双亲性淀粉衍生物/橡胶复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的双亲性淀粉衍生物/橡胶微多相复合物可赋予橡胶制品特殊表面性能:兼具低滚动阻力和高抗湿滑性,提高抗静电性能,因此有可能用于国际上研究热点——绿色轮胎材料。
     在已有研究基础上,制备了多种双亲性淀粉衍生物,包括聚苯乙烯接枝淀粉纳米晶、苄基淀粉纳米晶和聚苯乙烯接枝淀粉微细颗粒等,取代度或MS(接枝聚苯乙烯单体与淀粉葡萄糖单元的摩尔比)均在0.05左右,粒径在50-500nm。
     通过共沉淀技术,将所制得的双亲性淀粉衍生物和天然胶乳、丁苯胶乳共混制备了橡胶微多相复合物,并进一步与天然橡胶、补强剂、硫化剂等在开炼机上混炼,硫化后获得测试样品。研究其机械性能和动态粘弹性,分析了复合材料的抗湿滑性、低滚动阻力性能与双亲性淀粉纳米晶的关系,并研究了其抗静电性能。实验结果表明,在炭黑体系中,添加5%~10%的聚苯乙烯接枝淀粉纳米晶时,可得到较好的抗湿滑性和低的滚动阻力;而在炭黑和白炭黑各50%的体系中,添加15%的样品具有较好的抗湿滑性和低的滚动阻力。在炭黑和白炭黑各50%的体系中,添加15%的聚苯乙烯接枝淀粉微细颗粒的样品具有较好的抗湿滑性和低的滚动阻力。添加5%~10%的苄基淀粉纳米晶的白炭黑体系中,样品的滚动阻力降低显著,但抗湿滑性降低,不利于轮胎的安全性。此外,在丁苯胶乳中分散的聚苯乙烯接枝淀粉纳米晶在炭黑体系中,得到的橡胶样品抗湿滑性提高显著,但其滚动阻力则增大。
     双亲性淀粉衍生物可以提高橡胶材料的抗静电能力,其中聚苯乙烯接枝淀粉纳米晶在炭黑和白炭黑各50%体系中添加10%,可以使橡胶材料具有抗静电性能,无静电积蓄,而在炭黑体系中添加5%可进一步提高抗静电性能。
     该研究促进含天然高分子的新颖复合材料的研究发展,同时也为绿色轮胎材料的研制积累理论依据。
In this paper the amphiphilic starch derivative/rubber microcomposites and its specific surface properties are studied.Owing to its low rolling resistance and high wet slide resistance,which combined with no accumulation of static charges,this new microcomposites can be used as a green tire material-one of the hotspots of international research.
     Amphiphilic starch derivatives including starch-g-polystyrene nanocrystals,benzyl starch nanocrystals,fine particles of starch-g-polystyrene are further prepared with granule of 50-500nm,and the molar ratio of styrene monomer(or substituted group) and starch was 0.05.
     Amphiphilic starch derivative/rubber microcomposites were prepared through the co-precipitation technology.Further,with the natural rubber, reinforcing agent,curing agent et al mixing in refine rubber machine,the test samples of the microcomposites were prepared after vulcanization.The mechanical property and dynamic viscoelasticity were studied.The effect of amphiphilic starch nanocrystals on the high wet skid resistance properties and low rolling resistance of composites was analyzed,as well as the electric properties.The result showed that,in the carbon black system,with 5%-10% starch-g-polystyrene nanocrystals,the tire materials with low rolling resistance and high wet skid resistance are got.While in the system which the ratio of carbon black and silica was 1,with 15%starch-g-polystyrene nanocrystals and fine particles of starch-g-polystyrene,the tire materials with low rolling resistance and high wet skid resistance are got.Besides,in the silica system,with 5%-10%benzyl starch nanocrystals,the tire materials' rolling resistance can be reduced obviously,but wet skid resistance properties, which was important to the safety of the tire,had not been improved.Further more,in the carbon black system,the tire materials,which prepared with the starch-g-polystyrene nanocrystals dispersed in the SBR latex,have high wet skid resistance,as well as high rolling resistance.
