CaO-Li_2O-Sm_2O_3-TiO_2微波介质陶瓷低温烧结及其微波介电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低温烧结微波介质陶瓷材料的研究近年来受移动通信事业的推动,发展非常迅速,为了满足微波元器件小型化、集成化的需要,迫切需要开发低温烧结的高介电常数微波介质材料。本研究选用具有高介电常数的CaO-Li_2O-Sm_2O_3-TiO_2体系为基体材料,选用低熔点氧化物和玻璃料为烧结助剂,研究烧结助剂对该微波介质陶瓷体系烧结特性、晶相组成、显微结构及微波介电性能的影响,探讨烧结助剂对促进陶瓷低温烧结的内在机理。
     选用复合钙硼硅氧化物CaO-B_2O_3-SiO_2(CBS)、低熔点玻璃Li_2O-B_2O_3-SiO_2-CaO-Al_2O_3(LBSCA)以及氧化物CuO为烧结助剂,对(1-x)CaTiO_3-x(Li_(1/2)Sm_(1/2))TiO_3(简称CLST-x)体系微波介质陶瓷的低温烧结性能进行研究。研究结果表明:添加上述烧结助剂的各组分陶瓷的晶相均为斜方钙钛矿结构。单独添加5-20 wt%CBS复合氧化物,通过CBS熔融产生液相促进陶瓷低温烧结,可将Ca_(0.3)(Li_(1/2)Sm_(1/2))_(0.7)TiO_3(CLST-0.7)与Ca_(0.2)(Li_(1/2)Sm_(1/2))_(0.8)TiO_3(CLST-0.8)烧结温度降低300-350℃,其中添加10wt%CBS的CLST-0.7陶瓷(CLST-0.7-10wt%CBS)与CLST-0.8陶瓷(CLST-0.8-10wt%CBS)可在1000℃保温5h烧结,此时,CLST-0.7-10wt%CBS陶瓷具有的微波介电性能:ε_r=80.21,Qf=2128GHz,τ_f=35.88ppm/℃,同时,CLST-0.8-10wt%CBS陶瓷具有的微波介电性能:ε_r=73.11,Qf=2048GHz,τ_f=-9.64 ppm/℃。上述组成的陶瓷已具有良好的微波介电性能,但其烧结温度达1000℃,无法实现与银等金属的低温共烧,因此,在上述基础上继续添加2-6wt%LBSCA玻璃料,通过LBSCA玻璃液相来进一步促进烧结,可将CLST-0.7-10wt%CBS陶瓷与CLST-0.8-10wt%CBS陶瓷烧结温度再降低50-100℃,其中添加4wt%LBSCA的CLST-0.7-10wt%CBS陶瓷(CLST-0.7-10wt%CBS-4wt%LBSCA)与CLST-0.8-10wt%CBS陶瓷(CLST-0.8-10wt%CBS-4wt%LBSCA)可在950℃保温5h烧结,此时,CLST-0.7-10wt%CBS-4wt%LBSCA陶瓷的微波介电性能:ε_r=71.84,Qf=1967GHz,τ_f=41.7 ppm/℃,同时,CLST-0.8-10wt%CBS-4wt%LBSCA陶瓷的微波介电性能:ε_r=61.81,Qf=1707GHz,τ_f=-8.3ppm/℃。虽然通过添加LBSCA玻璃料可以降低烧结温度至950℃,但该烧结温度仍然偏高,为此,继续添加复合烧结助剂来进一步降低烧结温度,选择CuO可以做为较好的烧结助剂。在CLST-0.7-10wt%CBS-4wt%LBSCA与CLST-0.8-10wt%CBS-4wt%LBSCA的基础上添加0.5-2wt%CuO氧化物,由于CuO能与CLST形成固溶体活化晶格,促进陶瓷的低温烧结,可将陶瓷烧结温度再降低50-80℃,其中添加1wt%CuO的CLST-0.7-10wt%CBS-4wt%LBSCA陶瓷(CLST-0.7-10wt%CBS-4wt%LBSCA-1wt%CuO)与CLST-0.8-10wt%CBS-4wt%LBSCA陶瓷(CLST-0.8-10wt%CBS-4wt%LBSCA-1wt%CuO)在900℃保温5h烧结时,CLST-0.7-10wt%CBS-4wt%LBSCA-1wt%CuO陶瓷具有良好的微波介电性能:ε_r=67.77,Qf=2197GHz,τ_f=40.28 ppm/℃,同时,CLST-0.8-10wt%CBS-4wt%LBSCA-1wt%CuO陶瓷具有良好的微波介电性能:ε_r=58.36,Qf=2011 GHz,τ_f=3.44ppm/℃。该组成可用于多层片式微波频率器件的低温烧结微波介质材料。
With the quick development of mobile telecommunication industry, lowtemperature co-firing ceramics are developed very quickly. In order to fulfill the need ofLTCC design, not only the low-temperature sintering materials but also high dielectricconstant materials should be developed. CaO-Li_2O-Sm_2O_3-TiO_2 system material withhigh dielectric constant was selected as bulk material in this research. The effects ofdifferent sintering aids on sintering characteristics, phase compositions, microstructuresand