella, R. MacColl, D. Abbott,J. Munch, and X.-C. Zhang, Label-free bioaffinity detection using terahertz technology, Phys. Med. Biol., 2002, 47(21):3789–3795
    [60] R. Paiella, F. Capasso, C. Gmachl, self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities, Science 2000, 290: 1739-1742
    [61] R. KGlder, A. Tredicucci, F. Beltram, Terahertz semiconductor hetero structure laser, Nature 2002, 417: 156-159
    [62] J. C. Cao and X. L. Lei, Hydrodynamic balance-equation analysis of spatiotemporal domains and negative differential conductance in a voltage-biased GaAs superlattice, Phys Rev B 1999, 59: 2199 -2206
    [63] J. C. Cao, H. C. Uu, X. L. Lei, Simulation of negative-effective-mass terahertz oscillators, J Appl Phys 2000, 87: 2867-2873
    [64] J. C. Cao, A. Z. U, X. L. Lei, Current self-oscillation and driving-frequency dependence of negative-effective-mass diodes, Appl. Phys Lett. 2001, 79: 3524 -3526
    [65] H. C. Liu, C. Y. Song, Z. R. Wasilewski, Coupled electron-phonon modes in optically pumped resonant intersubband lasers, Phys Rev Lett. 2003, 90: 1-4
    [66] H. C. Liu, C. Y. Song, Z. R. Wasilewski, Coupled electron-phonon modes in optically pumped resonant intersubband lasers, Phys Rev Lett. 2003, 90: 1-4
    [67] 王宏飞, 改变未来世界的十大技术之一-太赫兹技术, 科技大视野, 2005, 4:60-64
    [68] M. Bass, P. A. Franken, J. F. Ward, et al, Optical rectification, Phys. Rev. Lett. 1962,9:446-448
    [69] R. W. Boyd, Nonlinear optics,Chap1, Academic press, 1992
    [70] R. L. Fork, B. I. Greene, and C. V. Shank, Generation of Optical Pulses Shorter Than 0.1 Picoseconds by Colliding Pulse Modelocking, Applied Physics Letters, 1981, 38(9): 671-672
    [71] X.-C. Zhang, B. B. Hu,J.T. Darrow, et al, Generation of femtosecond electromagnetic pulse from semiconductor surfaces, Appl. Phys. Lett., 1990, 56: 1011-1013
    [72] A. Rice, Y. Jin,X. F. Ma, and X.-C. Zhang, Terahertz optical rectification from <110> zinc-blende crystal, Appl. Phys. Lett., 1994,64:1324-1326
    [73] 蓝信钜,激光技术,华中理工大学出版社,1995
    [74] 郎利影,基于光学整流的 THz 时域光谱系统的研究,天津大学博士论文
    [75] R. Martini, F. Hilbk-Kortenbruck, P. Haring Bolivar, and H. Kurz, in 6th International Conference on THz Electronics Proceedings THz 98,IEEE, New York, 1998, p. 242
    [76] V. Grebenev, E. Knoesel, and L. Bartels,Destructive interference of freely propagating terahertz pulses and its potential for high-resolution spectroscopy and optical computing,Appl. Phys. Lett., 2001,79:145-147
    [77] 盛拱北,张彬彬,周治贵,宽谱白光干涉花样及其视觉特征,西南师范大学学报(自然科学版),1993,18(2):234
    [78] Ch. Bosshard et al., Phys. Rev. Lett. (1995)74, 2816.
    [79] J. P. Caumes, L. Videau, C. Rouyer, and E. Freysz, “Kerr-Like NonlinearityInduced via TerahertzGeneration and the Electro-Optical Effect in Zinc Blende Crystals, ”Phys. Rev. Lett. 89, 047401 (2002).
    [80] 邓和,立方晶体非线性折射系数的各向异性,中国激光,1980,09:38
    [81] A. Owyoung; IEEE J.Quant.Electr.,1973,QE-9,1064
    [82] M. Sheik-Bahae, Femtosecond Kerr-lens autocorrelation, OPTICS LETTERS,1997, Vol. 22, No. 6,399

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700