     The result of electric properties test showed that the amphiphilic starch derivative can increase the antistatic properties of tire materials.While in the system of carbon black/silica,with 10%starch-g-polystyrene nanocrystals, the tire materials with high antistatic properties are got.While in the carbon black system,with 5%starch-g-polystyrene nanocrystals,the antistatic properties can be improved.
     So the investigation of this project will be important to accelerate the research and development of new composites with natural polymers and the green tire materials.
引文
[1]刘力,张立群,冯子兴等.绿色轮胎研究的发展[J].橡胶工业,1999,46(4):245-248
    [2]吕百龄,高性能橡胶用于轮胎的趋势分析[J].中国轮胎资源综合利用,2007,(8):41
    [3]张敏.环保“绿色轮胎”的定义[J1.无机硅化合物,2007,(3):59-60
    [4]张立群,吴友平,王益庆.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业,2000,23(2):71-77
    [5]吴俊,谢笔钧.淀粉基热塑性生物降解塑料的研制[J].精细化工,2001,18(7):423-425
    [6]邹新伟,杨淑英,陈立班等.可降解乙烯聚合物的研究进展[J].石油化工,1998,27(6):449-452
    [7]Chandra R,Renu Rustgi.Biodegradation of maleated linear low-density polyethylene and starch blends[J].Polymer Degradation and Stability,1997,(56):185-202
    [8]Gregory M,Glen,Julie Hsu.Compression-formed starch-based plastic[J].Industrial Crops and products,1997,(7):37-44
    [9]Averous L,Frigant C,More L.Plasticized starch cellulose interactions in polysaccharide composites[J].Polymer,2001,42:6565-6572
    [10]Chakraborty S,Sahoo B,Teraoka I,et al.Enzyme-Catalyzed regioselective modification of starch nanoparticles[J].Macromolecules,2005,38:61-68
    [11]Nakason A,Kaesaman K,Eardrod.Cure and mechanical properties of natural rubber-g -poly(methyl methacrylate)-cassava starch compounds[J].Materials Letters,2005,59:4020-4025
    [12]Carvalho A J F,Job A E,Alves N,et al.Thermoplastic starch/natural rubber blends[J].Carbohydrate Polymers,2003,53:95-99
    [13]Thielemans W,Belgacem M N,Dufresne A.Starch nanocrystals with large chain surface modifications[J].Langmuir,2006,22:4804-4811.
    [14]K.Bodil Wessl e n,Bengt Wessl e.Sythesis of amphiphlic amylose and starch derivatives[J].Carbohydrate polymers,2002,47:303-311
    [15]Athawale V D,Lele V.Thermal Studies on Granular Maize Starchand its Graft Copolymes Monomers[J].Starch/St(a|¨)rke,2000,52:205-213
    [16]庄铁成,王月,李中华.高淀粉玉米的遗传与育种[J].玉米科学,1996,6:68-70
    [17]于淑娟,周广慧.直链淀粉的应用[J].现代农业,1994,179(6):33-34
    [18]陈忠祥,胡政平,蒋伟峰.淀粉的糊化及添加剂对其糊化温度的影响[J].化学与粘合,2003,2:91-93
    [19]伊平.淀粉改性技术[J].热带农业工程,2001(01):22
    [20]邱威扬,邱贤华.淀粉塑料-降解塑料研究与应用[M].北京:化学工业出版社,2002,93
    [21]胡强,孟岳成.淀粉糊化和回生研究[M].2004,25(5):63-66
    [22]张友松.变性淀粉的生成与应用[M].北京:中国轻工业出版社,1999
    [23]杨锦宗.变性淀粉的化学进展.造纸化学品,1995,7(2):1-9
    [24]Fanta G F.Starch graft copolymers[A].The polymeric materials encyclopedia[C].2003,7901-7907
    [25]张燕萍.变性淀粉制造与应用[M].化学工业出版社,1998:95-150