microwave dielectric properties of ceramics were studied. The low-temperaturesintering properties and mechanisms of the microwave dielectric ceramics were alsoresearched by using low melting point glass and oxide as sintering additives.The microwave dielectric properties of (1-x)CaTiO_3-x(Li_(1/2)Sm_(1/2))TiO_3 ceramics(abbreviated CLST-x) were studied systematically. The CaO-B_2O_3-SiO_2(CBS)Li_2O-B_2O_3-SiO_2-CaO-Al_2O_3 (LBSCA) and CuO were selected as sintering additives. Theresults indicated that the major phase of additives-doped Ca_(0.3)(Li_(1/2)Sm_(1/2))_(0.7)TiO_3(CLST-0.7) ceramics was orthorhombic perovskite by XRD analysis. The sinteringtemperature of CLST-0.7 and CLST-0.8 ceramics were decreased 300 ~ 350°C by using5-20 wt% CBS as liquid-sintering additives, which could promote low-temperaturesintering. The sample of Ca_(0.3)(Li_(1/2)Sm_(1/2))_(0.7)TiO_3 with 10.0 wt% CBS(CLST-0.7-10wt%CBS) sintered at 1000℃for 5 h had good microwave dielectricproperties:ε_r= 80.21, Qf= 2128GRz,τ_f= 35.88 ppm/℃. At the same time, the sampleof Ca_(0.2)(Li_(1/2)Sm_(1/2))_(0.8)TiO_3 with 10.0 wt% CBS (CLST-0.8- 10wt%CBS) sintered at1000℃for 5 h also had good microwave dielectric properties:ε_r= 73.11, Qf= 2048GHz,τ_f= -9.64 ppm/℃. Although both of the ceramics showed excellent dielectricproperties, the sintering temperature of 1000℃was too high. The ceramics and silvercould not realize co-firing. So LBSCA glass was selected as other liquid-sinteringadditives. Doping LBSCA glass could further promote low-temperature sintering. Thesintering temperature of CLST-0.7- 10wt%CBS and CLST-0.8- 10wt%CBS ceramicswere decreased 50- 100℃again by continued doping 2-6 wt% LBSCA, and thesample of CLST-0.7-10wt%CBS with 4.0 wt%LBSCA(CLST-0.7-10wt%CBS-4wt%LBSCA) sintered at 950℃for 5 h had bettermicrowave dielectric properties:ε_r= 71.84, Qf= 1967GHz,τ_f= 41.7 ppm/℃. at the sametime, The sample of CLST-0.8-10wt%CBS with 4.0 wt%LBSCA(CLST-0.8-10wt%CBS-4wt%LBSCA) sintered at 950℃for 5 h also had bettermicrowave dielectric properties:ε_r- 61.81, Qf = 1707 GHz,τ_f= -8.3 ppm/℃.Accordingly, although LBSCA could be lower sintering temperature, the sintering temperature of 950℃was still too high. In order to further lower sintering temperature,using doping multiple sintering additives method, the CuO was selected as bettersintering additives, the sintering