用户名: 密码: 验证码:
TiC/Ti基复合材料摩擦磨损性能与氧化行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛基复合材料以其高的比强度、比刚度、优异的耐磨性和抗高温特性而引起广泛的注意,近年来得到很快的发展。原位生成颗粒增强钛基复合材料具有各向同性,且易于成型,成本低廉,应用比较广泛。随着钛基复合材料的发展,根据实际应用中的各种需求,研究其高温氧化行为和耐磨性能越来越重要。本研究从颗粒增强相添加物的选择和含量、基体中金属元素和合金元素的选择这两方面对复合材料性能展开研究,采用粉末冶金法制备了原位生成TiC/Ti基复合材料,用UTM-3型摩擦磨损试验机和高温扩散炉对其在不同条件下的摩擦行为和在不同温度下的高温氧化行为进行了研究。利用X射线衍射(XRD)、扫描电镜(SEM)、能谱(EDX)等分析手段对材料的相组成和显微组织进行了分析。得到以下结论:
     1.金属碳化物粉、6A1-4V中间合金粉的添加量、Al/Sn/Zr金属粉末的添加以及金属碳化物的种类对TiC/Ti基复合材料的摩擦行为有显著的影响。Mo2C的添加,可以减少α-Ti的磨损量,提高其耐磨性。VC添加量较小时,可减少α-Ti的磨损量,当添加量达到12%时,磨损量反而升高,耐磨性变差。添加Mo2C的复合材料磨损量明显低于添加VC的复合材料。由于Sn, Al, Zr等金属与铁的粘着能大,使得粘着磨损现象加剧,故6A1-4V合金粉的添加量增加将导致复合材料磨损量增加,而添加铝、锡、锆粉的TMCs磨损量最大。
     2.TMCs的主要磨损机制为粘着磨损、磨粒磨损和氧化磨损,其耐磨性主要由基体的性质决定。与V相比,Mo对基体有更好的固溶强化作用,利于提高耐磨性。添加VC的钛基复合材料中,基体的韧性高,生成的TiC颗粒细小且弥散的分布,使得磨粒磨损加剧,甚至导致三体磨损产生。而在添加Mo2C的钛基复合材料中,生成的TiC颗粒相对较大且有偏聚现象,耐磨性较好。
     3相同条件下,添加Mo2C的钛基复合材料的抗氧化性明显优于添加VC的钛基复合材料。Ti+x%Mo2C钛基复合材料具有抛物线型氧化规律,不同添加量对氧化动力学曲线没有明显的影响。Ti+x%VC钛基复合材料具有近直线型氧化规律,随着添加量的增加和温度的升高,氧化程度加剧并最终出现氧化失效。Mo2C和6A1-4V中间合金粉同时添加的钛基复合材料具有抛物线-直线混合型氧化规律。而添加A1,Sn, Zr金属粉末的钛基复合材料具有近抛物线型氧化规律。
     4.添加物的种类对基体β-Ti相和TiC颗粒在氧化过程中的演化有重要影响。富Mo的β-Ti相在氧的作用下转变成α-Ti相,并且Mo也固溶于相应α-Ti相中,抑制了氧的扩散,提高了增强相颗粒的稳定性,有利于提高材料的抗氧化性。富V的β-Ti相氧化产物V2O5具有很强的挥发性,使得氧化层产生大量微裂纹,加速氧的扩散,为TiC颗粒的氧化提供有利条件。而且,V2O5和CO2可通过裂纹排出,使得氧化反应更容易进行,进一步降低了材料的抗氧化性。尽管存在能提高抗氧化性的Al和Mo2C,但V的添加易导致氧化层出现孔洞等缺陷,故添加6A1-4V中间合金粉的钛基复合材料其抗氧化性随着添加量的增加反而下降。锡、锆与铝配合起来使用更加有利于合金的热强性,此种金属粉末的添加可有效提高材料的抗氧化性。
Titanium matrix composites have great specific strength, specific stiffness, wear resistance and high temperature resistance, which have been widely noticed and developed rapidly for recent years. In-situ particle reinforced titanium matrix composites are isotropous and easy to shape up, what is more, the cost is low. Therefore, the preparation method of in-situ synthesized is widly applied. With the development of the titanium matrix composites, studying the high temperature behavior and wear resistance of the TMCs is more and more important in the practical applications so as to satisfy different needs. This paper studies the oxidation behaviors of various TMCs at different temperatures by using high temperature diffusion furnace and wear behaviors of the TMCs on different conditions by using UTM-3 friction test machine, so as to make clear that how various additions and the addition amounts affect the properties of TiC/Ti matrix composites. The samples are made by powder metallurgy method (PMM). The phase compositions and microstructures are detected and analyzed by X-ray diffraction (XRD), energy spectrum and scanning electron microscope (EDX and SEM), respectively. The conclusions include:
     1. The wear behavior of TiC/Ti matrix composites is influenced by many factors, such as the addition of metallic carbide, the variety of metallic carbide, the addition amout of 6A1-4V powder and other metal powders (Al, Sn, Zr). The results show that Mo2C can reduce the mass loss of a-Ti and improve the wear resistance. When the VC addition amount is less, the mass loss decreases, however, when the addition amount is up to 12%, the mass loss increases. The wear resistance of the TMCs with Mo2C addition is better than that with VC addition. The adhension energy between Fe and other metals (Sn, Al, Zr) is great, which will aggravate the adhesive wear. Therefore, with the increasing addition amount of 6A1-4V, the mass loss increases, and the mass loss of the material with Sn, Al, Zr addition is the largest.
     2. The wear mechanisms of the TMCs are adhensive wear, abrasive wear and oxidation wear. The wear resistance is mainly up to the matrix. Comparing with V, Mo has better solid solution strengthening effect in the matrix, which can improve the wear resistance. For the sample with VC addition, the matrix toughness is good, and the well-dispersed TiC particle has small size, which can make the abrasive wear aggravate and even lead to three body wear. TiC particles have larger size and uneven dispersion in the TMCs with Mo2C addition, so the wear resistance is better.
     3. The TMCs with Mo2C addition have better oxidation resistance than that with VC addition. The oxidation kinetics curve of Ti+x%Mo2C is parabolic, which is not related to the addition amount. The oxidation kinetics curve of Ti+x%VC is linear. With the increasing VC addition amount and temperature, the oxidation resistance decreases. The TMCs with Mo2C and 6Al-4V addition have a complex rule, which is compounded by parabolic rule and linear rule. The oxidation kinetics curve of the TMCs with Al, Sn and Zr addition is nearly parabolic.
     4. The variety of the addion in the matrix has great influence on the oxidation behavior of theβ-Ti phase and TiC particle. Theβ-Ti, where Mo is abundant, transforms toα-Ti under the effect of the oxygen. Mo has solid solution strengthening effect on theα-Ti, which restrains the diffusion of the oxygen and increase the steability of the TiC. Therefore, the addition of Mo is beneficial for the oxidation resistance. V2O5, the oxidation product, is volatile, which will increase the microcracks in the oxidation layer and accelerate the diffusion of the oxygen. V2O5 and CO2 can be expelled through the flaws, and the oxidation reaction is easier to proceed. Therefore, theβ-Ti, where V is abundant, has bad oxidation resistance. Although there are Al and Mo2C, with the increasing addition amount, the oxidation resistance of the TMCs with 6A1-4V addition decreases for the increasing amount ofⅤ. The compound addition of Sn, Zr and Al is beneficial to the heat resistance, so the TMCs with these metal powders have good oxidation resistance.
