太赫兹波操控技术与器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着太赫兹科学的发展,太赫兹技术逐渐在频谱,成像,国防以及通信领域的显现出广阔的应用前景。越来越多的领域开始重视起这门新兴的学科。由于太赫兹科学起步较晚,对太赫兹波的有效操控是当前技术的盲点,也是太赫兹研究的热点。本论文主要从四个方面研究了对太赫兹波幅度和频谱的操控:
     一.利用太赫兹时域频谱技术(THz-TDS)研究了氧化钒(VOx)薄膜的半导体-金属相变特性,尤其是硅基VOx薄膜的光致半导体-金属相变特性。分析了不同波长的连续光照射、飞秒脉冲激光照射等不同光激发方式下的硅基VOx薄膜对太赫兹波的光调制特性。
     二.通过数值模拟和实验研究了复合型表面等离基元极化波(SPP)结构的THz波滤波特性,采用唯象的分子模型理论对复合结构的透射频率随结构变化的现象进行了分析。并从理论和实验上对复合结构中蕴含的SPP模式间的耦合过程进行了验证,根据实验结果计算了SPP之间的耦合系数。
     三.结合硅基VOx薄膜的光调制特性和SPP结构的滤波特性,设计了VOx薄膜与金属孔阵列的复合结构,VOx薄膜与金属块阵列的复合结构,以及硅基VOx微结构阵列。并通过实验检测了这种双功能器件的特性。通过模拟设计了几种基于VOx薄膜和SPP结构的器件,同时具有调制和滤波功能,实现了频率可调的光控性能。
     四.把硅基VOx的光调制性质应用到THz-TDS中,作为太赫兹波的光控斩波器,取代传统的机械马达斩波器,成功测到了太赫兹脉冲的波形,并在理论上分析了该斩波器与传统马达斩波器的在测量太赫兹脉冲时差异形成的原因。
As the development of the terahertz (THz) science,the fascinating application potentials in spectrum analysis,imaging,security,and communication are found more and more close to the human being’s life and THz science has been receiving more and more attention from kinds of fields . Since the research on THz science is more lagging than other frequency regions,such like microwave and visible range,effective manipulation methods on THz waves are extremely limited and that is also the reason why so many people pay so hard word on it. In this thesis,four parts are included as followed about THz manipulation to the amplitude as well as the spectra.
     First , the semiconductor-metal phase transition properties of vanadium oxide(VOx),especially the photo-induced phase transition,are studied by using terahertz time domain spectroscopy (THz-TDS). The optical response of silicon based VOx film under different illuminating way,i.e. CW laser with various wavelengths and femtosecond laser pulses.
     Second,the filtering performances of hybrid surface plasmon polarition structures are examined by both numerical simulations and experimental measurements. The geometrical dependence of transmission frequency shift is analyzed by using phenomenological molecule model. The coupling between different-typed SPPs modes are studied by theoretical analysis and experiment results and the coupling coefficient is calculated.
     Third,combined the optical modulation feature of silicon-based VOx films and the filtering effect of SPP structures,composite structures like VOx film on metal hole array and VOx film on metal patch array were designed and so was the microstructured VOx film. The experimental measurements show obvious both filtering and modulating function in such devices, and optical frequency tunability is realized .
     Last,by using its modulation effect to THz waves,the silicon-based VOx film was employed as an optically controlled THz chopper,a necessary element of THz-TDS,and THz pulses are succeded to be measured instead of traditional mechanical motor chopper. The origin of the difference between THz waveform measurements based on such optical chopper and normal mechanical chopper is analyzed.
引文
[1] C. Sirtori,Bridge for the terahertz gap,Nature,2002,417(6885): 132-133
    [2] R. Blundell,J. Barrett,H. Gibson,et al.,Prospects for Terahertz radio astronomy from Northern Chile,2002: 159-166.
    [3] M. Kemp,P. Taday,E. Cole,et al.,Security applications of terahertz technology,in 45.