temperature of CLST-0.7-10wt%CBS- 4wt%LBSCAand CLST-0.8-10wt%CBS- 4wt%LBSCA ceramics are decreased 50-80℃again bydoping 0.5-2.0 wt% CuO. The formation of solid solution by doping CuO can makecrystal lattice active to decrease the sintering temperature. The sample ofCLST-0.7-10wt%CBS-4wt%LBSCA with 1.0 wt% CuO(CLST-0.7-10wt%CBS-4wt%LBSCA-1wt%CuO) sintered at 900℃for 5 h had excellent dielectricproperties:ε_r= 67.77, Qf= 2197 GHz,τ_f= 40.28 ppm/℃. At the same time, the sample ofCLST-0.8-10wt%CBS-4wt%LBSCA with 1.0 wt% CuO(CLST-0.8- 10wt%CBS-4wt%LBSCA-1wt%CuO) sintered at 900℃for 5 h also had excellent dielectricproperties:ε_r= 58.36, Qf= 2011 GHz,τ_f= 3.44 ppm/℃. This composition would be usedas low-temprature sintering and multi-layer microwave dielectric frequency componentsmaterial.
引文
[1] 徐建梅,周东祥.微波介质陶瓷的研究现状与发展趋势.非金属矿.2001.24(增刊):47-49.
    [2] 方亮,杨卫明,郡俊兵等.微波介质陶瓷的研究现状与发展趋势.武汉理工大学学报.2002.24(2):12-15.
    [3] 杨辉,张启龙,王家邦等.微波介质陶瓷及器件的研究进展.硅酸盐学报.2003.31(10):965-973.
    [4] 李标荣,王筱珍,张绪礼.无机电介质.武汉:华中理工大学出版社.1955:154-166.
    [5] 李翰如.电介质物理导论.成都:成都科技大学出版社.1990:127-130.
    [6] 方俊鑫,殷之文.电介质物理.北京:科学出版社.1989:1-2.
    [7] Ubic R., Reaney I. M., Lee W. E.. Microwave dielectric solid-solution phase in system BaO-Ln_2O_3-TiO_2 [J]. Intern Mater Rev. 1998,43(5): 205-219.
    [8] Reaney I. M., Wise P., Ubic R., et al. On the temperature coefficient of resonate frequency in microwave dielectrics [J]. Philos Mag A. 2001, 81(2): 501-510.
    [9] Yoshihiro Konishi. Novel dielectric waveguide components microwave applications of new ceramic materials [A]. IEEE[C]. 1991: 726-739.
    [10] Junichi Takahashi, Keisuke Kageyama, KouheiKodaira. Microwave dielectric properties of lanthanide titanate ceramics [J]. Jpn J Appl Phys. 1993(32):4327-4331.
    [11] Kajfez D.. Temperature characterization of the dielectric-resonator materials [J]. J Eur Ceram Soc. 2001,21: 2663-2667.
    [12] 陆栋,蒋平,徐至中.固体物理学.上海:上海科学技术出版社.2003:245-246.
    [13] Richtmyer R. D.. Dielectric resonators [J]. J Appl phys. 1939(10): 391-398.
    [14] Hakki B. W., Coleman P. D.. A dielectric resonator method of measuring inductive capacitors in the millimeter range. IRE Trans Microwave Theory & Technology.1960(8): 402-410.
    [15] S. B. Cohn. IEEE Trans. on MTT.. MTT-16,218 (1968).
    [16] 何进.微波介质陶瓷材料综述.电子元件与材料.1995:7-14.
    [17] 黄永峰,李谦,黄金亮等.高介电常数微波介质陶瓷的发展及研究现状.硅酸盐通报.2006.25(4):115-119.
