熔盐法制备铌酸钾钠基压电陶瓷及其性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以K_xNa_(1-x)NbO_3(简写为NKN)陶瓷为主要研究对象,开展以下两部分研究工作。一是粉体制备:首先采用熔盐法合成NKN粉体,研究熔盐法制备NKN粉体的工艺参数:如熔盐含量、合成温度、熔盐种类对NKN粉体的影响。研究表明应用熔盐法很难一次性制备出各向异性的NKN粉体,因此,采用二次熔盐法来制备片状NaNbO_3模板粉体。二是压电陶瓷制备:首先以熔盐法制备NKN粉体为原料,采用固相法制备NKN压电陶瓷并对其性能进行研究;在制备纯的NKN压电陶瓷的基础上添加助烧剂ZnO和CuO,对NKN压电陶瓷进行改性研究。其次以片状NaNbO_3粉体为模板,借助流延成型工艺,采用反应模板法制备(Na_(0.5)K_(0.5))_(0.94)Li_(0.06)NbO_3(简称NKLN)织构型陶瓷。
     研究了熔盐含量、合成温度以及熔盐种类对NKN粉体形貌的影响。结果表明:通过熔盐法可以在650℃—850℃下合成纯钙钛矿结构的NKN粉体;随着合成温度的升高,粉体形貌从圆球状转变为立方结构,进一步提高合成温度,粉体形貌开始变得不规则;此外,合成粉体的尺寸随着熔盐含量的增加而增大,且粉体团聚现象明显减弱。以Na_2CO_3-K_2CO_3(摩尔比1:1)为熔盐,在熔盐与反应物的总质量比为1:3,合成温度为800℃保温4 h时制备出形貌规制、晶粒均匀的NKN粉体。
     研究了熔盐含量和合成温度对Bi_(2.5)Na_(3.5)Nb_3O_(18)(简称BNN5)粉体形貌的影响,研究发现随着合成温度的升高BNN5粉体的尺寸逐渐增大,温度继续升高,粉体尺寸增加并不明显;随着熔盐含量的增加,BNN5粉体晶粒尺寸逐渐增大。在1100℃下保温3h,在熔盐与反应物的总质量比为1:1时,可以制备出尺寸较大(平均粒径15μm)、边缘相对整齐的前躯体BNN5粉体。以上述条件制备的BNN5为前躯体,采用熔盐法在950℃下,熔盐与反应物的总质量比为1:1时,可以制备出大尺寸和高度各向异性的NaNbO_3模板晶粒粉体。
     以熔盐法合成的NKN粉体为原料,添加适量的ZnO和CuO为烧结助剂,采用普通陶瓷制备技术制备NKN陶瓷,研究了烧结助剂和制备工艺条件对NKN压电陶瓷性能的影响。结果表明:当烧成温度为1080℃时体积密度达到最大值3.81g/cm~3,在1060℃保温2h所制备NKN压电陶瓷具有优异的压电性能和介电性能,其中压电常数d_(33)=124 pC/N,机电耦合系数k_p=0.27,介电常数ε_(33)~T/ε_0=345,居里温度T_c达406℃,P_r=20.62μC/cm~2,E_c=3.45 kV/mm。
     以片状NaNbO_3为反应模板剂,按照(Na_(0.5)K_(0.5))_(0.94)Li_(0.06)NbO_3化学计量,以固相法合成的NaNbO_3,KNbO_3和LiNbO_3为反应物,采用RTGG法制备NKLN织构化压电陶瓷,研究制备工艺对NKLN织构化压电陶瓷性能的影响。研究发现:经1080℃烧结所制备NKLN的陶瓷体积密度达到最大值3.80g/cm~3,并具有优异的压电性能和介电性能,其中压电常数d_(33)=118 pC/N,机电耦合系数k_p=0.354,介电常数ε_(33)~T/ε_0=357,居里温度T_c达429℃。结果表明采用RTGG技术制备的NKLN压电陶瓷沿(001)方向取向性生长明显,所得织构陶瓷各向异性生长比较显著。
In this dissertation,K_xNa_(1-x)NbO_3(abbreviated as NKN) ceramics were selected as the investigation object,and the main research contents were as follows.The first study content was the synthesis of NKN powder by the molten salt synthesis method(abbreviated as MSS),and the effects of synthesizing temperature,the molten salt species and amount of salt were studied.It was found that the NKN powder with high degree anisotropy could not been immediately prepared by MSS.Therefore,a novel processing method was used to synthesize plate-like NaNbO_3 particles.The second study content was preparation of piezoelectric ceramics.(1) The NKN powder synthesized by the MSS method was used to prepare NKN piezoelectric ceramics by conventional solid state method.Then 1.0 mol%ZnO and 1.0 mol%CuO was added as sintering agent,Meanwhile the effect of structure,piezoelectric, ferroelectric and dielectric properties were investigated.(2) The textured (Na_(0.5)K_(0.5))_(0.94)Li_(0.06)NbO_3(abbreviated as NKLN) piezoelectric ceramics were fabricated by the templated grain growth(RTGG) techniques with the plate-like NaNbO_3 particles prepared by two step molten salt synthesis method as template particles.