    [26]Mino G,Kaizerman S.A new method for the preparation of graft copolymers.Polymerization Initiated by ceric ion redox systems[J].Journal of Polymer Science,1958,12:242
    [27]Khalil M.Graft copolymerization of acrylamide onto starch initiated by supersulphate[J]. Die Angew Makromil,1993,213:43
    [28]钟传蓉,黄荣华,马俊涛.疏水缔合水溶性聚合物的分子结构对疏水缔合的影响化学[J].化学世界,2003,12:660-663
    [29]韩利娟,陈洪,蒋珍菊,罗平亚.高分子表面活性剂的研究现状[J].西南石油学院学报,2003,25(4):62-65
    [30]Rosilio V,Albrecht G,Baszkin A,Merle L.Surface properties of hydrophobically modified carboxymethyl-cellullose derivatives.Effect of salt and proteins[J].Colloids and surfaces b:biointerfaces,2000,19:163-172
    [31]章云祥,方勤.水溶性高聚物的研究进展[J].功能高分子学报,1997,10(3):102-109
    [32]童身毅,万敏,张良均.两亲性高聚物及其应用[J].材料导报,1999,13(5):46-48,64
    [33]严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1998,171-176
    [34]唐善法,罗亚平.疏水缔合水溶性聚合物的研究进展[J].现代化学,2002,22(3):10-15
    [35]戴永胜,刘金河,叶天旭,张亚周.疏水缔合水溶性耐温耐盐聚合物的研究进展(二)[J].精细与专用化学品,2003,20:18-21
    [36]崔平,马俊涛,黄荣华.疏水缔合水溶性聚合物溶液性能研究进展[J].化学研究与应用,2002,14(4):377-382
    [37]Gugliemelli L A,Swanson C L,Doane W M.Preparation of starch polystyrene graft polymers by cerium(Ⅳ) initiation[J].Journal of Polymer Science,Polymer Letter Edition,1997,15:739
    [38]Fanta G F,Burr R C,Doane W M,Russell C R.Graft polymerization of styrene onto starch by simultaneous cobalt-60 irradiation[J].Joumal of Polymer Science Application,1977,21:425
    [39]Henderson A M,Rudin A J.Effects of water,methanol and ethanol on the production of starch-g-polysryrene copolymers by cobalt-60 irradiation[J].Journal Polymer Science Polymer Chemical Edition,1981,9:1707
    [40]Chang G,Cho Kiho Lee.Preparation of starch-g-polystyrene copolymer by emulsion polymerization[J].Carbohydrate Polymers,2002,48:125-130
    [41]Ki-Yul Cho,Seung-Taik Lim.Preparation and properties of benzyl corn starches[J].Starch,1998,50,250-257
    [42]Jorg Bohrisch,Waltraud Vorwerg,Sylvia Radosta.Development of hydrophobic starch[J].Starch,2004,56:322-329
    [43]Pieters R,Graaf R A,Janssen L P B M.The kinetics of the homogeneous benzylationof potato starch in aqueous solutions[J].Carbohydrate Polymers,2003,51:375-381
    [44]Gomberg M,Buchler C C.Benzyl ethers of carbohydrates[J].Journal of American Chemistry,1924,45:1904-1911
    [45]Ki-Yul Cho,Seung-Taik Lim.Preparation and properties of benzyl corn starches[J].Starch/St(a|¨)rke,1998,50:250-257
    [46]Jorg Bohrisch,Waltraud Vorwerg,Sylvia Radosta.Development of Hydrophobic Starch[J].Starch/St(a|¨)rke,2004,56:322-329
    [47]Jean-Luc Putaux,Sonia Molina-Boisseau,Thomas Momaur,Alain Dufresne.Platelet nanocrystals resulting from the disruption of waxy maize starch granules by acidhydrolysis[J].Biomacromolecutes,2003,4:1198-1202