    [18] Kell R. C, Greenham A. C, Olds G C. E.. High-permittivity temperature-stable dielectric ceramics with low microwave loss [J]. J Am Ceram Soc. 1973, 56(7):352-354.
    [19] Takahashi H., Baka Y., Ezaki K., et al. Dielectric characteristics of (A_(1/2)~(1+)A_(1/2)~(3+))TiO_3 ceramics at microwave frequencies [J]. Jpn J Appl Phys. 1991, 30(9B): 2339-2342.
    [20] Ezaki K., Baba Y., Takahashi H., et al. Microwave dielectric properties of CaO-Li_2O-Ln_2O_3-TiO_2 ceramics [J]. Jpn J Appl Phys. 1993, 32(9B): 4319-4322.
    [21] Takahashi H., Baba Y., Ezaki K., et al. Microwave dielectric properties and crystal structure of CaO-Li_2O-(1-x)Sm_2O_3-xLn_2O_3-TiO_2 ( Ln: lanthanide) ceramic system [J]. Jpn J Appl Phys. 1996, 35(9B): 5069-5073.
    [22] Woo S. K., Ki H. Y, Eung S. K.. Far-infrared reflectivity spectra of CaTiO_3-Li_(1/2)Sm_(1/2)TiO_3 microwave dielectrics. Mater Res Bull. 1999, 34(14/15):2309-2317.
    [23] Chen Y. C, Cheng P. S.. Substitution of CaO by BaO to improve the microwave dielectric properties of CaO-Li_2O-Sm_2O_3-TiO_2 ceramics [J]. Ceram Int. 2001, 27:809-813.
    [24] 王传声,叶天培,王正义.LTCC技术在移动通信领域的应用.世界产品与技术.2002.1:19-23.
    [25] 崔学民,周济,沈建红等.低温共烧陶瓷(LTCC)材料的应用和研究现状.材料导报.2005.19(4):1-4.
    [26] Wei J. Z., Zhang L. Y, Yao X.. Melting properties of Bi_2O_3-ZnO-Nb_2O_5-based dielectric ceramics [J]. J Am Ceram Soc. 1999, 82(9): 2551-2552.
    [27] Lee H. J., Kim I. T., Hong K. S.. Dielectric properties of AB_2O_6 compounds at microwave frequencies (A=Ca, Mg, Mn, Co, Ni, Zn and B=Nb, Ta) [J]. Jpn. Appl Phys Supp. 1997,36, part2 (10A): 1318-1320.
    [28] Huang C. L., Wang M. H., Yu C. C. Low firable BiNbO_4 based microwave dielectric ceramics [J]. Ceram Int. 2001,27: 343-350.
    [29] Kagata H., Inone T., Kato j., et al. Low-fired bismuthbased dielectric ceramics [J].Jpn J Appl Phys Parti. 1992,31(9B: 3152-3155.
    [30] Jean J. H., Chang C. R, Chen Z. C. Effect of densification mismatch on camber development during cofiring of nickel-based multilayer ceramic capacitors [J]. J Am Ceram Soc. 1997,80(9): 2401-2406.
    [31] Tzou W. C, Ynag C. E, Chen Y. C, et al. Improvements in the sintering and microwave properties of BiNbO4 microwave ceramics by V_2O_5 addition [J]. J Euro Ceram Soc. 2000,20(7): 991-996.
    [32] Cheng C. M., Lo S. H., Yang C. F.. The effect of CuO on the sintering and properties of BiNbO_4 microwave ceramics [J]. Ceram int. 2000,26(1):113-117.
    [33] Huang C. L., Weng M. H.. The Microwave dielectric properties and the microstructures of Bi(Nb, Ta)O_4 ceramics [J]. Jpn J Appl Phys. Part Ⅰ. 1999, 38(10):5949-5952.
    [34] 周桃生,彭炜,苗君等。低温烧结压电陶瓷材料及应用.湖北大学学报(自然科学版).2000.22(1):49-53.
    [35] 陈国华.微波介质陶瓷及其低温烧结研究进展.中国陶瓷工业.2004.11(5):41-44.