     The dependence of the molten salt content,the synthesized temperature as well as the molten salt species on the grain growth and the morphology of the NKN powder were studied.The results present that the NKN powders with pure perovskite structure were synthesized by the molten salt method in the molten salt fluxes of Na_2CO_3-K_2CO_3(mol 1:1) at 700℃~850℃for 4 h.The results reveal that the crystal morphology of NKN powder changes from spheroid to cube,and then become irregular with temperature increasing.In addition,the grain size increased and the agglomeration of the NKN powders decreases clearly with the molten salt content increasing.The optimal morphology of NKN powder can be obtained with a 1:3 salt-to-oxide ratio in Na_2CO_3-K_2CO_3 flux at 800℃for 4 h.
     The dependence of the molten salt content and the synthesized temperature on the morphology of the Bi_(2.5)Na_(3.5)Nb_3O_(18)(BNN5)powder was studied.It can be found that the grain size increased and then without changing with the increase of molten salt content and synthesizing temperature.The optimal technique for preparing large-size and high degree anisotropic BNN5 template particles are as follow:NaCl used as salt fluxes, salt-to-oxide ratio is 1:1,the synthesizing temperature is at 1100℃and soaking time is about 4 h.Using this precursor(BNN5),plate-like NaNbO_3 particles could be prepared with 1:1 salt-to-oxide ratio in NaCl flux at 950℃for 3 h.
     The NKN ceramics were prepared by conventional solid phase sintering, using the NKN powders synthesized by the molten salt method as raw materials and adding right amount ZnO and CuO as sintering agent.The effect of the sintering agent and the preparation process on the properties of NKN ceramics was studied.The results show that the maximum of the bulk density of NKN ceramic sintered at 1080℃for 2h is 3.81 g/cm~3.The excellent dielectric and piezoelectric properties of NKN ceramic sintered at 1060℃were obtained and the properties were as follow:d_(33)=124 pC/N,ε_(33)~T/ε_0=345, T_c=406℃,k_p=0.27,P_r=20.62μC/cm~2 and E_c=3.45 kV/mm.
     The textured(Na_(0.5)K_(0.5))_(0.94)Li_(0.06)NbO_3 ceramics were fabricated by the reaction templated grain growth(RTGG) technique using the plate-like NaNbO_3 powder as template particles,using NaNbO_3,KNbO_3 and LiNbO_3 as reactants.The preparation technology of textured NKLN ceramics prepared by the RTGG was studied.It can be found that the maximum of the bulk density of NKLN ceramic sintered at 1080℃for 2h is 3.81 g/cm~3.The excellent dielectric and piezoelectric properties of the textured NKLN ceramics were obtained and the properties were as follow:d_(33)=118 pC/N,ε_(33)~T/ε_0=357,T_c= 429℃,k_p=0.354.The results reveal that the textured NKLN ceramics prepared by RTGG method were the(001) orientated ceramics obviously and appeared to be anisotropy.
引文
[1]He Lianxing,Li Yi,Li Guancheng,et al.Progress in Lead-free Piezoelectric Ceramics.Electronic Components and Materials,2004,23(11):52-55.
