Ti基纳米复合材料高能球磨制备及选区激光熔化成形技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属基纳米复合材料根据增强相的加入方式可分为外加颗粒增强以及原位自生增强两种。实现纳米增强相均匀分布及防止纳米结构粗化是制备性能优异的金属基纳米复合材料的关键。本文利用行星式高能球磨机设备,高能球磨微米级TiC/Ti和SiC/Ti粉末体系,制备了纳米TiC增强非晶Ti基复合粉末及纳米TiC原位增强Ti_5Si_3基复合粉末,并利用选区激光熔化工艺成功制备了TiC/Ti和TiC/Ti_5Si_3纳米复合材料试件。
     TiC/Ti混合粉末随着球磨时间增加至15 h,由于高能球磨诱发Ti发生严重塑性变形,产生大量晶格缺陷,致使Ti发生非晶转变。复合粉末颗粒在球磨至10 h与20 h处经历了两次严重细化阶段。最终得到纳米颗粒TiC增强非晶Ti基复合粉末,纳米级TiC在Ti基体中分布均匀。在原位制备TiC/Ti_5Si_3纳米复合粉末过程中,SiC在25 h高能球磨中逐渐分解,而Ti在相对较短时间内(10 h)完全参加反应。TiC/Ti_5Si_3纳米复合粉末结构依次经历了初级细化-粗化-二次细化的过程。复合粉末颗粒的细化过程以分层碎化为主要机制。高能球磨25h后,纳米颗粒TiC在Ti5Si3基体中分散均匀。
     对TiC/Ti纳米复合粉末进行选区激光熔化实验,成功制备了TiCx增强Ti基纳米复合材料试件。激光线能量密度η为1100 J/m时,成形试件致密达95.6%。增强体TiCx为层片状纳米结构,平均厚度为54 nm,且在Ti基体中分布均匀。TiCx层片状纳米结构是由于自TiC核心开始形成之时,其生长就受到了激光熔池中特有的“微观有效应力”抑制,使其难以长大,加之TiCx特有的晶体结构,TiCx以层片状纳米结构生长。选区激光熔化SiC/Ti复合粉末,原位制备了TiC/Ti_5Si_3复合材料试件。当激光线能量密度η为800 J/m时,SLM试件保持了良好的凝固组织连续性和均匀性,致密度达94.6%。因激光能量密度呈Gauss分布,激光作用的熔池中心及边缘将形成明显的温度梯度与化学浓度梯度,进而产生熔池表面张力梯度,故易出现成分过冷,导致原位生成的TiC呈现枝晶状形貌。讨论了激光快速熔凝过程中TiC/Ti_5Si_3复合材料的形成机理。
Normally, ceramic particulates reinforced metal matrix nanocomposites could either be added to the composite system exteriorly or be formed through an in-situ reaction manner. It was a rather significant task to homogeneously incorporate nanoparticles into a matrix and avoid nanostructure coarsening. In present work, nanocrystalline/amorphous Ti matrix reinforced with the TiC nanoparticles and in-situ synthesis of TiC/Ti_5Si_3 nanocomposites powders were obtained via high energy ball milling, using the micrometric TiC/Ti and SiC/Ti powders as the raw materials.
     Meanwhile, the TiC/Ti and TiC/Ti_5Si_3 nanocomposite parts were performed by selective laser melting. With increasing the applied milling time to 15h, the structures of the Ti constituent experienced a change of amorphization due to the large defect concentration induced by severe plastic deformation during milling. The milled powder particles underwent two stages of significant refinement at 10 h and 20 h during high energy ball milling. Finally, ball milled products were typically nanocomposite powder featured by the nanocrystalline/amorphous Ti matrix reinforced with the TiC nanoparticles, it was observed that the nanometer-sized TiC particulates were dispersed uniformly throughout the Ti matrix. The SiC constituent decomposed gradually within 25 h of milling, while the Ti constituent reacted speedily after a relatively short time of 10 h. The structures of the milled TiC/Ti_5Si_3 nanocomposites powders experienced a successive change: pre-refining–coarsening–re-refining on increasing the applied milling time. The refinement of the milled powder particles was based on a layered fracturing mechanism. After milled 25 h, the in situ nanometer-sized TiC particulates were dispersed uniformly within Ti matrix.
