低合金高强度船体钢焊接热影响区韧化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为改善低合金高强度船体钢焊接性和提高船体钢大热输入焊接的适应性,本文研究了超低碳合金设计以及钢中第二相粒子(包括碳氮化物、氧化物)对低合金高强度船体钢焊接热影响区(Heat Affected Zone,以下简称HAZ)组织和性能的影响,探讨了HAZ的韧化机理。结果表明,采用超低碳成分设计,大幅度地降低钢中的碳含量及碳当量,利用细晶强化或Cu的时效沉淀强化作用可以弥补降碳带来的强度损失。采用上述技术思路设计的超低碳440MPa和550MPa试验钢较传统船体钢焊接性显著提高;不同类型的第二相粒子促进铁素体形核的能力各不相同,在本论文研究的各种第二相粒子(Ti、Zr、Ce、Mg的氧化物、Ti的氮化物)中,以Ti2O3在高温条件下最为稳定,焊接过程中促进铁素体形核的能力最强;研究发现了钢中Ti氧化物的获得方法,利用Ti脱氧取代传统Al脱氧的方法可以在钢中得到大量含Ti氧化物,钢中的含Ti氧化物促进了晶内针状铁素体的形核,抑制了晶界铁素体和侧板条铁素体的向晶内的生长,间接的细化了粗大的奥氏体晶粒尺寸;在Ti处理钢中,同时添加微量Mg(约0.0010%)或Zr(约0.0043%)可进一步细化第二相粒子的尺寸,增大第二相粒子的表面积,从而进一步增强第二相粒子促进晶内针状铁素体形核的能力,大幅度的提高了HAZ的低温韧性。
     在传统440MPa和550MPa级较高碳含量的船体钢基础上,分别开展了超低碳合金成分设计。为保证设计强度,440MPa级船体钢主要采用Nb微合金化+TMCP工艺弥补降碳带来的强度损失,550MPa级船体钢则主要利用Cu在时效过程中的弥散沉淀强化提高钢的强度。结果表明:采用超低碳合金设计后,两种强度级别的试验钢母材均获得了良好的强韧性配合,HAZ低温韧性和抗冷裂纹敏感性显著提高,实现了试验钢0℃不预热焊接的目标。研究发现,采用超低碳+细晶强化或超低碳+时效沉淀强化两种技术思路,研制高强度、高韧性和良好焊接性的新型船体钢是可行的。
     为选择最佳的第二相粒子,首次利用加压Bonding试验,系统的研究了Ti_2O_3、TiO_2、ZrO_2、TiN、CeO_2、MgO以及Ti_2O_3+MgO混合粉末对铁素体相变的促进作用。研究结果首次发现,上述各种第二相粒子促进铁素体相变的机理是不同的。其大致可分为三类:第一类为界面上和钢发生了化学反应,造成界面附近形成贫Mn区、贫Si区,从而促进了铁素体相变。这类粉末包括TiO_2、ZrO_2、CeO_2、MgO。第二类为在界面上和钢不发生反应,也能促进铁素体相变,Ti_2O_3粉末属于此类。这类夹杂主要通过吸收界面附近区域的Mn形成贫Mn区(MDZ),促进了铁素体相变。第三类为在界面上和钢不发生反应,也不能促进铁素体相变,TiN属于此类。奥氏体化温度对Ti_2O_3诱导铁素体形核存在显著影响,研究首次发现,Ti_2O_3诱导晶内铁素体相变取决于Mn在奥氏体中的扩散速度。奥氏体化温度较高(>950℃)时,Mn在奥氏体中扩散较快,易形成贫Mn区,显著促进铁素体相变。反之,Ti_2O_3促进铁素体相变能力明显减弱。在本文研究的第二相粒子粉末中,Ti_2O_3高温稳定性最好,促进铁素体形核的能力最强。
     研究了Ti及Ti复合氧化物对HAZ组织性能的影响,同时对Al、Ti处理钢焊接粗晶区连续冷却相变规律进行了深入探讨。结果表明,Ti及Ti的复合氧化物具有促进晶内针状铁素体形核的能力,大热输入焊接时HAZ的低温韧性显著提高。Ti处理钢焊接粗晶区连续冷却过程中,晶界铁素体、侧板条铁素体以及晶内铁素体的相变开始温度基本相同,但各自长大的动力学条件不同。晶界铁素体在725~650℃温度区间快速长大,而侧板条铁素体和晶内铁素体则在650~500℃温度区间快速长大。针状铁素体在晶内第二相夹杂物上形核长大后抑制了侧板条铁素体沿着奥氏体晶界向晶内的生长。试验结果还表明,在钢中获得大量的、细小的、弥散分布的含Ti氧化物是提高船体钢大热输入焊接性的技术关键。