    [2]Takenaka T,Huzumi A,Hata T,et al.Mechanical properties of(BiNa)_(1/2)TiO_3-based piezoelectric ceramics.Silicates Industriels,1993,7(8):136-142
    [3]Takenaka T,Sakata K,Toda K.Piezoelectric properties of(BiNa)_(1/2)TiO_3-based piezoelectric ceramics.Ferroelectrics,1990,106:375-380
    [4]Lin Dunmin,Xiao Dingquan,Zhu Jianguo,et al.Recent progresses of lead-free piezoelectric ceramics.Piezoelectrics and Acoustooptics,2003,25(2):127
    [5]Yasuyoshi Saito,Hisaaki Takaol,Toshihiko Tani,et al.Lead-free piezoceramics,Nature,2004,432(4):84-87
    [6]Guo Y,Kakimoto K,Ohsato H,et al,Dielectric and piezoelectric properties of lead-free Na_(0.5)K_(0.5)NbO_3-SrTiO_3 ceramics,Solid State Commun,2004.129:279-284
    [7]Du Hongliang Li Zhimin,Zhou Wancheng,et al.Researches and Developments of (Na_(0.5)K_(0.5))NbO_3-based Lead-free,Journal of Inorganic Materials,2006,21(6):1281-1291
    [8]侯麦珍,杨留栓,黄金亮,殷标等.熔盐法合成片状SrBi_2Nb_2O_9粉体.硅酸盐学报.2006.34(6):652-655.
    [9]Yoon K H,Yong S C,Kang D H,Reaction mechanisms of PZN-BT powder prepared by molten salt synthsis,Journal of Materials Science,1998,33:2977-2984.
    [10]Kan Yanmei,Jin Xihai,Wang Peiling,et al.Anisotropic gain growth of Bi_4Ti_3O_(12) in molten salt fluxes.Materirals Research Bulletin,2003,38:567-576
    [11]Cai Zongying,Xing Xianran,Deng Jinxia,et al.Rapid Synthesis of Pb_(1-x)La_xTiO_3Powders in Molten Salt Flux,Chinese Journal of Inorganic Chemistry 2006,22(8):1422-1425.
    [12]Yang ZuPei,et al.Review molten salt synthesis of lead-based relaxors.Journal of Materials Science.2001,,33:1509-1511.
    [13]Z Lili,G Feng,Z Changsong,etal.Molten salt synthesis of anisometric KSr_2Nb_5O_(15)particles.Journal of Crystal Growth.2005,276:446-452.
    [14]B Bhaskar,T Susan.Molten salt synthesis of anisotropic Sr_2Nb_2O_7 particles.Journal of the American Ceramic Society.1999,82(6):1565-1568.
    [15]S Vishnu.Comparative study of dielectric properties of MgNb_2O_6 prepared by molten salt and ceramic method.Bulletin of Materials Science.2003,26(7):741-744.
    [16]K Hirao,M Ohashi,M E Brito.Process strategy for producing highly anisotropic silicon nitride.Journal of the American Ceramic Society.1995,78(6):1678-1690.
    [17]S H Hong,G L Messing.Development of textured mullite by templated grain growth.Journal of the American Ceramic Society.1999,82(4):867-872.
    [18]赵丽丽,唐斌,赵鸣等.弛豫铁电单晶及织构陶瓷的研究进展.材料工程.2003.7:43-48.
    [19]K Yanmei,W Peiling,L Yongxiang,etal.Fabrication of textured bismuth titanate by templated grain growth using aqueous tape casting.Journal of the European Ceramic Society.2003,23:2163-2169.
    [20]邢建东主编.工程材料基础.北京:机械工业出版社,2004.
    [21]许煜寰等编.铁电与压电材料.北京:科学出版社,1978.1-8
    [22]B·贾菲等(著),林声和(译).压电陶瓷.北京:科学出版社,1979.
    [23]林声和,叶至碧,王裕斌,合编.压电陶瓷.北京:国防工业出版社,1979.
    [24]电子陶瓷情报网编.压电陶瓷应用..济南:山东大学出版社出版,1985.
    [25]李远,秦自楷,周志刚.压电与此铁电材料的测量.北京:科学出版社.1984:40-41.
    [26]郝俊杰,李土龙,王晓惠,等.无铅压电陶瓷材料研究现状.硅酸盐学报,2004,32(2):189-195.
    [27]肖定全主编.压电、热释电与铁电材料.天津:天津大学出版社,2000.
    [28]M S Narayana.Piezoelectric(NaK)NbO_3 ceramics for ultrasonic delay line applications.Ferroelectrics,1994,154:171-176.