     The TiCx reinforced Ti matrix nanocomposites parts were prepared by selective laser melting. It showed that a high densification level of 95.6% was obtained for SLM-processed parts at a laser linear energy densityηof 1100 J/m. The TiCx reinforcing phase was dispersed uniformly in the Ti matrix, having an ultrafine lamellar nanostructure with an average thickness of 54 nm. The non-equilibrium microscopic pressure tended to prevent TiCx crystals growing up, additionally TiC crystal structure, TiCx reinforcing phase developed with a lamellar nanostructure during laser-induced rapid melting/solidification process. SiC/Ti composite powders after high energy ball milling were undergone selective laser melting, in-situ synthesizing TiC/Ti_5Si_3 composite structure. It showed that a high densification level of 94.6% was obtained for SLM-processed parts at a laser linear energy densityηof 800 J/m. Owing to the Gauss distribution of laser energy density, the local temperature gradient and chemical concentration gradient in the molten pool gave rise to surface tension gradient, producing a significant constitutional supercooling, the in-situ TiC tended to experience a dendrite growth. The formation mechanism of TiC in-situ reinforced Ti_5Si_3 during laser-induced rapid melting/solidification process was discussed.
引文
[1]龚荣洲,沈翔,张磊,等.金属基纳米复合材料的研究现状和展望[J].中国有色金属学报, 2003, 15(3): 1311~1319.
    [2]李顺林,卢翔,朱正吼,等.金属基纳米复合材料的制备技术研究[J].南京航空航天大学学报, 2003, 35(5): 572~579.
    [3]龙小兵,龚晓叁,何建军,等.金属基纳米复合材料研究进展[J].湖南冶金, 2002, 2(5): 8~14.
    [4] Cantor B, Allen C M, Burowski R D, et al. Applications of nanocomposites[J]. Scripta Materialia, 2001, 44 (9): 2055~2059.
    [5] Wang J Q, Tong S C. Microstructural stability of gasatomized Al based nanophase composites [ J]. MaterialsTransactions, 2001, 42(8): 1710~1716.
    [6] Wang L, Jiang W, Chen L, et al. Effect of starting SiC particle size on in situ fabrication of Ti5Si3/TiC composites[J]. Mater. Res, 2004, 19(1): 3004~3008.
    [7] Li J, Jiang D, Tan S. Microstructure and mechanical properties of in situ produced Ti5Si3/TiC nanocomposites[J]. J. Eur. Ceram. Soc, 2002, 22(4): 551~558.
    [8] Luo Y C, Li D Y. New wear resistant material nano TiN/TiC/TiNi composite[J]. Journal of Materials Science, 2001, 36(19): 4695~4702.
    [9] Lu L, Lai M O. Formation of new materials in the solid state by mechanical alloying[J]. Materials & Design, 1995, 16(1): 33~39.
    [10]董树荣,涂江平,张晓彬,等.纳米碳管增强铜基复合材料的力学性能和物理性能[J].材料研究学报, 2000, 14(5): 132~136.
    [11]董树荣,张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究[J].摩擦研究学报, 1999, 19 (1): 16~20.
    [12]王浪云,涂江平,杨友志,等.多壁纳米碳管/Cu基复合材料的摩擦磨损特性[J].中国有色金属学报, 2001, 11( 3): 367~371.
    [13] Davis R M, Mcdermott B. Mechanical alloying of brittle materials. Metallurgical Transactions A, 1988, 19(12): 2867~2874.
    [14]欧阳雪琼,龙卧云,唐武彪,等.机械合金化制备Zr50Al15Ni10Cu25非晶合金粉末的非晶化机制[J].粉末冶金材料科学与工程, 2010, 15(3): 225~228.
    [15] Lee D, Cheng J. Structural comparison of amorphous Cu50Zr50 alloys prepared by protonirradiation, melt spinning, and mechanical alloying. Journal of Applied Physics, 1988, 64(9): 4772~4774.