    [4] J. Federici,B. Schulkin,F. Huang,et al.,THz imaging and sensing for security applications in explosives,weapons and drugs,Semiconductor Science and Technology,2005,20(S266
    [5] P. Siegel,Terahertz technology,Microwave Theory and Techniques,IEEE Transactions on,2002,50(3): 910-928
    [6] P. Siegel,THz for space: The golden age,in 2010: 816-819.
    [7] J. Federici and L. Moeller,Review of terahertz and subterahertz wireless communications,Journal of Applied Physics,2010,107(11): 111101
    [8] M. Fitch and R. Osiander,Terahertz waves for communications and sensing,Johns Hopkins APL Technical Digest,2004,25(4): 348-355
    [9] T. Liu,G. Lin,Y. Chang,et al.,Wireless audio and burst communication link with directly modulated THz photoconductive antenna,Optics Express,2005,13(25): 10416-10423
    [10]王卫宁,李洪起,张岩,等.,20种-氨基酸的太赫兹频谱及其分子结构的相关性,物理化学学报,2009,25(10):2074-2079
    [11]陆益敏,汪家春,林志丹,等337μm连续太赫兹激光透射成像,红外与激光工程,2010,39(2):232-235
    [12]张跃东,江月松,何云涛,采用光学处理方法的被动太赫兹波综合孔径成像,红外与激光工程,2010,39(3):477-481
    [13]王仍,葛进,方维政,等,碲-熔剂方法生长ZnTe单晶的太赫兹辐射及探测,红外与毫米波学报,2009,28(1): 1-3
    [14]熊永前,秦斌,冯光耀,等,基于自由电子激光的小型太赫兹源初步设计,中国物理c:英文版,2008,32(增刊1)301-303
    [15]李向军,陈裕泉,李九生,利用THz时域谱技术和支持向量机回归法快速分析食用油成分,中国食品学报,2010,10(2):195-200
    [16]陆继珍皮亦鸣,太赫兹频段的近程isar成像系统,半导体技术,2009,34(6): 611-614
    [17]逯美红and沈京玲,太赫兹时域频谱技术对化学混合物的成分分析研究,光学技术,2010,36(3):445-448
    [18] R. Srianand and P. Petitjean and C. Ledoux ,The cosmic microwave background radiation temperature at a redshift of 2.34,Nature,2000,408(6815): 931-935
    [19] A. Assis and M. Neves,History of the 2.7 K temperature prior to Penzias and Wilson,Apeiron,1995,2(3): 79-87
    [20] T. Chang and T. Bridges,Laser action at 452,496,and 541 [mu] m in optically pumped CH3F,Optics Communications,1970,1(9): 423-426
    [21] M. Inguscio,G. Moruzzi,K. Evenson,et al.,A review of frequency measurements of optically pumped lasers from 0.1 to 8 THz,Journal of Applied Physics,2009,60(12): R161-R192
    [22] S. Krishnagopal and V. Kumar,Free-electron lasers,Radiation Physics and Chemistry,2004,70(4-5): 559-569
    [23]陈洪斌,周传明,胡林林,et al.,0.14THz返波管器件,强激光与粒子束,2010,22(4): 865-869
    [24] H. Eisele and A. Rydberg and G. Haddad,Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above,Microwave Theory and Techniques,IEEE Transactions on,2002,48(4): 626-631
    [25] E. Brown,J. Soderstrom,C. Parker,et al.,Oscillations up to 712 GHz in InAs/AlSb resonant-tunneling diodes,Applied Physics Letters,2009,58(20): 2291-2293
    [26] R. K hler , A. Tredicucci , F. Beltram , et al. , Terahertz semiconductor-heterostructure laser,Nature,2002,417(6885): 156-159
    [27] E. Linfield,Terahertz applications: A source of fresh hope,Nature Photonics,2007,1(5): 257-258
    [28] K. McIntosh,E. Brown,K. Nichols,et al.,Terahertz photomixing with diode lasers in low-temperature-grown GaAs,Applied Physics Letters,1995,67(3844