     在Ti氧化物显著促进晶内铁素体相变、大幅度提高HAZ韧性的基础上,为进一步细化含Ti氧化物夹杂,提高钢HAZ韧性,首次系统的研究了微量Mg、Zr对Ti处理钢中第二相粒子尺寸及其大热输入焊接时HAZ组织和韧性的影响。研究首次发现,Mg含量对钢中第二相粒子的类型、尺寸存在显著影响。当钢中添加12ppmMg时,钢中形成等摩尔数的Ti_2O_3和Mg_2TiO_4氧化物夹杂,此时钢中含Ti氧化物夹杂的粒度最小,数量最多,大热输入焊接时HAZ的低温韧性最高。微量Mg加入到钢中能降低含Ti氧化物聚集长大的能力,有效的细化了第二相氧化物夹杂的尺寸,提高了氧化物夹杂促进针状铁素体形核的能力。Zr含量对钢中第二相粒子的类型和尺寸同样存在显著影响。当钢中添加43ppmZr时,钢中形成等摩尔数的Ti_2O_3和ZrO_2,此时含Ti第二相粒子的粒度最为细小,数量最多,大热输入焊接时HAZ的低温韧性最高。这主要是由于Zr氧化物夹杂比重较大,不容易在钢液中上浮,细小的ZrO_2夹杂能够为随后形成的含Ti氧化物夹杂提供大量形核核心,避免含Ti氧化物的聚集长大,增加了晶内针状铁素体的形核核心的密度。
To improve the weldability and high heat input welding adaptability of high strength low alloy ship hull steel, effect of ultra-low carbon alloy designing and the second phase particles (including carbonitride and oxide) on the microstructures and properties of Heat Affected Zone (HAZ) in high strength low alloy ship hull steel were studied in this dissertation. The results showed that carbon content and carbon equivalent (Ceq) were greatly decreased when adopting ultra-low carbon alloy designing. Yield strength of the steel significantly increased through grain refinement and Cu precipitation. Weldability of ultra-low carbon content 440MPa and 550MPa ship hull steel significantly increased after adopting the upper alloy designing idea. Different inclusions have different ability to promote the nucleation of ferrite. For all the inclusions focused in this dissertation, Ti_2O_3 was the most stable inclusions at high temperature and showed the strongest ability to promote the formation of acicular ferrite during welding. Large amounts of Ti oxides gained through Ti treated, not traditional Al treated, and the Ti-bearing oxide inclusions promote the formation of acicular ferrite which suppressed the growth of grain boundary ferrite (GBF) and ferrite side plate (FSP), it refined the austenite grain size indirectly. Microcontent Mg (~0.0010%Mg) or Zr (~0.0043%Zr) added to the Ti steel could further refine the size of inclusions and increased the area fraction of inclusions, which increased the ability of Ti-bearing inclusions promoting the formation of acicular ferrite and improve the toughness of HAZ significantly.