    [29]S N Murty,K V Ramanamuety,M K Umakanaha,et al.Modified(NaK)NbO_3ceramics for transducer applications.Ferroelectrics,1990,102(1-4):243-247.
    [30]A Kania,J Kwapulinski,Ag_(1-x)Na_xNbO_3(ANN) solid solutions:from disordered anti-ferroelectric AgNbO_3 to normal antiferroelectric NaNbO_3.J Phys:Condens Matter,1999:8933-8946.
    [31]G A Geguzina,L A Reznitchenko.Atomic substitution effects in binary solid solution systems based upon NaNbO_3.Ferroelectrics,1998,214:261-271.
    [32]L A Reznitchenko,N V Dergunova,G A Geguzina,et al.New binary system of solid solutions based on NaNbO_3.Ferroelectrics,1998,214(3-4):241-254.
    [33]Zhang S,Xia R,Shrout T R,Zang G and Wang J.Pielectric properties in perovskite 0.948(K_(0.5)Na_(0.5))NbO_3-0.052LiSbO_3 lead-free ceramics.J.Appl.Phys,2006,100(10):104108-104106.
    [34]Wu J,Xiao D,et al.Piezoelectric properties of(K_(0.5)Na_(0.5))(Nb_(1-x)Ta_x)O_3 -K_(5.4)CuTa_(10)O_(29) ceramics.Appl.Phys.Lett.,200791(25):252907-252903.
    [35]Chang Y,Yang Z.et al.Dielectric properties of Na_(1-x)K_xNbO_3 in orthorhombic phase.J.Am.CeYam.Soc.2007,90(5):1656-1658.
    [36]Higashide K,Kakimoto.et al.Dielectric properties of potassium sodium niobate.J.Eur.Ceram.Soc,2007,27(13-15):4107-4110.
    [37]Du H,Tang F,et al.Electrical properties of piezoelectric sodium-potassium niobate Luo F,Zhu D,Qu S,Pei z and Zhou W.Mater.Res.Bull.2007,42(9):1594-1601.
    [38]S.M.Neirman.The curie point temperature of Ba_x(Ti_((1-y))Zr_y)O_3 solid solutions.J.Mater.Sci,1988,23:3973-3980.
    [39]J.Ravez,A.Simon.Relaxor ferroelectricity in ceramics with composition.Mater.Lett,1998,36:81-84.
    [40]J.Ravez,A.Simon.Non-stoichiometric pervoskites derived from BaTiO_3 with a ferroeletric relaxor behaviour.Phys.Stat.Sol,2000,178:793-797.
    [41]M.Marssi,A.Simon.A raman and dielectric study of ferroeletric Ba(Ti_((1-x))Zr_x)O_3ceramics.J.Eur.Phys.B,1999,9:599-604.
    [42]Wang C M and Wang J F.New ferroelectric and relaxor ceramics in the mixed oxide system NaNbO_3-BaSnO_3.Appl.Phys.Lett.,2006,89(20):202905.
    [43]G H Haertling.Ferroelectric ceramics:history and technology.Journal of the American Ceramic Society.1999,82:797-818.
    [44]晏海学,李承恩,周家光等.高T_c铋层状压电陶瓷结构与性能.无机材料学报,2000.15(2):209-220.
    [45]赁敦敏,肖定全,朱建国等.铌酸盐系无铅压电陶瓷研究与进展-无铅压电陶瓷20年专利分析之四.功能材料.2003.34(6):615-618.
    [46]T.Takenaka,K.Sakata,K.Toda.Piezoelectric properties of Bi_(1/2)Na_(1/2)TiO_3-based ceramics.Ferroelectrics,1990,106:375-380.
    [47]T.Takenaka,T.Okuda,K.Takegahara.Lead-free piezoelectric ceramics based on Bi_(1/2)Na_(1/2)TiO_3-NaNbO_3.Ferroelectrics,1997,196:175-178.
    [48]H.Nagata,T Takenaka.Lead-free piezoelectric ceramics of Bi_(1/2)Na_(1/2)TiO_3-_(1/2)(Bi_2O_3·Sc_2O_3) system.Jpn J.Appl.Phs,1997,36(9B):6055-6057.
    [49]O Elkechai,M Manier,J P Mercurio.Bi_(0.5)Na_(0.5)TiO_3-Bi_(0.5)K_(0.5)TiO_3(NBT-KBT)system:a stuctural and electrical study.Phys St Solid,1996,157:499-506.