    [29] K. McIntosh,E. Brown,K. Nichols,et al.,Terahertz photomixing with diode lasers in low-temperature-grown GaAs,Applied Physics Letters,1995,67(26):3844
    [30] E. Brown,K. McIntosh,K. Nichols,et al.,Photomixing up to 3.8 THz in low-temperature-grown GaAs,Applied Physics Letters,1995,66(3):285
    [31] K. Kawase and J. Shikata and H. Ito,Terahertz wave parametric source,Journal of Physics D: Applied Physics,2002,35(3):R1
    [32] Y. Lee,T. Meade,T. Norris,et al.,Tunable narrow-band terahertz generation from periodically poled lithium niobate,Applied Physics Letters,2009,78(23): 3583-3585
    [33] Y. Lee,T. Meade,V. Perlin,et al.,Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate,Applied Physics Letters,2000,76(18):2505
    [34] C. Winnewisser,P. Jepsen,M. Schall,et al.,Electro-optic detection of THz radiation in LiTaO,LiNbO and ZnTe,Applied Physics Letters,1997,70(23):3069
    [35] P. Han,M. Tani,F. Pan,et al.,Use of the organic crystal DAST for terahertz beam applications,Optics Letters,2000,25(9): 675-677
    [36] A. Schneider,M. Neis,M. Stillhart,et al.,Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment,JOSA B,2006,23(9): 1822-1835
    [37] G. Ramakrishnan and R. Chakkittakandy and P. Planken,Terahertz generation from graphite,Optics Express,2009,17(18): 16092-16099
    [38] T. Tanabe,K. Suto,J. Nishizawa,et al.,Tunable terahertz wave generation in the 3-to 7-THz region from GaP,Applied Physics Letters,2003,83(2):237
    [39] M. Nagai,K. Tanaka,H. Ohtake,et al.,Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56μm fiber laser pulses,Applied Physics Letters,2004,85(18):3974
    [40] D. Auston,K. Cheung,J. Valdmanis,et al.,Cherenkov radiation from femtosecond optical pulses in electro-optic media,Physical Review Letters,1984,53(16): 1555-1558
    [41] M. van Exter and C. Fattinger and D. Grischkowsky,High-brightness terahertz beams characterized with an ultrafast detector,Applied Physics Letters,1989,55(4): 337-339
    [42] Q. Wu and M. Litz and X. Zhang,Broadband detection capability of ZnTe electro-optic field detectors,Applied Physics Letters,1996,68(21):2924
    [43] K. Siebert,T. L ffler,H. Quast,et al.,All-optoelectronic continuous wave THz imaging for biomedical applications,Physics in Medicine and Biology,2002,47(21):3743
    [44] T. L ffler,T. May,C. Am Weg,et al.,Continuous-wave terahertz imaging with a hybrid system,Applied Physics Letters,2007,90(9):091111
    [45] K. Kawase,Y. Ogawa,Y. Watanabe,et al.,Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,Opt. Express,2003,11(20): 2549-2554
    [46] J. Lu,C. Chiu,C. Kuo,et al.,Terahertz scanning imaging with a subwavelength plastic fiber,Applied Physics Letters,2008,92(8):084102
    [47] M. Brucherseifer,M. Nagel,P. Bolivar,et al.,Label-free probing of the binding state of DNA by time-domain terahertz sensing,Applied Physics Letters,2000,77(24):4049
    [48] A. Markelz and A. Roitberg and E. Heilweil,Pulsed terahertz spectroscopy of DNA,bovine serum albumin and collagen between 0.1 and 2.0 THz,Chemical Physics Letters,2000,320(1-2): 42-48