引文
[1]Yu Y. Yen T. et al. Titanium source in the world progresses of nonferrous metal in china[J].1984, (2):2
    [2]Carter R.V. The science, technology and application of titanium[M]. New York:Pergamon Press,1970:1143-1147
    [3]萧今声等.稀有金属材料加工手册[M].北京:冶金工业出版社,1984:2-15
    [4]高敬,张震.高温钛合金的应用现状[J].世界有色金属,1998,(4):40-43
    [5]Hunt M. MMCs for exotic needs[J], Composite Materials Science,1989, 104(4):53
    [6]Fller K. Fores F.H. JOM,2001,53(2):27
    [7]吕维洁,张荻,张小农等.原位合成TiB/Ti复合材料的微观结构及力学性能[J].上海交通大学学报,2000,34(12):1606-160
    [8]罗国珍.钛基复合材料的研究与发展[J].稀有金属材料与工程,1997,26(2):1-6
    [9]赫尔D.复合材料导论[M]北北京:国防工业出版社,1989:7
    [10]张廷杰等.TiC颗粒强化钛基复合材料的高温拉伸特性[J].稀有金属材料与工程,2001,30(2):85~88
    [11]毛小南,张廷杰,张小明等.TiC颗粒增强钛基复合材料的形变[J].稀有金属材料与工程,2001,30(4):245-248
    [12]毛小南,颗粒增强钛基复合材料在汽车工业上的应用[J].钛工业进展,2000,2:5-12
    [13]Zhang S., Wu W.T., Wang M.C., Man H.C., In-situ synthesis and wear performance of TiC particle reinforced composite coating on alloy Ti6Al4V[J], Surface and Coating Technology,2001(138):95-100
    [14]有色金属及其热处理编写组.有色金属及其热处理[M].北京:国防工业出版社,1980:13-15
    [15]Cristoph Leyens. Manfred Peters.钛与钛合金[M].北京:化学工业出版社,2005:33-47
    [16]Eophcba E.A.钛合金金相学[M].北京:国防工业出版社,1986:272-277
    [17]Ranganath S. A review on Particulate-reinforced titanium matrix composite[J]. J Mater Sci,1997,32(3):1-16
    [18]平修二,金属材料的高温强度理论·设计[M].北京:科学出版社,1983:58
    [19]罗铠,梁振峰.颗粒增强钛基复合材料的研究进展[J].金属学报,2002,38(z1):500-504
    [20]吴人洁.金属及复合材料的现状与展望[J].金属学报,1997,33(10):79-84
    [21]Zhang Song, Zhang Chun-hua, Kang Yu-ping. Mechanism of in-situ formation of TiC particle reinforced Ti-based composite coating induced by laser melting[J], The Chinese Journal of Nonferrous Metals,2001,6(11):
    [22]TJONG S. C. MA Z. Y. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Mater Sci Eng R,2000,29(3/4):49-113.
    [23]Tjong S.C., Na Z.Y., Microstructural and Mechanical Characteristics of In Situ Metal Matrix Composites [J], Materials Science and Engineering R, 2000(29):49-113
    [24]吴人洁.金属件复合材料的现状与应用前景[J].航空制造技术,2001,(3):19-21
    [25]Wang Xinhong, Zou Zengda, Song Sili, etc. Microstructure and wear properties of in situ TiC/FeCrBSi composite coating prepared by gas tungsten arc welding [J], Wear,2006 (260):705-710
    [26]Krihsnamurthy S. Smith P.R. Miracle D.B. Modification of transverse creep behavior of an othorhombic titanium aluminide based Ti-22Al-23Nb/SiC of composite using heat treatment[J]. Materials Science & Engineering A,1998, 243(1-2):285—289
    [27]Stanley Abkwottz, et al. Advanced Powder Metallurgy Titanium Alloy Matrix Composites Reinforced with Ceramic and Intermetallic particles.Titanium'92 Science and Technology 1992;2511
    [28]耿林,倪丁瑞,郑镇洙.原位自生非连续增强钛基复合材料的研究现状与展望[J].复合材料学报,2006,23(1):1-11
    [29]温诗铸.材料磨损研究的进展与思考[J].摩擦学学报,2008,28(1):1-5
    [30]Bowden F.P. Tabor D. The friction and lubrication of Solid[M].Oxford Clarendon Press,1964
    [31]Bowden F.P. Tabor D. Friction, lubrication and wear:a survey of work during the last decade [J].British Journal of Applied Physics,1966,17(12):1521
    [32]Qi P.-Y. Li X.Y. Dong H. Characterisation of the palladium-modified thermal oxidation-treated titanium materials[J]. Science and Engineering,2002,A326(2): 330-342
    [33]Miyoshi K. Sanders J.H. Hager Jr C.H. et al. Wear behavior of low-cost, lightweight TiC/Ti-6Al-4V composite under fretting:Effectiveness of solid-film lubricant counterparts [J], Tribology International,2008,41(1):24-33
    [34]D.H. Buckley., K.Miyoshi., Wear,2001(250):642
    [35]Straffelini G. Molinari A. Dry sloding wear of Ti6A14V alloy as influenced by the counterface and sliding conditions[J], wear,1999,236(1-2):328-338
    [36]Ohidul Alam Md, Haseeb A.S.M.A, Response of Ti6A14V and Ti-24Al-11Nb alloys to dry sliding wear against hardened steel [J], Tribology International,2002, 35 (6):357-362
    [37]Molinari A. Straffelini G. Tesi B. et al. Dry sliding wear mechanism of the Ti6A14V alloy[J]. Wear,1997,208(1-2):105—112.