    [36] O. Demovsek, A. Naeini, G Preu, et al. LTCC glass-ceramic composites for microwave application [J]. J Eur Ceram Soc. 2001,21: 1693-1697.
    [37] 陈尚坤,杨辉,王家邦等.Ba_4(Nd_(0.85)Bi_(0.15_)_(28/3)Ti_(18)O_(54)陶瓷低温化研究.材料科学与工程学报.2005.23(1):84-87.
    [38] In-Sun Cho, Dong-Wan Kim, Jeong-Ryeol Kim, et al. Low-temperature sintering and microwave dielectric properties of BaO·(Nd_(1-x)Bi_x)_2O_3·4TiO_2 by the glass additions [J]. Ceram Int. 2004,30: 1181-1185.
    [39] Kyung-Hoon Cho, Jong-Bong Lim, Sahn Nahm, et al. Low temperature sintering of BaO-Sm_2O_3-4TiO_2 ceramics [J]. J Eur Ceram Soc. 2006,27(2-3): 1053-1058.
    [40] Albina Y., Borisevich P. K.. Effect of V_2O_5 doping on the sintering and dielectric properties of M-Phase Li_(1+x)Nb_(1-x-3y)Ti_(x+4y)O_3 ceramics [J]. J Am Ceram Soc. 2004,87(6): 1047-1052.
    [41] Qun Z., Wei L., Jian L. S., et al. Effect of B_2O_3 on the sintering and microwave dielectric properties of M-phase LiNb_(0.6)Ti_(0.5)O_3 ceramics [J]. J Eur Ceram Soc. 2007,27(1): 261-265.
    [42] Choi J. W., Kang C. Y., Yoon S.J., et al. Microwave dielectric properties of B_2O_3 doped Ca[(Li_(1/3)Nb_(2/3))_(0.9)Ti_(0.1)]O_3 ceramics [J]. Ferroelectrics. 2001,262: 167-172.
    [43] 童建喜,张启龙,朱玉良等.低温烧结Ca[(Li_(1/3)Nb_(2/3))_(0.7)Ti_(0.3_]O_(3-δ)陶瓷及其微波介电性能[J].材料科学与工程学报.2003.21(6):859-861.
    [44] 张启龙,杨辉,魏文霖等.掺杂ZnO-B_2O_3低温烧结BiNbO_4介质陶瓷的研究.硅酸盐通报.2004.4:79-81.
    [45] Ko S. K., Kim K. Y.. Characteristics of tapped microstrip bandpass filter in BiNbO_4 ceramics [J]. J Mater Sci: Mater Electron. 1998,9: 351-356.
    [46] Kim D. H., Lim S. K., Hee B.H., et al. Low temperature sintering ceramics in ZnO-RO_2-TiO_2-Nb_2O_5 (R=Sn, Zr, Ce) Ceramic system with FeVO_4 addition (A) [M]. IEEE 7th International Conference on Solid Dieletrics(C). Eindhoven,Netherlands. 2001: 195-198.
    [47] Sung H. Y., Dong W. K., Seo Y. C, et al. Phase analysis and microwave dielectric properties of LTCC TiO_2 with glass system [J]. J Eur Ceram Soc. 2003, 23:2549-2552.
    [48] Kim D. W, Lee D. G. Low-temperature firing and micorwave dielectric properties of BaTi_4O_9 with Zn-B-O glass system [J]. Mater Res Bull. 2001, 36: 585-595.
    [49] Kim D.W.. Structural transition and microwave dielectric properties of ZnNb_2O_6-TiO_2 sintered at low temperatures [J]. Jpn J Appl Phys Part Ⅰ. 2002, 41 (3A):1465-1469.
    [50] 张启龙,杨辉,王家邦等.低温烧结ZnNb_2O_6/TiO_2复合陶瓷的制备及介电性能 研究.材料科学与工程学报.2003.21(5):694-696.