    [49] Y. Hu,P. Huang,L. Guo,et al.,Terahertz spectroscopic investigations of explosives,Physics Letters A,2006,359(6): 728-732
    [50] M. Exter and C. Fattinger and D. Grischkowsky,Terahertz time-domain spectroscopy of water vapor,Optics Letters,1989,14(20): 1128-1130
    [51] C. Strachan,P. Taday,D. Newnham,et al.,Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity,Journal of pharmaceutical sciences,2005,94(4): 837-846
    [52] M. Nagel,P. Bolivar,M. Brucherseifer,et al.,Integrated THz technology for label-free genetic diagnostics,Applied Physics Letters,2002,80(1)154
    [53] L. M ller,J. Federici,A. Sinyukov,et al.,Data encoding on terahertz signals for communication and sensing,Optics Letters,2008,33(4): 393-395
    [54] T. Kleine-Ostmann,P. Knobloch,M. Koch,et al.,Continuous-wave THz imaging,Electronics Letters,2001,37(24):1461-1463
    [55] A. Dobroiu,M. Yamashita,Y. Ohshima,et al.,Terahertz imaging system based on a backward-wave oscillator , Applied optics , 2004 , 43(30): 5637-5646
    [56] R. Woodward,V. Wallace,D. Arnone,et al.,Terahertz pulsed imaging of skin cancer in the time and frequency domain,Journal of Biological Physics,2003,29(2): 257-259
    [57] N. Karpowicz,H. Zhong,J. Xu,et al.,Comparison between pulsed terahertz time-domain imaging and continuous wave terahertz imaging,Semiconductor Science and Technology,2005,20(7):S293
    [58] A. Lee,Q. Qin,S. Kumar,et al.,Real-time terahertz imaging over a standoff distance (> 25 meters),Applied Physics Letters,2006,89(14)141125
    [59] A. Lee and Q. Hu,Real-time,continuous-wave terahertz imaging by use of a microbolometer focal-plane array,Optics Letters,2005,30(19): 2563-2565
    [60] C. Strachan,T. Rades,D. Newnham,et al.,Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials,Chemical Physics Letters,2004,390(1-3): 20-24
    [61] M. Tonouchi,Cutting-edge terahertz technology,Nature Photonics,2007,1(2): 97-105
    [62] C. Chen,C. Hsieh,Y. Lin,et al.,Magnetically tunable room-temperature 2 pi liquid crystal terahertz phase shifter,Optics Express,2004,12(12): 2625-2630
    [63] R. Kersting and G. Strasser and K. Unterrainer,Terahertz phase modulator,Electronics Letters,2002,36(13): 1156-1158
    [64] T. Kleine-Ostmann,P. Dawson,K. Pierz,et al.,Room-temperature operation of an electrically driven terahertz modulator,Applied Physics Letters,2009,84(18): 3555-3557
    [65] A. Maslov and D. Citrin,Quantum-well optical modulator at terahertz frequencies,Journal of Applied Physics,2003,93(12):10131
    [66] H. Chen,W. Padilla,R. Averitt,et al.,Active terahertz metamaterial devices, (Google Patents,2009).
    [67] C. Chen,C. Pan,C. Hsieh,et al.,Liquid-crystal-based terahertz tunable Lyot filter,Applied Physics Letters,2006,88(10):101107
    [68] I. Wilke,C. Rieck,T. Kaiser,et al.,Surface resistance of YBCO thin films at THz-frequencies,in 2000: 41-44.