     Ultra-low carbon alloy designing was carried out based on traditional 440MPa and 550MPa high carbon content ship hull steel. Nb microalloying+TMCP technique were used to improve the yield strength of 440MPa steel and Cu age hardening precipitation was employed to improve the yield strength of 550MPa steel. The results showed that the two strength grade steel both gained the high strength and toughness after ultra-low carbon alloy designing, and low temperature toughness and cold cracking resistance were significantly increased, the experimental steel could be welded at 0℃with no preheating. It was feasible to gain high strength, high toughness and good weldability for the ship hull steel through ultra-low carbon content alloy designing with grain refining strengthening or with age hardening precipitation.
     The role of Ti_2O_3, TiO_2, ZrO_2, TiN, CeO_2, MgO and Ti_2O_3+MgO compound inclusions promoting the nucleation of ferrite were systematic investigated through force bonding experiment. The results showed the mechanism of inclusions promoting the nucleation of ferrite is different for different inclusions. It including the following three types: chemical reaction occurred in the boundary, and Mn/Si depletion region formed which promote the nucleation of ferrite. These inclusions including TiO_2, ZrO_2, CeO_2, MgO; no chemical reaction occurred in the boundary and the inclusions also promote the nucleation of ferrite, the inclusions including Ti_2O_3; no chemical reaction occurred and no ferrite formed in the boundary, the inclusions including TiN. The austenite temperature showed great effect on the ability of Ti_2O_3 promoting the nucleation of ferrite. Mn diffused much faster in the austenite at higher austenite temperature, which was favorable for the inclusions promoting the nucleation of ferrite. Ti_2O_3 was the most stable inclusions at high temperature and showed the strongest ability to promote nucleation of ferrite in the present study.
     Effect of Ti and Ti compound oxides on the microstructures and properties of HAZ and the phase transformation regularity of coarse-grain HAZ in Ti treated steel were investigated. The results showed that Ti and Ti compound oxides could promote the formation of acicular ferrite, the low temperature toughness of high heat input welding HAZ significantly improved. The phase transformation starting temperature of GBF, FSP and Intragranular ferrite were almost the same, but kinetics of microstructures growth was different. The growing rate of GBF was the fastest at the temperature of 725~650℃, but FSP and Intragranular ferrite showed the fasted growing rate at the temperature of 650~500℃. Acicular ferrite formed in the austenite suppressed the growth of GBF and FSP. The results also showed the key points to improve the high heat input welding HAZ toughness was how to get large amounts, more fine and dispersed Ti-bearing inclusions in the steel.
     To get large amounts of dispersed Ti-bearing inclusions in the ship hull steel, effect of small amounts of Mg, Zr on the inclusions and microstructure and HAZ toughness during large heat input welding in Ti treated steel were systematic studied. It was first time to find, Mg content greatly affected the types, size, distribution of Ti-bearing inclusions. The high input welding HAZ showed the highest low temperature toughness and the size of inclusions was much fine when 12ppm Mg added to the Ti treated steel, and the same amounts of Ti_2O_3 and Mg_2TiO_4 formed at this time. Microcontent Mg added to the Ti treated steel decreased the attractive force of inclusions significantly, effectively refined the size of Ti-bearing oxides. Zr content also affected the types and size of inclusions in Ti treated steel greatly. The same amounts of Ti_2O_3 and ZrO_2 formed and HAZ toughness was the highest during high input welding when 43ppm Zr added to the Ti treated steel. The density of Zr oxide was relatively higher, and it was not easy for the oxides rising in the liquid steel. Large amounts of fine Zr oxide could provide the nucleation core for the Ti oxide formed later, which avoided the coarsening of Ti oxides and increase the density of nucleation core of Intragranular acicular ferrite.