    [16] Suryanarayana C. Mechanical alloying and milling. Progress in Materials Science, 2001, 46(2): 1~184.
    [17] Koch C C. Preparation of‘amorphous’Ni60Nb40 by mechanical alloying. Applied Physics Letters, 1983, 43(11): 1017~1019.
    [18]杨君友,张同俊,李星国,等.材料制备新技术[J].材料导报, 1994, 10(2): 11~14.
    [19] Schaffer G B, Mccormick P G. Reduction of metal oxides by mechanical alloying[J]. Applied Physics Letters, 1989, 55(1): 45~46.
    [20] Eckert J, Schultz L, Urban K, et al. Formation of quasicrystals by mechanical alloying[J]. Applied Physics Letters, 1989, 55(2): 117~119.
    [21] Calka A. Formation of titanium and zirconium nitrides by mechanical alloying[J]. Applied Physics Letters, 1991, 59(13): 1568~1569.
    [22]李伟,宋卫东,宁建国,等.应变速率对TP-650钛基复合材料拉伸力学行为的影响[J].中国有色金属学报, 2010, 20(6): 1131~1136.
    [23]徐安莲,刘守平,周上祺,等.机械合金化的研究进展.重庆大学学报, 2005, 28(11): 84~88.
    [24] Gilman P S, Benjiman J S. Mechanical Alloying. Annual Review of Materials Science, 1983, 13: 279~300.
    [25] Kruth J P, Leu M C, Nakagawa T, et al. Progress in Additive Manufacturing and Rapid Prototyping[J]. Manufacturing Technolog, 1998, 47(2): 525~540.
    [26] Yan Y N, Li S G, Zhang R J, et al. Rapid Prototyping and Manufacturing Technology: Principle, Representative Technics, Applications, and Development Trends[J]. Tsinghua Science & Technology, 2009, 14(1): 1~12.
    [27]吴伟辉,杨永强,王迪,等.选区激光熔化成型过程的球化现象[J].华南理工大学学报, 2010, 5(5): 110~116.
    [28]师文庆,杨永强,黄延禄,等.选区激光熔化快速成型过程温度场数值模拟[J].应用激光, 2008, 32(4): 410~412.
    [29] Thijs L, Verhaeghe F, Craeghs T, et al. A study of the micro structural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Materialia, 2010, 58(9): 3303~3312.
    [30] Elsen M, Bender F, Kruth J P, et al. Application of dimensional analysis to selective laser melting[J]. Rapid Prototyping Journal, 2008, 14 (1): 15~22.
    [31]吴峥强,来克娴.金属零件选区激光熔化快速成型技术的现状及发展[J].红外与激光工程,2006, 6(3): 399~404.
    [32] Vandenbroucke B, Kruth J P. Selective laser melting of biocompatible metals for rapid manufacturing of medical parts[J]. Rapid Prototyping Jorunal, 2007, 13(4): 196~203.
    [33] Simchi A, Godlinski D. Effect of SiC particles on the laser sintering of Al–7Si–0.3Mg alloy[J]. Scripta Materialia, 2008, 59(2): 199~202.
    [34] Liu D, Zhang S Q, Wang H M, et al. Microstructure and tensile properties of laser melting deposited TiC/TA15 matrix composites[J]. Journal of Alloys and Compounds, 2009, 485(2): 156~162.
    [35] Zhang Y Z, Wei Z M, Shi L K, et al. Characterization of laser powder deposited Ti-TiC composite and functional gradient materials[J]. Journal of Materials Processing Technology, 2008, 206(1): 438~444.
    [36]刘建涛,林鑫,黄卫东,等. Ti-Ti2AlNb功能梯度材料的激光立体成形研究[J].金属学报, 2008, 44(8): 1006~1012.
    [37]吴伟辉,杨永强.选区激光熔化快速成形系统的关键技术[J].机械工程学报, 2007, 43(8): 175~180.
    [38]姚化山,史玉升,章文献,等.金属粉末选区激光熔化成形过程温度场模拟[J].应用激光, 2007, 27(6): 456~460.