    [69] P. Jepsen,B. Fischer,A. Thoman,et al.,Metal-insulator phase transition in a VO3} thin film observed with terahertz spectroscopy,Physical Review B,2006,74(20): 205103
    [70] S. Brorson and J. Zhang and S. Keiding,Ultrafast carrier trapping and slow recombination in ion-bombarded silicon on sapphire measured via THz spectroscopy,Applied Physics Letters,2009,64(18): 2385-2387
    [71] T. Drysdale,I. Gregory,C. Baker,et al.,Transmittance of a tunable filter at terahertz frequencies,Applied Physics Letters,2004,85(5173
    [72] I. Libon,S. Baumg rtner,M. Hempel,et al.,An optically controllable terahertz filter,Applied Physics Letters,2000,76(20):2821
    [73] M. MacDonald,A. Alexanian,R. York,et al.,Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters,Microwave Theory and Techniques,IEEE Transactions on,2002,48(4): 712-718
    [74] H. Němec,L. Duvillaret,F. Garet,et al.,Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,Journal of Applied Physics,2004,96(8):4072
    [75] D. Wu,N. Fang,C. Sun,et al.,Terahertz plasmonic high pass filter,Applied Physics Letters,2003,83(1):201
    [76] J. Cunningham,C. Wood,A. Davies,et al.,Terahertz frequency range band-stop filters,Applied Physics Letters,2009,86(21): 213503
    [77] T. Ebbesen,H. Lezec,H. Ghaemi,et al.,Extraordinary optical transmission through sub-wavelength hole arrays,Nature,1998,391(6668): 667-669
    [78] N. Yu,Q. Wang,M. Kats,et al.,Designer spoof surface plasmon structures collimate terahertz laser beams,Nature materials,2010,9(9): 730-735
    [79] A. Rice,Y. Jin,X. Ma,et al.,Terahertz optical rectification from 110 zinc-blende crystals,Applied Physics Letters,2009,64(11): 1324-1326
    [80] X. Zhang,X. Ma,Y. Jin,et al.,Terahertz optical rectification from a nonlinear organic crystal,Applied Physics Letters,2009,61(26): 3080-3082
    [81] K. Yeh,M. Hoffmann,J. Hebling,et al.,Generation of 10μJ ultrashort terahertz pulses by optical rectification,Applied Physics Letters,2007,90(17):171121
    [82] M. Bass,P. Franken,J. Ward,et al.,Optical rectification,Physical Review Letters,1962,9(11): 446-448
    [83] Y. Lee and N. Amer and W. Hurlbut,Terahertz pulse shaping via optical rectification in poled lithium niobate,Applied Physics Letters,2003,82(2):170
    [84] A. Nahata and A. Weling and T. Heinz,A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,Applied Physics Letters,1996,69(16):2321
    [85] F. Blanchard,L. Razzari,H. Bandulet,et al.,Generation of 1.5μJ single-cycle terahertz pulses by optical rectification from a large aperture ZnTe crystal,Optics Express,2007,15(20): 13212-13220
    [86] M. Nuss and J. Orenstein,Terahertz time-domain spectroscopy,Millimeter and submillimeter wave spectroscopy of solids,1998,7-50
    [87] L. Duvillaret,F. Garet,J. Roux,et al.,Analytical modeling and optimization of terahertz time-domain spectroscopy experiments,using photoswitches as antennas,Selected Topics in Quantum Electronics,IEEE Journal of,2002,7(4): 615-623
    [88] G. Gallot and D. Grischkowsky,Electro-optic detection of terahertz radiation,Journal of the Optical Society of America B,1999,16(8): 1204-1212
    [89] M. Schall and H. Helm and S. Keiding,Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy,International Journal of Infrared and Millimeter Waves,1999,20(4): 595-604
    [90] K. Kosuge,The Phase Transition in VO2,Journal of the Physical Society of Japan,1967,22(2):551
    [91] K. Kosuge,The phase diagram and phase transition of the V2O3-V2O5,system,Journal of Physics and Chemistry of Solids,1967,28(8): 1613-1621
    [92] F. Morin,Oxides which show a metal-to-insulator transition at the Neel temperature,Physical Review Letters,1959,3(1): 34-36
    [93] C. Rao,M. Natarajan,G. Subba Rao,et al.,Phase transitions and conductivity anomalies in solid solutions of VO2 with TiO2,NbO2,and MoO2,Journal of Physics and Chemistry of Solids,1971,32(6): 1147-1150
    [94] S. Westman,Note on a phase transition in VO2,Acta Chem. Scandinavica,1961,15,217-220
    [95] C.Kittel,固体物理导论(项金钟,吴兴惠译),北京:北京工业出版社,2005,279-280
    [96]林华,黄维刚,涂铭旌,VO2的相变原理及影响相变的因素,功能材料,2004,188-191
    [97] M. Becker,A. Buckman,R. Walser,et al.,Femtosecond switching of the solid state phase transition in the smart-system material VO,in 1994: 400.