    [38]Hutching I.M. Tribology:Friction and wear of Engineering Materials[M], London:Edward Arnold,1992
    [39]Suresh S. Mortensen A. Needleman A. Fundamentals of Metal-Matrix Composites[M]. Boston:Butterworth-Heinemann Press,1993:300.
    [40]ZHANG Song, WU Wei-tao, WANG Mao-cai, et al. Laser induced TiC particle reinforced composite layer on Ti6A14V and their microstructural characteristics [J]. Trans Nonferrous Met Soc China,2000,10(1):6-9.
    [41]Eylon D. Fujishiro S. Postans P. J. et al., High-temperature titanium alloys-A review[J]. Journal Metals,1984,36(11):55-60.
    [42]Abkowitz S. Weihrauch P. F., Abkowitz S. M. et al., Commercial application of low-cost titanium compo sites [J]. J Met,1995,47(8):40-41.
    [43]Gibbons J.H. Advanced materials by design[M]. Washington DC:US Government Printing Office,1988:104-108
    [44]Nichols R.W. Bowman J. M. Panzarino J. et al. Materials science and engineering: forging stronger links to users [M]. Washington:National Materials Advisory Board Publication,1999:16
    [45]Miyoshi K. Street Jr. K.W. Vander Wal R. L. et al. Solid lubrication by multi-walled carbon nanotubes in air and in vacuum[J]. Tribology Letters,2005, 19(3):191-201
    [46]秦林,唐宾,赵晋香等.钛合金Ti6A14V表面渗钼层的摩擦磨损性能[J].中国有色金属学报,2003,13(3):570-573
    [47]秦林,唐宾,刘道新等.钛合金Ti6A14V表面Mo-N改性层的摩擦性能研究[J].稀有金属工程与材料,2005,34(9):1465-1467
    [48]张松,张春华,吴维弢等Ti6Al4V表面激光融覆原位自生TiC颗粒增强钛基复合材料及摩擦磨损性能[J].金属学报,2001,37(3):315-320
    [49]Odabas D. Su S. A comparison of the reciprocating and continuous two-body abrasive wear behavior of solution-treated and age-hardened 2014 Al alloy[J], wear,1997,208(1-2):25-35.
    [50]Kok M. Abrasive wear of Al2O3 particle reinforced 2024 aluminium alloy composites fabricated by vortex method[J]. Composites,2006,(37 A):457-464
    [51]李铁藩.金属高温氧化和热腐蚀[M].北京:学工业出版社,2003:141
    [52]Gryorgy E. Del Pino A.P. Sauthier G. et al. J. Phys. D:Appl. Phys. 2007,40:5246-5251.
    [53]陶斌武,刘建华,李松梅.形状记忆合金Ti44Ni47Nb9的抗高温氧化性能[J].金属学报,2005,41(6):633-637
    [54]敬呈,王芬,朱建锋Al2O3/Ti-Al复合材料的抗高温氧化性研究[J].陕西科技大学学报,2005,23(3):20-23.