    [39] Chatterjee A N, Taber H, Young F E, et al. A rapid method for synchronization of staphylococcus aureus and bacillus subtilis[J]. Biochemical and Biophysical Research Communications, 1971, 44(5): 1125~1130.
    [40] Agarwala M, Rombouts M, Kruth J P, et al. Fundamentals of selective laser melting of alloyed steel powders[J]. Manufacturing Technology, 2006, 55(1): 187~192.
    [41] Kruth J P, Mercelis P, Vaerenbergh J, et al. Binding mechanisms in selective laser sintering and selective laser melting[J]. 2005, 11(1): 26~36.
    [42] Morgan R H, Papworth A J, Sutcliffe C, et al. High density net shape components by direct laser re-melting of single-phase powders[J]. Jorunal of Materails Science, 2002, 37(15): 3093~3100.
    [43] Xiong Y, Smugeresky J E, Ajdelsztajn L, et al. Fabrication of WC-Co cermets by laser engineered net shaping[J]. Materials Science and Engineering: A, 2008, 493(1): 261~266.
    [44]顾冬冬.激光烧结铜基合金的关键工艺及基础研究,博士学位论文,南京:南京航空航天大学, 2007.
    [45] Gu D D, Meiners W. Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by Selective Laser Melting[J]. Materials Scienceand Engineering: A, 2010, 527(29): 7585~7592.
    [46] Chalker P R, Clare A, Davies S, et al. Selective laser melting of high aspect ratio 3D nickel-titanium structures for MEMS applications[J]. Surface Engineering for Manufacturing Applications, 2006, 890(10): 93~98.
    [47]张剑峰. Ni基金属粉末激光直接烧结成形及关键技术研究[D].博士学位论文,南京:南京航空航天大学, 2002.
    [48] Dongdong Gu, Wilhelm Meiners, Chuang Li, et al. In situ synthesized TiC/Ti5Si3 nanocomposites by high-energy mechanical alloying: Microstructural development and its mechanism[J]. Materials Science and Engineering: A, 2010, 527(23): 6340~6345.
    [49]于翔天,王华明.激光熔化沉积(TiB+TiC)/TA15原位钛基复合材料的显微组织及力学性能[J].复合材料学报, 2008, 25(4): 113~118.
    [50]孔令超,宋卫东,宁建国,等. TiC颗粒增强钛基复合材料的静动态力学性能[J].中国有色金属学报, 2008, 187(10): 1756~1761.
    [51] Schwarz R B, Koch C C. Use of thermodynamic models in the prediction of the glass-forming range of binary alloys[J]. Applied Physics Letters, 1986, 49 (2): 146~148.
    [52] I Manna P P, Chattopadhyay F, Banhart H J, et al. Development of amorphous and nanocrystalline Al65Cu35-xZrx alloys by mechanical alloying[J]. Materials Science and Engineering: A, 2004, 379(1): 360~365.
    [53] Yeh C L, Teng G S. Use of Si3N4 as a reactant in preparation of TiN-Ti5Si3 composites by solid-state SHS reactions. Journal of Alloys and Compounds, 2007, 429(4): 126~132.
    [54] Li J L, Jiang D L, Tan S H, et al. Microstructure and mechanical properties of in situ produced Ti5Si3/TiC nanocomposites[J]. Journal of the European Ceramic Society, 2002, 22(4): 551~ 558.
    [55] Munir Z R. Synthesis of high temperature materials by self propagating conbustion methods[J]. Journal of American Ceramic Society, 1988, 67(11): 342~349.
    [56]罗吉祥,唐春,郭然,等.纤维增强复合材料界面脱层和基体裂纹的模拟分析[J].复合材料学报, 2009, 26(6): 201~209.
    [57]付立定,史玉升,章文献,等. 316L不锈钢粉末选择性激光熔化快速成形的工艺研究[J].应用激光, 2008, 28(2): 108~111.
    [58]顾冬冬,沈以赴,杨家林,等.多组份铜基金属粉末选区激光烧结致密化机理[J].中国有色金属学报, 2005, 15(4): 596~600.