    [98] C. Berglund and H. Guggenheim,Electronic Properties of VO2 near the Semiconductor-Metal Transition,Physical Review,1969,185(3): 1022-1033
    [99] C. Kübler,H. Ehrke,R. Huber,et al.,Coherent Structural Dynamics and Electronic Correlations during an Ultrafast Insulator-to-Metal Phase Transition in VO2,Physical Review Letters,2007,99(11): 116401
    [100] R. Lopez,T. Haynes,L. Boatner,et al.,Size effects in the structural phase transition of VO2 nanoparticles,Physical Review B,2002,65(22): 224113
    [101] D. Mattis and W. Langer , Role of phonons and band structure in metal-insulator phase transition,Physical Review Letters,1970,25(6): 376-380
    [102] N. Mott,Metal-insulator transition,Reviews of Modern Physics,1968,40(4): 677-683
    [103] N. Mott and W. Twose,The theory of impurity conduction,Advances in Physics,1961,10(38): 107-163
    [104] S. Shin,S. Suga,M. Taniguchi,et al.,Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2,V6O13,and V2O3,Physical Review B,1990,41,4993-5009
    [105] G. Stefanovich and A. Pergament and D. Stefanovich,Electrical switching and Mott transition in VO2,Journal of Physics: Condensed Matter,2000,12,8837
    [106] M. Qazilbash,M. Brehm,B. Chae,et al.,Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,Science,2007,318(5857): 1750
    [107] A. Cavalleri,C Tóth,C. Siders,et al.,Femtosecond Structural Dynamics in VO2 during an Ultrafast Solid-Solid Phase Transition,Physical Review Letters,2001,87(23): 237401
    [108] W. Barnes and A. Dereux and T. Ebbesen,Surface plasmon subwavelength optics,Nature,2003,424(6950): 824-830
    [109] W. Barnes,W. Murray,J. Dintinger,et al.,Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,Physical Review Letters,2004,92(10): 107401
    [110] S. Bozhevolnyi,J. Erland,K. Leosson,et al.,Waveguiding in surface plasmon polariton band gap structures,Physical Review Letters,2001,86(14): 3008-3011
    [111] H. Ditlbacher,J. Krenn,G. Schider,et al.,Two-dimensional optics with surface plasmon polaritons,Applied Physics Letters,2002,81,1762
    [112] J. Homola and S. Yee and G. Gauglitz,Surface plasmon resonance sensors: review,Sensors and Actuators B: Chemical,1999,54(1-2): 3-15
    [113] H. Lezec,A. Degiron,E. Devaux,et al.,Beaming light from a subwavelength aperture,Science,2002,297(5582),820
    [114] S. Maier , S. Andrews , L. Martin-Moreno , et al. , Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,Physical Review Letters,2006,97(17),176805
    [115] J. Pendry and L. Martin-Moreno and F. Garcia-Vidal,Mimicking surface plasmons with structured surfaces,Science,2004,305(5685),847
    [116] M. Stockman , Nanofocusing of optical energy in tapered plasmonic waveguides,Physical Review Letters,2004,93(13): 137404
    [117] K. Wang and D. Mittleman,Metal wires for terahertz wave guiding,Nature,2004,432(7015),376-379
    [118] A. Zayats and I. Smolyaninov and A. Maradudin,Nano-optics of surface plasmon polaritons,Physics reports,2005,408(3-4),131-314
    [119] A. Giannattasio and W. Barnes , Direct observation of surface plasmon-polariton dispersion,surfaces,2005,13(2):428-434
    [120] K. Lee and Q. Park,Coupling of surface plasmon polaritons and light in metallic nanoslits,Physical Review Letters,2005,95(10): 103902
    [121] X. Lu and J. Han and W. Zhang,Resonant terahertz reflection of periodic arrays of subwavelength metallic rectangles,Applied Physics Letters,2008,92(12)121103