引文
[1] 杨才福,张永权, 新一代易焊接高强度高韧性船体钢的研究, 钢铁, 2001, 36(11), 59-64
    [2] Liu S., Olson D.L., The Role of Inclusions in Controlling HSLA steel weld Microstructures, Welding Journal, 1986, 65(6), 139s-149s
    [3] Zhang H., Lei Y.T., Wei J.S., Development of High Strength Low Alloy Ship Hull Steel, Steel Construction, 2004, 19(2), 38-43
    [4] 张文钺, 焊接物理冶金, 天津大学出版社, 1991
    [5] Wilson A.D., Taylor W.G., A710:A High Strength Low Carbon Alloy Steel for Offshore Application, Offshore Technology Conference,1985,10, 50-71
    [6] Kim H.J., Kang B.Y., Effect of Microstructures Variation on Weld Metal Cold Cracking of HSLA-100 steel, ISIJ International,2003,43(5),706-713
    [7] 金尺正午,中島明, 岡本建太郎, 微細TiNによる溶接ボンド部韌性の改善と大入熱溶接用鋼の開發,铁と钢,1975,61(11),65-78
    [8] Lee J.L., Pan Y.T., Effect of Silicon Content on Microstructure and Toughness of Simulated HAZ in Titanium Killed Steels. Material Science and Engineering, 1992, 8(3),236-242
    [9] 大野恭秀, Ti-B系大入热溶接用钢のHAZ微视组织特征,铁と钢, 1987,73(8),94-101
    [10] 雍歧龙, 钢铁材料中的第二相,北京,机械工业出版社, 2006
    [11] 中西睦夫, 氮化物及び酸化物分散による溶接ボイド部の韧性改善, 溶接学会志, 1983,52(2),117-131
    [12] Homma H., Okita S., Matsuda S., Yamamoto K., Improvement of HAZ Toughness in HSLA Steel by Introducing Finely Dispersed Ti-oxide, Welding Journal, 1987,66,301-309
    [13] Palermo P.M., An Overview of Structural Integrity Technology, SNAME Ship Structure Symposium, 1975,OCT
    [14] Heller S.R., A Personal Philosophy of Structural Design of Submarine Pressure Hulls, Naval Engineers Journal, 1962, 5,223-233
    [15] Yurioka N., TMCP Steels and Their Welding. Welding in the World, Le Soudage Dans Le Monde, 1995, 35(6),375-390
    [16] 王祖滨, 东涛, 低合金高强度钢, 北京,原子能出版社, 1996
    [17] GB712-2000, 船体结构钢,2000,11
    [18] 周振丰, 焊接冶金学.(金属焊接性),北京,机械工业出版社, 1977, 10
    [19] Lancaster J.F., Metallurgy of Welding(Third Edition), London, 1980,1-5
    [20] The Japan Welding Society, Cracking and Fracture in Welds,1972
    [21] Ito Y., Bessyo K., Sumitomo Search,1969,5
    [22] Graville B.A., Welding of HSLA (Microalloyed) Structural Steels, Proceedings of International Conference, Metals Park, Ohio, 1978, 85-101
    [23] Li G.F., Wu R.N., Lei T.Q., Controlling Factors on Susceptibility of High Strength Steels to Stress Corrosion Cracking in Marine Environments, Equipment Environmental Engnieering, 2004,1(5),1-6
    [24] Savage W.F., Szekeres E.S., A Mechanism for Crack Formation in HY-80 Steel Weldments, Welding Journal, 1967, 46(2),94s-96s
    [25] Clark W.G., The Effect of Hydrogen Gas on the Fatigue Crack Growth Rate Behavior of HY-80 and HY-130 Steels, Proceedings of the International Conference on the Efects of Hydrogen on Materials Properties and Selection and Structural Design, Champion, United States, 1974, 163-164
    [26] Congleton J., Craig I.H., Denton B.K., et al, Crack Growth in HY80 and HY130 Steels by Corrosion Fatigue, Material Science, 1979, 13(7), 436-443
    [27] Takagawa S., Hamada Y., Japanese 2000M Deep Submergence Research Vehicle “Shinkai 2000” System. Oceans, 1981, 13,1155-1159
    [28] 程新安, 国外舰船用钢的回顾与展望, 材料开发与应用, 1997, 12(2), 46-48
    [29] 杨才福, Cu时效硬化型高强度船体钢的研究, [博士学位论文], 钢铁研究总院, 2004
    [30] Chiaki O., Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Process,ISIJ International, 2001, 46(6),542-553