    [50]J Suchanicz.Peculiarities of phase transitions in Na_(0.5)Bi_(0.5)TiO_3.Ferroelectrics,1997,190:77-81.
    [51]N Hajime,T Tadashi.Lead-free piezoelectric ceramics of Bi_(1/2)Na_(1/2)TIO_3-KNbO_3-_(1/2)(Bi_2O_3·Sc_2O_3) system..Jpn J.Appl.Phys,1998,37:5311-5314.
    [52]T Tadashi.Piezoelectric properties of some lead-free ferroelectric ceramics.Ferroelectrics,1999,230:87-98.
    [53]T Tadashi,H Nagata.Present status of non-lead-based piezoelectric ceramics.Key Eng.Mater.,1999,157-158:57-64.
    [54]马麦霞,吕忆农,卢都有等.无铅压电陶瓷的研究进展.现代技术陶瓷.2003.95(1):23-25.
    [55]Saito Yasuyoshi.[P].EP;No1032057,2000-2-23.
    [56]西田正光,高桥度一,[p],日本公开特许公报(A):2001-114560,2001-04-24.
    [57]Yiping Guo,Ken-ichi Kaldmoto,Hitoshi Ohsato,(Na_(0.5)K_(0.5))NbO_3-LiTaO_3 lead-free piezoelectric ceramics.Mater Lett.2005.59:241-244.
    [58]Shujun Zhang,et.al,Piezoelectric properties in perovskite 0.948(K_(0.5)Na_(0.5))NbO_3-0.052LiSbO_3 lead-free ceramics,Joure of Applied Physics.2006,100:04108.
    [59]Hongliang Dua,Zhimin Li a,et.al.Preparation and piezoelectric properties of (K_(0.5)Na_(0.5))NbO_3 lead-freepiezoelectric ceramics with pressure-less sintering,Mater Sci and Eng B,2006,131:83-87.
    [60]Tangfusheng,et.al.Preparation and properties of(K_(0.5)Na_(0.5))NbO_3-LiNbO_3 ceramics,Trans.Nonferrous Met.SOCC.2006,16:466-469.
    [61]Guo Y,Kakimoto K I,and Ohsato H,Dielectric and piezoelectric properties of lead-free(Na_(0.5)K_(0.5))NbO_3-SrTiO_3 ceramics.Solid State Communications,2004.129(5):279-284.
    [62]Wang R.,Xie R J,Hanada K,et al.,Phase diagram and enhanced piezoelectricity in the strontium titanate doped potassium-sodium niobate solid solution.Physica Status Solidi(a),2005.20Z(6):R57-R59.
    [63]Park H Y,Ahn C W,Song H C,et al.,Microstructure and piezoelectricproperties of 0.95(Na_(0.5)K_(0.5))NbO_3--0.5BaTiO_3 ceramics.Applied PhysicsLetters,2006.89(6):062906-3.
    [64]Chang R C,Chu S Y,Lin Y F,et al,An investigation of(Na_(0.5)K_(0.5))NbO_3-CaTiO_3based lead-free ceramics and surface acoustic wave devices.Journal of the European Ceramic Society,2007.27(16):4453-4460.
    [65]Chang R C,Chu S Y,Lin Y.,et al,The effects of sintering temperature on the properties of(Na_(0.5)K_(0.5))NbO_3-CaTiO_3 based lead-free ceramics.Sensors and Actuators A:Physical,2007.138(2):355-360.
    [66]Jaeger R E.and Egerton L,Hot Pressing of Potassium-Sodium Niobates.Journal of the American Ceramic Society,1962.45(3):209-211.
    [67]Haertling Cx H,Properties of hot-pressed ferroelectric alkali niobate ceramics,Journal of the American Ceramic Society,1967.50(6):329-330.
    [68]Zhang B P,Li J F,Wang K,et al,Compositional Dependence of Piezoelectric Properties in Na_XK_(1-x)NbO_3 Lead-Free Ceramics Prepared by Spark Plasma Sintering.Journal of the American Ceramic Society,2006.89(5):1605-1609.
    [69]S E Park,T R Shrout.Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals.Journal of Applied Physics.1997,82(4):1804-1811.
    [70]孙士文,潘晓明,李东林等.PMN-PT弛豫铁电固溶体的定向凝固组织与结晶习性无机材料学报.2004.19(3):541-545.