    [48]Angellier H,Choisnard L,Molina-Boisseau S,et al.Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology[J].Biomacromolecules,2004,5:1545-1551
    [49]Angetlier H,Molina-Boisseau S,Belgacemr M N,Dufresne A.Surface chemical modification of waxy maize starch nanocrystals[J].Langmuir,2005,21:2425-2433
    [50]Thielemans W,Belgacem M N,Dufresne A.Long chain surface modification of nanocrystal starch[J].Langmuir,2006,22:4804-4810
    [51]Shao jie Lu.Inverse Emulsion of starch-g-polyacrylamide[J].Starch/starke,2003,55:222-227
    [52]Xiao-Jun Xu,Pei-yong Chow.Preparation of polystyrene by semi-continous micropolymerization using co-emulsifier[J].Journal of nanoscienceand nanotechnology,2003,3(3):109-114
    [53]孙学红,赵菲,赵树高.改性淀粉在轮胎胶料中的应用[J].特种橡胶制品,2005,26(5):50-53
    [54]邓海燕.轮胎用另类配合剂[J].轮胎研究与开发,2001(1):17-181
    [55]齐卿,吴友平,田明等.偶联剂KH-792对淀粉/SBR复合材料结构和性能的影响[J].特种橡胶制品,2006,27(2):1-5
    [56]涂学忠.可再生的淀粉填料[J].橡胶工业,2005,52:33
    [57]马勇,吴友平,王蔚丹,张立群.淀粉对蒙脱土/丁腈橡胶纳米复合材料结构利性能的影响[J].合成橡胶工业,2006,29(1):59-63
    [58]季美琴,王益庆,吴友平.新型淀粉/丁腈橡胶复合材料[J].合成橡胶工业,2003,26(5):314
    [59]You-Ping Wu,Mei-Qin Ji,Qing Qi,et al.Preparation,structure and properties of starch/rubber composites prepared by co-coagulating rubber latex and starch paste[J].Macromolecular Rapid Communication,2004,25:565-570
    [60]Angellier H,Molina-Boisseau S,Lebrun L,et al.Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber[J].Macromolecules,2005,38:3783-3792
    [61]Putaux Jean-Luc,Molina-Boisseau S,Momaur T,Dufresne A.Platetet nanocrystals resulting from the disruption of waxy maize starch granules by acidhydrolysis[J].Biomaeromolecules,2003,4:1198-1202
    [62]Chang L T.The greatly developing use of starch[J].Journal of South China University of Technology,1998,26(6):68-74
    [63]尹平.淀粉改性技术[J].热带农业工程,2001,(1):22-24
    [64]张友松.变性淀粉生产与应用手册[M].北京:中国轻工业出版社,1999:1-3
    [65]以然编译.用复合淀粉作补强剂的橡胶配方[J].现代橡胶技术,2003,30(5):35-39
    [66]邓海燕.用玉米淀粉改善轮胎性能[J].弹性体,200l,11(6):57
    [67]You-Ping Wu,Qing Qi,Gui-Hua Liang and Li-Qun Zhang.A strategy to prepare high performance starch/rubber composites:In situ modification during latex compounding process[J].Carbohydrate Polymers,2006,65:109-113
    [68]齐卿,吴友平,田明,梁桂花,沈玲,张立群.酚醛树脂对淀粉/SBR复合材料结构和性能的影响[J].特种橡胶制品,2006,27(1):1-5
    [69]Nakason C,Kaesaman A,Eardrod K.Cure and mechanical properties of natural rubber-g-poly(methyl methacrylate)-cassava starch compounds[J].Materials letters,2005,59(29/30):4020-4025
    [70]王才,潘则林,赵萍等.用于橡胶的超细淀粉复合物粉末填充剂及其制备方法[P].中国专利:CN 1536003,2004-10-13
    [71]孙学红,赵菲,赵树高.改性淀粉在轮胎胶料中的应用[J].特种橡胶制品,2005,26(5):50-53
    [72]刘翅,朱立新,邵艳,贾德民.淀粉-g-BA/NR复合材料的结构和性能[J].橡胶工业,2008,55(5):281-285
    [73]吕彦杰.轮胎新填料-纳米级淀粉聚合物[J].工程塑料应用,2002,09