    [31] Liu Y., Zhu E.X., Li Y.M., et al, Effect of TMCP Parameters on the Microstructure and Properties of an Nb-Ti Microalloyed Steel, ISIJ International, 2005, 46(6), 851-857
    [32] 2003 Annual Book of ASTM Standards, ASTM A945/945M, 2003, 4, 1
    [33] Konkol P.J., Mathers J.A., Johnson R., et al, Friction Stir Welding of HSLA-65 Steel for Shipbuilding, Journal of Ship Production, 2003, 19(3), 159-164
    [34] Sampath K., An Understanding of HSLA-65 Plate Steels, Journal of Materials Engineering and Performance, 2006, 15(1), 32-40
    [35] Konkol P.J., Warren J.L., Hebert P.A., Weldability of HSLA-65 Steel for Ship Structures. Welding Journal, 1998, 77(9), 361s-371s
    [36] Babit M., Valetie P., Rigant G., Development of a New Bainitic Steels with Very High Yield Strength at Solac, Proceedings of International Conference on Processing Microstructure and Properties of Microalloyed and Other Modern Steels, 1991, 281-288
    [37] T.Mavropoulos, J.J.Jonas, G.E.Ruddle, Effect of Boren on Dynamic and Static Recrystallization in Ultra Low Carbon Nb Steels. HSLA’85:229-234
    [38] Nakasugi H., Development of Controlled Rolled Ultra Low Carbon Bainitic Steel for large Diameter Pipe Line, Transaction of the ISU, 1983,22(2),525-527
    [39] Thomspon S.W., Colvin D.J., Krauss G., Austenite decomposition during continuous cooling of an HSLA-80 Plate Steel. Metallurgical Transactions A, 1996,27(1), 1557-1572
    [40] Smith N.J., Mcgrath J.T., Gianetto J.A., et al, Microstructure/Mechanical Property Relationships of Submerged Arc Welds in HSLA 80 Steel, Welding Journal, 1989, 68(3), 112s-120s
    [41] Gzyryca.E.J, Advances in High Strength Steel Technology for Naval Hull Construction, Key Engineering Materials, 1993, 84-85, 491-520
    [42] 廖建国, 大线能量焊接用厚钢板的发展, 宽厚板, 2002, 8(2), 44-48
    [43] Shinichi S., yuji M.R, Tadashi O., et al, Steel Products for Shipbuilding, JFE Technical Report, 2004, 3(3), 41-48
    [44] 岡野重雄, 小林洋一郎, 浜中孝道, 大形コンテナ船用大入熱溶接型厚肉降伏點390N/mm2級鋼板, 神戶制鋼技報, 1997, 47(2), 79
    [45] Masanori M., Koji I., ujiF.Y, et al, 390MPa Yield Strength Steel Plate for Large Heat-input Welding for Large Container Ships, Nippon Steel Technical Report, 2004, 90, 7-10
    [46] 柴田光明, 岡野重雄, 浜中孝道, 大入熱溶接用YP460鋼板の開發, CAMP-ISIJ, 1998,11:521
    [47] J.D.Walters. Microchemical Analysis of Non-Metallic Inclusions in C-Mn Steel Sheilded Metal Arc Welds by Analytical Transmission Electron Miroscopy. Master Thesis, Naval Postgraduate School, Monterey CA, 1998
    [48] Kim W.Y., Jo J.O., Chung T.I., et al,Thermodynam ics of Titanium, Nitrogen and TiN Formation in Liquid Iron, ISIJ International, 2007, 47(8), 1082-1089
    [49] 陈茂爱, 亓效刚, 傅一飞, Ti-Nb微合金钢及焊接热影响区中的第二相粒子, 特殊钢, 2004, 25(3), 10-13
    [50] Yamamoto K.,Matsuda S.,Haze T., A Newly Developed Ti-Oxide Bearing Steel Having High HAZ Toughness, Residual and Unspecified Elements in Steel, ASTM STP, 1989, 266-284
    [51] Nagai Y., Fukami, Hajime H., et al, Production of High-Toughness Steel for Offshore Structures. Proceedings of OMAE03 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003, 6, 319-325
    [52] Terada Y., Tamehiro H., Morimoto,H. et al, X100 Line-pipe with Excellent HAZ Toughness and Deformability, Proceedings of OMAE03 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003, 6, 287-293.