    [71]王评初,孙世文,潘晓明,等.高性能铌镁酸铅-钛酸铅定向压电陶瓷的研究.无机材料学报.2004.19(5):1195-1198.
    [72]G L Messing,S Trolier Mckinstry,E M Sabolsky,etal.Critical reviews in solid state and Material Science.2004,29(2):45-96.
    [73]T Kimura.Application of texture engineering to piezoelectric ceramics-A Review.Journal of the Ceramic Society of Japan.2006,114(1):15-25.
    [74]R R Neurgaonkar,J R Oliver,W K Cory,etal.Piezoelectricity in tungsten bronze crystals.Ferroelectrics.1994,160(2):265-267.
    [75]T Tani.Crystalline-oriented piezoelectric bulk ceramics with a perovskite-type structure.Journal of the Korean Physical Society.1998,32(S2):1217-1220.
    [76]Y Seno,T Tani.Tem observation of a reactive template for textured Bi_(0.5)(Na_(0.87)K_(0.13))_(0.5)TiO_3,Ferroelectrics.1999,224(1-4):793-800.
    [77]T Tani,T Kimura.Reactive-templated grain growth processing for lead free piezoelectric ceramics.Advances in Applied ceramics.2006,105(1):55.
    [78]T Takeuchi,T Tani,Y Saito.Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the Reactive-templated Grain Growth method.Journal of Applied Physics.1999,38(9B):5553-5556.
    [79]T Tani,H Itahara,C T Xia,et al,Topotactic synthesis of highly-textured thermoelectric cobaltites.Journal of Materials Chemistry.2003,13(8):1865-1867.
    [80]T Kimura,T Takahashi,T Tani,etal.Crystallographic texture development in bismuth sodium Titanate prepared by Reactive-templated grain growth method.Journal of the American Ceramic Society.2004.87(8):1424-1429.
    [81]E Fukunchi,T Kimura,etal.Effect of potassium concentration on the grain orientation in Na_(0.5)Bi_(0.5)TiO_3.Journal of the American Ceramic Society.2002,85(6):1461-1466.
    [82]T Zhongqing,L Haixing,Y Hongtao,etal.Molten salt synthesis of Ba(Mg_(1/3)Nb_(2/3))O_3powder.Journal of Wuhan University of Technology-Materials Science Edition. 2004,19(2):17-19.
    [83]赵巍,周和平,严永科,刘丹.反应模板晶粒生长法制备BNKT织构化陶瓷的研究.稀有金属材料与工程.2007.36:475-478.
    [84]E M Sabolsky,S Trolier Mckinstry,G L Messing,etal.Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg_(1/3)Nb_(2/3))O_3-0.325PbTiO_3 ceramics.Journal of Applied Physics.2003,93(7):4072-4080.
    [85]H Yilmaz,G L Messing,S Trolier Mckinstry.Reactive templated grain growth of textured sodium bismuth titanate Na_(1/2)Bi_(1/2)TiO_3-BaTiO_3 ceramics-processing.Journal of Electroceramics.2003,11(3):207-215.
    [86]G L Messing,S Trolier-mckinstry,E M Sabolsky.Templated grain growth of textured piezoelectric ceramics.Journal of Electroceramics.2003,113:217-226.
    [87]K Yanmei,W Peiling,L Yongxiang,et al.Fabrication of textured bismuth titanate by templated grain growth using aqueous tape casting.Journal of the European Ceramic Society.2003,23:2163-2169.
    [88]李东亮.PMN-PT陶瓷的织构化制备技术研究[硕士论文].武汉:武汉理工大学.2005.
    [89]严永科,周和平,赵巍,刘丹.(反应)模板晶粒生长法制备NBT-6BT织构陶瓷的研究.稀有金属材料与工程.2007.36:479-483.
    [90]崔春伟,黄金亮,殷镖,等.模板晶粒生长技术制备织构化SrBi_2Nb_2O_9陶瓷.硅酸盐学报.2007.35(10):1298-1301.
    [91]郝华,罗大兵,韩星等.熔盐法合成SrBi_4Ti_4O_(15)片状铁电陶瓷粉体.武汉理工大学学报.2004.26(1):4-6.