    [51] Zhang Y. C., Yue Z. X., Gui Z. L., et al. Effects of CaF_2 addition on the microstructure and microwave dielectric properties of ZnNb_2O_6 ceramics [J]. Ceram Int. 2003, 9(5): 555-559.
    [52] Yang Q. H., Kim E. S., Kim Y. J., et al. Effect of PbO-B_2O_3-V_2O_5 glass on the microwave dielectric properties of ceramics [J]. Mater Chem Phys. 2003, 79:236-238.
    [53] 傅剑,李承恩,赵梅瑜等,低温烧结PZT压电陶瓷研究进展.材料导报.2001.14(1):38-39.
    [54] Nishimoto, Keiki. A method for manufacturing a dielectric ceramic composition,dielectric ceramic and multilayer high frequency device. EP 869514 Al, 1998, 10,07.
    [55] 董兆文,王大岩.低温共烧陶瓷基板材料的研究.电子元件与材料.1996.12(6):28.
    [56] Chen C. S., Chou C. C, Shih W. J., et al. Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics. Mater Chem Phys. 2003, (79): 129.
    [57] Yoona S. H., Kima D. W., Chob S. Y, et al. Phase analysis and microwave dielectric properties of LTCC TiO_2 with glass system [J]. J Eur Ceram Soc. 2003, (23): 2549.
    [58] Weiter H., Liua K. S., Chub L. W., et al. Microwave dielectric properties of LTCC materials consisting of glass-Ba_2Ti_9O_(20) composites [J]. J Euro Ceram Soc. 2003,(23): 2559.
    [59] 张启龙,杨辉,孙慧萍等.低温烧结(Ca,Mg)SiO_3系微波介质陶瓷及制备工艺[P].CN,1673174.2005,09,28.
    [60] 陈湘明,郑昌伟.一种低介电常数微波介质陶瓷[P].CN,1830889.2006,09,13.
    [61] 吕文中,朱建华,梁飞等.低介电常数微波介质陶瓷材料[P].CN,1765820,2006,05,03.
    [62] 朱建华,雷文,吕文中等.低介电常数微波介质陶瓷材料及其制备方法[P].CN,101050102,2007,10,10.
    [63] 梁飞,朱建华,吕文中等.微波介质陶瓷材料及其制备方法[P].CN,101050103·2007,10,10.
    [64] Wang H., Zhang D., Wang X. L., et al. Effect of La_2O_3 subtitutions on structure and dielectric properties of Bi_2O_3-ZnO-Nb_2O_5-based pyrochlore ceramics [J]. J Mater Res. 1999,14(2): 546-548.
    [65] 张启龙,杨辉,魏文霖等.烧结助剂对BiNbO_4陶瓷烧结特性及介电性能的影响.电子元件与材料.2004,2:7-9.
    [66] Huang C. L., Weng M. H., Wu C. C. The microwave dielectric properties and the microstructures of La_2O_3-modified BiNbO_4 ceramics [J]. Jpn J Appl Phys Part 1,2000, 39(6A): 3506-3510.
    [67] Kim H. T., Kim S. H., Byun J. D.. Low-fired (Zn, Mg)TiO_3 microwave dielectrics [J]. J Am Ceram Soc. 1999, 82 (12): 3476-3480.
    [68] Kim H. T., Kim S. H., Nahm S., et al. Low-temperature sintering and microwave dielectric properties of zinc metatitanate-rutile mixtures using boron [J]. J Am Ceram Soc. 1999, 82(11): 3043-3048.
    [69] Zhang Q. L., Yang H., Zou J. L., et al. Sintering and microwave dielectric properties of LTCC-zinc titanate multilayers [J]. Mater Lett. 2005, 59: 880-884.
    [70] Liu P., Ogawa H., Kim E. S., Kan A.. Microwave dielectric properties of low-temperature sintered Ca[(Li_(1/3)Nb_(2/3))Ti]O_(3-δ) ceramics [J]. J Eur Ceram Soc.2004,24(6): 1761-1764.