    [55]Leyens C. Peters M. Titanium and Titanium Alloys Fundamentals and Applications[M],Weinheim:Wiley-VCH,2003
    [56]高桥涉.Particle reinforced titanium matrix composite(in Japanese)[J].金属, 1997,67(1):64-70
    [57]Collings E.W. The physical metallurgy of titanium alloys, ASW, Metal Park, H 44073,1984
    [58]曲选辉,肖平安,祝宝军等.高温钛合金和颗粒增强钛基复合材料的研究和发展[J].稀有金属材料与工程,2001,30(3):161-165.
    [59]JIANG J. Q. LIM T. S. KIM Y. J. et al. In situ formation of TiC-(Ti-6Al-4V) composites[J]. Materials Science and Technology,1996, (12):362-365.
    [60]杨延清,朱艳,陈彦等.SiC纤维增强Ti基复合材料的制备及性能[J].稀有金属材料与工程,2002,31(3):201-204
    [61]杨志峰,吕维洁,覃业霞等.石墨添加对原位合成钛基复合材料高温力学性能的影响[J].复合材料学报,2004,21(5):1-6
    [62]吕维洁,张小农,吴人洁等.颗粒增强钛基复合材料研究进展[J].材料导报,1999,13(6):15-18
    [63]MAJID A. P. ZWEBEN C. Comprehensive Composite Materials [M]. Amsterdam:Elsevier,2000:1
    [64]MO W. DENG G. Z. LUO F. C. Titanium Metallurgy[M]. Beijing:Metallurgy Industry Press,1998:10-110.
    [65]李小璀,张小农,李超.原位自生成TiC/Ti基复合材料的高温氧化[J].稀有金属材料与工程,2004,3(33):258-261.
    [66]Liu Yanbin, Liu yong, Tang Huiping, et al. Reactive sintering of Ti+Mo2C and VC powder compacts [J]. Journal of Materials Science,2011,46(4):902-909
    [67]关祥楠.TiC/β-Ti复合材料激光改性层的制备及性能研究[博士论文].沈阳:沈阳工业大学,2009:25.
    [68]Sture Hogmark, Per Hedenqvist.Wear,1994,10:147
    [69]罗勇.钛金属陶瓷制备及其生物摩擦学性能研究[博士论文],徐州:中国矿业大学,2008:82-83
    [70]Archard J. F. Wear theory and mechanisms, wear control handbook[M]. New York:American Society of Mechanical Engineers,1980:35-80.
    [71]Kwai S. Chan a, Marie Koike b, Toru Okabe, Modeling wear of cast Ti alloys [J]. Acta Biomaterialia,2007,(3):383-389
    [72]李建明.磨损金属学[M].北京:冶金工业出版社,1990:112
    [73]Kung C.Y. Rayment J.T. Metal. Trans.1982 (13 A):328
    [74]Dumbleton J.H. Douthtt J.A. wear,1997,42:305
    [75]Gerkema J. Miedma A.R. Surf. Sci.1983,124:351
    [76]朱安莉,覃业霞,吕维洁.TiC、TiB增强钛基复合材料的高温氧化性能及微观结构[J].机械工程与自动化,2004,10(5):39-42
    [77]张丽华,金云学,郭宇航.颗粒增强钛基复合材料高温氧化性能的研究[J].铸造,2006,12(55):1251-1254
    [78]QIN Ye-xia, LU Wei-jie, ZHANG Di, et al. Oxidation of in situ synthesized TiC particle-reinforced titanium matrix composites [J]. Materials Science and Engineering,2005,404(1-2):42-48.
    [79]Mechanical Research Institute of Chemical Industry Ministry, Corrosion & Protection Manual[M]. Beijing:Chemical Industry Press,1989:189
    [80]叶大伦,实用无机物热力学数据手册[M].北京:冶金工业出版社,2001:234-325

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700