    [122] J. O'Hara and R. Averitt and A. Taylor,Terahertz surface plasmon polariton coupling on metallic gratings,Optics Express,2004,12(25): 6397-6402
    [123] P. Worthing and W. Barnes,Efficient coupling of surface plasmon polaritons to radiation using a bi-grating,Applied Physics Letters,2001,79(19):3035
    [124] M. Borek,F. Qian,V. Nagabushnam,et al.,Pulsed laser deposition of oriented VO2 thin films on R-cut sapphire substrates,Applied Physics Letters,2009,63(24): 3288-3290
    [125] B. Chae,D. Youn,H. Kim,et al.,Fabrication and electrical properties of pure VO2 phase films,Arxiv preprint cond-mat/0311616,2003,
    [126] S. Chen,H. Ma,X. Yi,et al.,Smart VO2 thin film for protection of sensitive infrared detectors from strong laser radiation,Sensors and Actuators A: Physical,2004,115(1): 28-31
    [127] L. Jiang and W. Carr,Design,fabrication and testing of a micromachined thermo-optical light modulator based on a vanadium dioxide array,Journal of Micromechanics and Microengineering,2004,14(7):833
    [128] S. Jiang,C. Ye,M. Khan,et al.,Evolution of thermochromism during oxidation of evaporated vanadium films,Applied optics,1991,30(7): 847-851
    [129] H. Miyazaki and I. Yasui,Substrate bias effect on the fabrication of thermochromic VO2 films by reactive RF sputtering,Journal of Physics D: Applied Physics,2006,39(10):2220
    [130] Y. Ningyi and L. Jinhua and L. Chenglu,Valence reduction process from sol-gel V2O5 to VO2 thin films,Applied surface science,2002,191(1-4): 176-180
    [131] H. Wang and X. Yi and Y. Li,Fabrication of VO2 films with low transition temperature for optical switching applications,Optics Communications,2005,256(4-6): 305-309
    [132] D. Cooke,F. Hegmann,Y. Mazur,et al.,Anisotropic photoconductivity of InGaAs quantum dot chains measured by terahertz pulse spectroscopy,Applied Physics Letters,2004,85(17):3839
    [133] D. Cooke,F. Hegmann,E. Young,et al.,Electron mobility in dilute GaAs bismide and nitride alloys measured by time-resolved terahertz spectroscopy,Applied Physics Letters,2006,89(12):122103
    [134] R. Glover and M. Tinkham,Transmission of superconducting films at millimeter-microwave and far infrared frequencies,Physical Review,1956,104(3): 844-845
    [135] F. Hegmann and O. Ostroverkhova and D. Cooke , Probing organic semiconductors with terahertz pulses,Photophysics of molecular materials,2006,367¨C428
    [136] J. Tu and C. Homes and M. Strongin,Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition,Physical Review Letters,2003,90(1): 17402
    [137] C. Schmuttenmaer,Exploring dynamics in the far-infrared with terahertz spectroscopy,Chem. Rev,2004,104(4): 1759-1780
    [138] D. Grupp,H. Lezec,T. Ebbesen,et al.,Crucial role of metal surface in enhanced transmission through subwavelength apertures,Applied Physics Letters,2000,77(11):1569
    [139] H. Lezec and T. Thio,Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,Optics Express,2004,12(16): 3629-3651
    [140] W. Fan,S. Zhang,B. Minhas,et al.,Enhanced infrared transmission through subwavelength coaxial metallic arrays,Physical Review Letters,2005,94(3): 33902
    [141] S. Enoch,E. Popov,M. Neviere,et al.,Enhanced light transmission by hole arrays,Journal of Optics A: Pure and Applied Optics,2002,4(5):S83