    [59]王迪,杨永强,吴伟辉,等.光纤激光选区熔化316L不锈钢工艺优化[J].中国激光, 2009,36(12): 3233~3239.
    [60] Wang Z Y, Shen Y F, Gu D D, et al. Development of porous 316L stainless steel with novel structures by selective laser melting[J]. Powder Metallurgy, 2009, 15(3): 112~116.
    [61] Anesyiev L A, Froyen L. Model of primary rearrangement processes at liquid phase sintering and selective laser sintering due to biparticle interactions[J]. Journal of Applied Physiology, 1999, 86(7): 4008~4017.
    [62] Hugosson H W, Korzhavyi P, Janson U, et al. Phase stability diagrams of transition metal carbides, a theoretical study[J]. Chemical Physics Letters, 2001, 333(6): 444~450.
    [63] Liu G H, Chen K X, Zhou H P, et al. Layered growth of Tl2AlC and Ti3AlC2 in combustion synthesis[J]. Materials Letters, 2007, 61(3): 779~784.
    [64]金云学,张虎,曾松岩,等.自生TiCp/Ti复合材料中TiC的生长习性[J].金属学报, 2002, 38(11): 1223~1227.
    [65] Semark V V, Knorovsky G A, Maccallum D O, et al. Effect of surface tension on melt pool dynamics during laser pulse interaction[J]. Journal of Physics D Applied Physics, 2006, 39(3): 590~595.
    [66] Li S B, Xiang W H, Zhai H X, et al. Formation of TiC hexagonal platelets and their growth mechanism[J]. Powder Technology, 2008, 185(1): 49~53.
    [67] Simchi A, Pohl H. Effects of laser sintering processing parameters on the microstucture and densification of iron powder[J]. Materials Science and Engineering A, 2003, 359(1): 119~128.
    [68] Wang L J, Jiang W, Qin C, et al. Effect of starting SiC particle size on in situ fabrication of Ti5Si3/TiC composites[J]. Materials Science and Engineering: A, 2006, 425(1): 219~224.
    [69] Lin Z J, Zhuo M J, Zhou Y C, et al. Microstructural relationships between compounds in the Ti-Si-C system[J]. Scripta Materialia, 2006, 55(5): 445~448.
    [70] Zhu H H, Lu L, Fuh J H, et al. Influence of binder’s liquid volume fraction on direct laser sintering of metallic powder[J]. Materials Science and Engineering A, 2004, 371(1): 170~177.
    [71] Gusarov A V, Yadroitsev I, Bertrand P, et al. Heat transfer modelling and stability analysis of selective laser melting[J]. Applied Surface Science, 2007, 254(4): 975~979.
    [72]吕维洁,张小农,张荻,等.原位合成TiC/Ti基复合材料增强体的生长机制[J].金属学报, 1999, 35(5): 536~601.
    [73] Tong X C, Fang H S. Ti5C4 phase formation in rapidly solidified Al96.52Fe2.03Si0.64Ti0.46C0.35 alloy[J]. Journal of Alloys and Compounds, 1996, 239(2): 203~208.
    [74] Pan Q Y, Lin X, Huang W D, et al. Microstructure evolution of Cu–Mn alloy under laser rapidsolidification conditions[J]. Materials Research Bulletin, 1998, 33(11): 1621~1633.
    [75] Zhao X M, Chen J, Lin X, et al. Study on microstructure and mechanical properties of laser rapid forming[J]. Materials Science and Engineering A, 2004, 478(2): 119~124.
    [76] Liu Y C, Sommer F, Mittemeijer E J, et al. Kinetics of the abnormal austenite–ferrite transformation behaviour in substitutional Fe-based alloys[J]. Acta Materialia, 2004, 52(9): 2549~2560.
    [77] Zhao X M, Lin X, Chen J, et al. The effect of hot isostatic pressing on crack healing, microstructure, mechanical properties of Rene88DT superalloy prepared by laser solid forming[J]. Materials Science and Engineering A, 2009, 504(2): 129~134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700