    [53] 田志凌, 低合金高强钢的焊接性, 中国机械工程学会2002焊接年会主题报告, 2002
    [54] 张德勤, 微合金钢焊缝金属中针状铁素体形成机理的研究, [学位论文], 天津大学, 2000
    [55] 张文钺, 焊接物理冶金, 天津, 天津人民出版社, 1991
    [56] Farrar R.A., Harrison P.L., Acicular Ferrite in Carbon-Manganese Weld Metals: An Overview. Journal of Material Science, 1987,22, 3812-3820
    [57] 田德蔚, 钱百年, 适用图像仪测定M-A的腐蚀方法, 物理测试, 1994, 2, 35-39
    [58] 许祖泽, 新型微合金钢的焊接, 北京, 机械工业出版社, 2004
    [59] Harrison P.L., [Dissertation], University of Southampton, 1983
    [60] 莫立春, 钢的奥氏体化与焊接HAZ组织演变过程模拟, [学位论文], 中国科学院沈阳金属所, 2001,8
    [61] 井川博, 高张力钢溶接热影响部に生成ちろ岛状组织に关する研究, 1980, 49(7), 467-172
    [62] Hitoshi HATANO, 微細べイナイトによる高強度鋼の大入熱HAZ韌性改善技術の開發, CAMP-ISIJ, 2003, 16, 364-367
    [63] Yukio T., Naoki S., T.Takeshi, et al, Improvement in HAZ Toughness of Steel by TiN-MnS Addition, ISIJ International, 1994, 34(10), 829-835
    [64] Harrison P.L., Farrar R.A., Journal of Materials Science, 1981,16, 2218-2226
    [65] Takamura J.I., Mizoguhci S., Metallurgy of Oxides in Steels. Proceedings of The Six International Iron and Steel Congress, 1990, Nagoya, ISIJ, 591-597
    [66] Mizoguchi S., Takamura J.I., Control of Oxides as Inoculants -Metallurgy of Oxides in Steels 2, Proceedings of The Six International Iron and Steel Congress, 1990, Nagoya, ISIJ, 598-604
    [67] Ogibayashi S., Yamaguchi,K. Hirai,M. et al, The Features of Oxides in Ti-Deoxidized Steel, Proceedings of The Six International Iron and Steel Congress, 1990, Nagoya, ISIJ, 612-617
    [68] 蒋国昌, 纯净钢及二次精练, 上海, 上海科学技术出版社, 1996, 10, 223-233
    [69] Shim J.H., Cho Y.W., Chung, S.H. et al, Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel, Acta mater, 1999,47(9), 2751-2760
    [70] Byun J.S., Shim, J.H. Cho Y.W., Non-metallic inclusion and Intragranular Nucleation of Ferrite in Ti-Killed C-Mn Steel. Acta Mater., 2003,51, 1593-1606
    [71] Hiroki G., MIYAZAWA K.I., Kazuak T. i., Effect of Oxygen Content on Size and Distribution of Oxides in Steel, ISIJ International, 1995,35(3), 286-291
    [72] Hiroki G., MIYAZAWA,K.I. Kazuaki T., Effect of Cooling Rate on Composition of Oxides Precipitated during Solidification of Steels, ISIJ International, 1995,35(6), 708-714
    [73] Hiroki G., Miyazawa K.I., Yamaguchi K.I., et al, Effect of Cooling Rate on Oxide Precipitation During Solidification of Low Carbon Steels, ISIJ International, 1994, 34(5), 414~419
    [74] LEE J.L. PAN Y.T., Effect of Killing Time on the Microstructue and Toughness of the Heat Affected Zone in Ti-killed Steels, Metallurgical Transaction A, 1991,22A, 2818-2822