    [71] Cho C. W., Cho Y. S., Yeo J. G, Kim J. H, Paik U. Y. Effect of PVB on the gelation behaviour of BaTiO_3-based dielectric particles and glass suspension [J]. J Eur Ceram Soc. 2003,23 (13): 2315-2322.
    [72] 童建喜.中介电常数低温共烧微波介质陶瓷及其器件研究[C].浙江大学.2006.
    [73] Zhang Y. C, Li L. T., Yue Z. X., et al. Effects of additives on microstructures and microwave dielectric properties of ZnNb_2O_6 ceramics [J]. Mater Sci Eng B. 2003,99: 282-285.
    [74] Zhang Q. L., Yang H.. Low-temperature firing and microwave dielectric properties of ZnO-Nb_2O_5-TiO_2-SnO_2 ceramics with CuO-V_2O_5 [J]. Mater Res Bull. 2005, 40:1891-1898.
    [75] Wang M. H., Huang C. L.. Single phase Ba_2Ti_9O_(20) microwave dielectric ceramics prepared by low temperature liquid phase sintering [J]. Jpn J Appl Phys Part 1.2000, 39(6): 3258-3559.
    [76] Huang C. L., Weng M. H., Lion C. T., et al. Low temperature sintering and microwave dielectric properties of Ba_2Ti_9O_(20) ceramics using glass additions [J].Mater Res Bull. 2000, 35: 2445-2456.
    [77] Bolton R.L.. Temperture compensating ceramics capacitorsinthe system bariumm-earth-qxidetitania[M]. USA: University of Illinois. 1968.
    [78] Kolar D., Stadler z., Gaberscek S., et al. Efect of chemical treatment on loss quality of microwave dielectric ceramics[J]. Ber Dtsh Keram Ges. 1978, 55(7): 346-348.
    [79] Matveeva R.G, Rfolomeev M.B., Kostomarvo VS., et al. Refinement of composition and crystal structure of Ba_(3.75)Pr_(9.5)Ti_(18)O_(54) [J]. Zh Neorg Khim. 1984(29):31-34.
    [80] Ohsat H., Ohashi T., Nishigaki S., et al. Formation of solid soltion of new tungsten bronze-typemicrowave dielectric compounds Ba_(6-3x) R_(8+2x)Ti_(18)O_(54)(R=Nd and Sm, 0≤x≤1) [J]. Jpn Appl Phys. 1993(32): 4323-4326.
    [81] Ota Y., Kakimoto K.I., Ohsato H., et al. Low-emperature sintering of Ba_(6-3x)Sm_(8+2x)Ti_(18)O_(54)microwave dielectric ceramics by B_2O_3 and GeO_2 addition [J].Journal of the European Ceramic Society. 2004,24(6): 1755-1760.
    [82] Jong-Bong Lim, Kyung-Hoon Cho, Sahn Nahm, et al. Effect of BaCu(B_2O_5) on the sintering temperature and microwave dielectric properties of BaO-Ln_2O_3-TiO_2 (Ln=Sm, Nd) ceramics [J]. Mater Res Bull. 2006,41:1868-1874.
    [83] Kato J., Kagaata H., Nishmoto K.. Dielectric properties of lead alkaline2earth zirconate at microwave frequencies [J]. Jpn Appl Phys. 1991, 30(9B): 2343-2346.
    [84] Huang C. L., Weng M. H.. The effect of PbO loss on microwave dielectric properties of (Pb,Ca) (Zr,Ti)O_3 ceramics[J]. Materials Research Bulletin. 2001(36): 683-691.
    [85] Bian J. J., Wang X. W., Zhong Y. G., et al. Preparation and microwave dielectric properties of (Pb_(0.45)CaO_(0.55))(Fe_(1/2)Nb_(1/2))O_3 ceramics by citrate-gelprocessingroute [J]. Journal of Materials Science: Materialsin Elecronics. 2002,13: 125-129.
    [86] 杨秋红,金应秀,徐军.固溶率因子对{(Pb,Ca,La)FeNb}O_3陶瓷微波介电性能的影响.硅酸盐学报.2002.30(5):554-558.