    [142] Z. Ruan and M. Qiu,Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,Physical Review Letters,2006,96(23): 233901
    [143] A. Krishnan,T. Thio,T. Kim,et al.,Evanescently coupled resonance in surface plasmon enhanced transmission,Optics Communications,2001,200(1-6): 1-7
    [144] H. Cao and A. Nahata,Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures , Optics Express,2004,12(6): 1004-1010
    [145] A. Degiron and T. Ebbesen,The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,Journal of Optics A: Pure and Applied Optics,2005,7(2):S90
    [146] K. Koerkamp,S. Enoch,F. Segerink,et al.,Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,Physical Review Letters,2004,92(18): 183901
    [147] A. Brolo,R. Gordon,B. Leathem,et al.,Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,Langmuir,2004,20(12): 4813-4815
    [148] H. Ghaemi,T. Thio,D. Grupp,et al.,Surface plasmons enhance optical transmission through subwavelength holes,Physical Review B,1998,58(11): 6779-6782
    [149] T. Thio,H. Ghaemi,H. Lezec,et al.,Surface-plasmon-enhanced transmission through hole arrays in Cr films,Journal of the Optical Society of America B,1999,16(10): 1743-1748
    [150] D. Qu and D. Grischkowsky and W. Zhang,Terahertz transmission properties of thin,subwavelength metallic hole arrays,Optics Letters,2004,29(8): 896-898
    [151] L. Martin-Moreno,F. Garcia-Vidal,H. Lezec,et al.,Theory of extraordinary optical transmission through subwavelength hole arrays,Physical Review Letters,2001,86(6): 1114-1117
    [152] E. Popov,M. Neviere,S. Enoch,et al.,Theory of light transmission through subwavelength periodic hole arrays,Physical Review B,2000,62(23): 16100-16108
    [153] J. Han,A. Azad,M. Gong,et al.,Coupling between surface plasmons and nonresonant transmission in subwavelength holes at terahertz frequencies,Applied Physics Letters,2007,91(7):071122
    [154] B. Lamprecht,G. Schider,R. Lechner,et al.,Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,Physical Review Letters,2000,84(20): 4721-4724
    [155] C. Haynes,A. McFarland,L. Zhao,et al.,Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays,J. Phys. Chem. B,2003,107(30): 7337-7342
    [156] U. Kreibig and L. Genzel,Optical absorption of small metallic particles,Surface Science,1985,156(2):678-700
    [157] J. Mock,M. Barbic,D. Smith,et al.,Shape effects in plasmon resonance of individual colloidal silver nanoparticles,The Journal of Chemical Physics,2002,116(15):6755
    [158] K. Chau and A. Elezzabi,Terahertz transmission through ensembles of subwavelength-size metallic particles,Physical Review B,2005,72(7): 75110
    [159] R. Oulton,V. Sorger,D. Genov,et al.,A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,Nature Photonics,2008,2(8): 496-500
    [160] E. Prodan,C. Radloff,N. Halas,et al.,A hybridization model for the plasmon response of complex nanostructures,Science,2003,302(5644): 419
    [161] S. Zhang,D. Genov,Y. Wang,et al.,Plasmon-induced transparency in metamaterials,Physical Review Letters,2008,101(4): 47401
    [162] C. Roma n-Vela zquez,C. Noguez,J. Zhang,Theoretical Study of Surface Plasmon Resonances in Hollow Gold- Silver Double-Shell Nanostructures,The Journal of Physical Chemistry A,2009,113(16): 4068-4074

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700