    [75] 王明林, 低碳钢凝固过程含钛析出物的析出行为及其对凝固组织影响的机理研究, [学位论文], 钢铁研究总院, 2003, 6
    [76] Farrar.R.A, Acicular ferrite in carbon manganese weld metals,an overview: urnal of materials science, 1987,22, 3812-3820
    [77] 韩顺昌, 针状铁素体的物理冶金学, 材料开发与应用,1995,10(5),2-7
    [78] 韩顺昌, 针状铁素体的物理冶金学(续),开发与应用,1995,10(6),5-8
    [79] Gregg J.M., Bhadeshia H.K.D.H.,olid-State Nulceation of Acicular Ferrite on Minerals Added to Molten Steel, Acta Mater., 1997, 45(2),39-748
    [80] Farrar R.A., Watson M.N.,Metal Construcution, 1985, 17,74-379
    [81] Mabuchi H., Uemori R., Fujioka M.,The Role of Mn Depletion in Intgra-Granular Ferrite Transformation in the Heat Affected Zone of Welded Joints with Large Heat Input in Structural Steels. ISIJ International, 1996,36(11),406-1412
    [82] Shim J.H., [Dissertation],University,2002,2
    [83] Gregg.J.M.Bhadeshia H.K., tanium-Rich Mineral Phases and the Nucleation of Bainite. Metallurgical and Materials Transactions A, 1994, 25A,603-1611
    [84] Lee J.L.,Evaluation of the Nucleation Potential of Intragranular Acicular Ferrite in Steel Weldments, Acta ater., 1994,42(10),3291-3298
    [85] Barbaro F.J.,Materials science and technology, 1989,5,1057-1067
    [86] Laurent S.S.,Mater.Sci.Engin. A,1992,203,149
    [87] 余圣甫,李志远,刘顺洪,高韧性药芯焊丝焊缝金属的显微组织,料开发与应用, 1999, 14(3),20-23
    [88] Lee T.K., Kim H.J., Kang B.Y., et al,Effect of Inclusions on the Nucleation of Acicular Ferrite in Welds,ISIJ International, 2000, 40(12),1260-1268
    [89] Thewlis G., Transformation Kinetics of Ferrous Weld Metals, Materials Science and Technology, 1994,10(4),110-124
    [90] Lee .J.L., Pan Y.T., The Formation of Intragranular Ferrite in Simulated Heat-Affected Zone,ISIJ International, 1995,35(8),1027-1033
    [91] 李新明, 郑少波, 郑庆等,钢的氧化物冶金技术,上海金属, 2005, 27(5),5-60
    [92] 寺田好男, Ti脫酸鋼の大入熱溶接相当再現HAZの低温韌性に及ぼすMnの影響,铁と钢,2004,90(10),62-68
    [1] Montemarano T.W., Sack B.P., Gudas J.P., et al,High Strength Low Alloy Steels in Naval Construction”, Journal of Ship Production, 1986,2(3),145-162
    [2] Czyryca E.J.,Advances in High Strength Steel Technology for Naval Hull Construction,Key Engineering Materials, 1993, 84-85,491-520
    [3] 杨才福, 张永权, 一代易焊接高强度高韧性船体钢的研究,钢铁, 2001, 36(11),59-64
    [4] Palermo P.M., Designer’s View of Welding Requirements of Advanced Ship Structures,Welding Jounrnal, 1976,11,1039-1050
    [5] 佐野直幸,前原泰裕,Cu添加極低碳素鋼におけるCu析出の初期段階,日本金属会誌, 1996, 60(3),36-268
    [6] 许祖泽, 新型微合金钢的焊接, 机械工业出版社, 2004
    [7] 上田修三(荆洪阳 译), 结构钢的焊接-低合金钢的性能及冶金学, 北京冶金工业出版社, 2004.