    [74]Angellier H,Molina-Boisseau S,Lebrun L,Dufresne A.Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber[J].Macromolecules,2005,38:3783-3792
    [75]Angellier H,Putaux J L,Molina-Boisseau S.Macromolecular Symposia,2005,221:95-104
    [76]岳冬梅,赵卉,吴友平,张立群.纳米淀粉粒子的制备及其在橡胶中的分散性[J].合成橡胶工业,2005,28(6):475
    [77]Qing Qi,Youping Wu,Ming Tian et at.Polymer,2006,47(11):3896-3903
    [78]Angellier H,Choisnard L,Molina-Boisseau S,et al.Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology[J].Biomacromolecules,2004,5:1545-1551
    [79]Angellier H,Molina-Boisseau S,Belgacemr M N,Dufresne A.Surface chemical modification of waxy maize starch nanocrystals[J].Langmuir,2005,21:2425-2433
    [80]Angellier H,Putaux Jean-Luc,Molina-Boisseau S,Dufresne A.Starch nanocrystal fillers in an acrylic polymer matrix[J].Macromolecular symposium,2005,221:95-104
    [81]Angellier H,Molina-Boisseau S,Dufresne A.Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber[J].M acromolecules,2005,38:9161-9170
    [82]李汉堂.绿色轮胎用原材料综述(一)[J].现代橡胶技术,2007,33(5):5-10
    [83]吕百龄.高性能橡胶用于轮胎的趋势分析[J].中国轮胎资源综合利用,2007,8:42
    [84]Bake C S L.Epoxidized natural rubber[J].Rubber Chem Technology,1985,58(1):67-85
    [85]Newell R.Oil extended natural rubber in passenger tyre treads[J].Rubber Chem Technol,1992,45(5):380-389
    [86]Yoshimura N,Okuyama M,Yamagishi K.The present status of research on rolling resistance in Japan[A].The 151st meeting of rubber division[C],ACS,Anaheim,California,1997,31
    [87]Yuichi Kitagawa.New technology polymer for tire[J].IRC'95,Japan,1995,26A-6:402-403
    [88]Nordsiek K H.The "integral rubber" concept-an approach to an ideal tire tread rubber[J].Kauts Gummi Kunst,1985,38(3):178-184
    [89]Ueda A,Watanabe H,Akita S.新开发的高乙烯基丁二烯橡胶的结构和性能[J].秦怀德摘译,IRC'85 Kyoto:199-201
    [90]Gargani L,Deponti P,Bruzzone M.High vinyl polbutadien dynamic properties[J].Kauts Gummi Kunst,1987,40(10):935-937
    [91]Yoshiolka A,Komuto K,Ueda A,et al.Structure and physical properties of high-vinyl polybutadiene rubber and their blends[J].Pure Application Chemical,1986,53(12):1697-1704
    [92]李汉堂.绿色轮胎用原材料综述(二)[J].现代橡胶技术,2007,33(6):4-12
    [93]徐忠.炭黑生产技术进展及新产品开发[J].世界橡胶业,2005,32(2):45-9
    [94]Luginsland Hans-Detlef,Niedermeier W.New reinforcing materials for rising tire performance demands[P].Rubber World,2003,228(6):34-45
    [95]熊佳,黄英,李鹏等.新型炭黑的发展及其在轮胎工业中的应用[J].合成橡胶工业,27(6):388-290
    [96]Ting Wang,Meng-jiao Wang,James Shell,et al.CEC and its application in of the road tires[J].Rubberworld,2003,227(6):33-38
    [97]傅政.橡胶材料性能与设计应用[M].北京:化学工业出版社,2003.188
    [98]江伟译.什瓦尔茨 A г,金兹布尔格бн著.橡胶与塑料及合成树脂的并用[M].北京:石油化学工业出版社,1976.85-92
    [99]宋师伟.双亲性淀粉衍生物的制备及其应用[D].北京:北京化工大学,2008
    [100]吴力衡译.阿克洛尼斯 J J,麦克奈特 W J.聚合物粘弹性引论[M].北京:科学出版社,1986.38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700