    [92]E K Akdogan,R E Brennan,M Allahverdi,A Safari.Effects of molten salt synthesis (MSS) parameters on the morphology of Sr_3Ti_2O_7 and SrTiO_3 seed crystals.Journal of Electroceramics.2006,16:159-165.
    [93]杨留栓,侯麦珍,黄金亮等.熔盐法制备SrBi_2Nb_2O_9陶瓷粉体的研究.电子元件与材料.2006.25(3):18-19.
    [94]崔春伟,黄金亮,杨兴化等.熔盐法合成各向异性SrBi_2Nb_2O_9粉体.河南科技大学学报.2008.29(1):8-10.
    [95]Liu Yunfei,Lu Yinong etal.Topochemical reaction of SrTiO_3 platelet crystals based on Sr_3Ti_2O_7 platelet precursor in molten salt synthesis process.Materials Chemistry and Physics,2009,114:37-42.
    [96]Li Lihong,Deng Jinxia etal.,Piezoelectric and ferroelectric properties of 0.96(Na,K)(Nb_(0.9)Ta_(0.1))O_3-0.04LiSbO_3 ceramics synthesized by molten salt method.Journal of Alloys and Compounds,2009,471(5):428-431.
    [97]He Tian,Dai Jinhui,etal.Synthesis of Bi_(0.5)(Na_(0.7)K_(0.2)Li_(0.1)_(0.5)TiO_3 powders through the molten salt method.Ceramics International.2008,34(6):1561-1563.
    [98]R W Cahn,etal.清华大学新型陶瓷与精细工艺国家重点实验室译.材料科学与技术丛书(第17A卷).北京:科学出版社.1999.
    [99]来俊华,丘泰,徐洁等.用流延法制备优质陶瓷基片的研究.江苏陶瓷.2003,36:7-13.
    [100]H Watanabe,T Kimura,T Yamaguchi,etal.Particle orientation during tape casting in the fabrication of grain-oriented bismuth titanate.Journal of the American Ceramic Society.1989,72(2):289-293.
    [101]高峰,张昌松,张慧君,田长生.熔盐法制备Bi_4Ti_3O_(12)的研究.压电与声光,2005.2:145-148.
    [102]Cahn,J.W.On the morphology stability of growth crystals in Crystal Growth[M].U.K:Pergamon,Oxford 1967:88.
    [103]Duran C,McKinstry S T,Messing G.L,Fabrication and electrical properties of textured Sr_(0.53)Ba_(0.47)Nb_2O_6 ceramics by templated grain growth[J].Journal of the Americam Ceramic Society,2000,83:2203-2213.
    [104]宋煜昕,李承恩,晏海学.熔盐法合成SrBi_2Ta_2O_9粉体.无机材料学报.2002.17(1):145-148.
    [105]吴玲,碱金属铌酸盐无铅压电陶瓷的物性研究[博士论文].济南:山东大学2008.
    [106]陈强,周建青,肖定全,朱建国.ZnO掺杂对铌酸锂钠钾陶瓷性质影响的研究.四川大学学报.2005.42(2).
    [107]Ahn C W,Noh S Y,Nahm S,et al.Low-temperature sintering and piezoelectric properties of ZnO-added 0.41Pb(Ni_(1/3)Nb_(2/3))O_3-0.36PbTiO_3-0.23PbZrO_3 ceramics.Jpn.J.Appl.Phys.,2003,42(9A):5676-5680.
    [108]Masato M,Toshiaki Y,et al,Processing and Piezoelectric Properties of Lead-Free (K,Na)(Nb,Ta)O_3 Ceramic.Am.Ceram.Soc,2005,88(5):1190-1196
    [109]Park S H,Ahn C W,Nahm S,et al.Microstructure and Piezelectric of ZnO-added Na_(0.5)K_(0.5)NbO_3 Ceramic.Jpa.J.Appl.Phys.,2004,43:1072-1074.
    [110]刘培祥.PMN-PNN-PZT体系压电陶瓷的性能和掺杂改性研究[硕士论文].天津:天津大学.2007.
    [111]焦岗成.锯酸钾钠基压电陶瓷制备与掺杂改性研究[硕士论文].西安:西北工业大学.2007.
    [112]NSetter,LECors,et al.N Setter,L E Cross,The role of B-site cation disorder in diffuse phase transition behavior in ferroelectric,J APPIphys,1980,51(8):4356-4360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700