    [87] Chen X. M., Sun Y. H., Zheng X. H.. Hish permittivity and low loss dielectric ceramics in the BaO-L_2O_3-TiO_2-Ta_2O_5 system[J]. J Eur Ceram Soc. 2003(23):1571-1575.
    [88] Zheng X. H., Chen X. M.. Crystal structure and dielectric properties of ferroelectric ceramics in the BaO -Sm_2O_3- TiO_2- Nb_2O_5 system[J]. Solid State Commun. 2003,25: 449-454.
    [89] 陈亮.Ba_5LnSn_3Nb_7O_(30)与(Ba,Sr)_8Ti_3Nb_4O_(24)陶瓷的制备、结构与介电特性.武汉:武汉理工大学.2005.
    [90] 郑兴华.(Ca,Nd)TiO_3/(Li,Nd)TiO_3与BapLn_(6-p)Ti_(8-p)M_(2+p)O_(30)(Ln=Nd,Sm;M=Ta,Nb)电介质陶瓷[D].杭州:浙江大学.2004.
    [91] 曹春娥,顾幸勇合编.无机材料测试技术.武汉:武汉理工大学出版社.2001:13-17.
    [92] 唐宗熙,张其勋.微波介质谐振器介电参数的测量.计量学报.1996.17(4):297-309.
    [93] 周洪庆,刘敏,杨南如等.微波介质复介电系数测试理论及方法.硅酸盐通报.1997.6:59-63.
    [94] 唐宗熙.介质谐振器介电参数频响特性及频率温度系数的测量.计量学报.2002.23(1):57-61.
    [95] 廖步勇,肖应凯,魏海珍等.硼酸溶液蒸发时温度对硼的挥发和硼同位素分馏 的影响.盐湖研究.2003.11(2):24-28.
    [96] 李月明,宋婷婷,胡元云等.(1-x)CaTiO_3-xLi_(1/2)Sm_(1/2)TiO_3陶瓷的微波介电性能研究.无机材料学报.2008.23(4):695-699.
    [97] Eung S. K., Ki H. Y. Microwave Dielectric properties of (1-x)CaTiO_3-xLi_(1/2)Sm_(1/2)TiO_3 ceramics [J]. J Eur Ceram Soc. 2003(14), 23: 2397-2401.
    [98] Chiang C. C, Wang S. F., Wang Y. R., et al. Characterizations of CaO-B_2O_3-SiO_2 glass-ceramics: Thermal and electrical properties [J]. J Alloys and Compd. 2008,461(1-2): 612-616.
    [99] Chiang C. C, Wang S. R, Wang Y. R., et al. Densification and microwave dielectric properties of CaO-B_2O_3-SiO_2 system glass-ceramics [J]. Ceram Int. 2008(34):599-604.
    [100] Shannon R. D.. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides [J]. Acta Crystallographica Section E. 1976, A32, 751-767.
    [101] Colla E. L., Reaney I. M., Setter N.. Effect of structral changes in complex perovskites on the temperature coefficient of the relative permittivity [J]. Jpn J Appl Phys, 1993, 74(5): 3414-3418.
    [102] Park J. H., Choi Y J., Park J. H., et al. Low-fire dielectric compositions with permittivity 20-60 for LTCC applications [J]. Mater Chem & Phys. 2004, 88(2-3):308-312.
    [103] 张迎春.铌钽酸盐微波介质陶瓷材料.北京:科学出版社.2006:3-7.
    [104] 王茹玉,黄金亮,周焕福等.CuO和V_2O_5掺杂对ZnNb2O6介质陶瓷性能的影响.硅酸盐学报.2006.34(4):442-445.
    [105] 吕文中,张道礼,黎步银等.高ε_r微波介质陶瓷的结构、介电性质及其研究进展[J].功能材料.2000.31(6):572-576.
    [106] 王茹玉,黄金亮,周焕福等.CuO掺杂对ZnNb_2O_6介质陶瓷性能的影响.材料导报.2005.19(11):125-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700