    [8] 杨才福, Cu时效硬化型高强度船体钢的研究, [学位论文], 钢铁研究总院, 2004
    [9] Anderson T.L., Hyatt L.A., West J.C., The Benefits of New High Strength Low Alloy Steels,Welding Journal, 1987, 66(9),21-26
    [10] Girardier C.I., Lis A.K., Deardo A.J., The Physical Metallurgy of Ultra-low Carbon Bainitic Plate Steels,Metallurgy of VACCUMJ-Eygassed Steel Product, The Minerals, Metal&Materials Society, 1990,451-467
    [11] Araki T., Microstructures and Their Characterization of Modern Very Low Carbon HSLA Steels,HSLA 95,571-577
    [12] Krishnadev.M.R, Copper-Precipitation Strengthened HSLA Steels: Design for Base Metal and HAZ Toughness, International Symposium on Low-carbon Steels for the 90’s,501-509
    [13] 王祖滨, 东涛, 低合金高强度钢, 北京, 原子能出版社, 1996, 8
    [14] Czyryca.J.E., Development and Certification of HSLA100 Steel for Naval Ship Construction, Naval Engineer Journal, 1990,214(5), 63-82
    [15] Dunne D.. Weldable Copper Strengthened Low Carbon Steels. Proceedings of HSLA Steel’95, Beijing, 1995,10, 79-84
    [16] Krishnadev M.R., May I.L., Microstructure and Mechanical Properties of a Commercial Low-Carbon Copper-bearing Steel. Journal of Iron and Steel Institute, 1990,458(5),43-47
    [17] Annual book of ASTM Standards, ASTM A945/A945M, vol01, 04, 2003
    [18] 吴始栋, HSLA65钢及其焊接技术, 江苏船舶, 1999, 16(1),24-25
    [19] Kitada T., Fukuda, K. Fukushige N., Weldability of Newly Developed TMCP Type High Strength Steel Shapes for Hull Structure, Nippon Kokan Tech, 1986, 112,69-74
    [20] Konkol P.J., Warren J.L., et al, Weldability of HSLA-65 Steel for Ship Structures.,Welding Research, 1998, 8, 361s-369s
    [21] Yurioka N., TMCP Steels and Their Welding, Welding in the World, 1995,35(6),2-14
    [22] Kvidahl L.G., An Improved High Yield Strength Steel for Shipbuilding, Welding Journal, 1985, 64(7), 42-48
    [23] Wilson A.D., High Strength, Weldable Precipitation Aged Steels, Journal of Metals, 1987, 3,36-38
    [24] Scoonover T. M., Lukens W. E., Pande C. S., Correlation of Heat Affected Zone Microstructure With Peak Heating Temperature in HSLA-80 Steel Weldments. Conference: Unusual Techniques and New Applications of Metallography, Volume II, 1984,12,19-25
    [25] Tomita Y., Development of 590MPa Class High Tensile Strength with Superior HAZ Toughness by Copper Precipitation Hardening, ISIJ International, 1994,34(10),836-842
    [26] Smith N.J., Microstructural/Mechaical Property Relationships of Submerged Arc Welds in HSLA80 Steel, Welding Journal, 1989,68(3),112s-119s
    [27] Macnali, Microstructure and Mechanical Properties of HSLA100 Steel, ADA242937 MF, 1990,12
    [28] 雍岐龙, 钢铁材料中的第二相, 北京, 冶金工业出版社, 2006,49-50
    [29] Heller S.R., Fioriti I., Vasta J., An Evaluation of HY-80 Steel as a Structural Material for Submarines, Part I. Naval Engineers Journal, 1965, 3,29-44
    [30] Heller S.R., Fioriti I., Vasta J.., An Evaluation of HY-80 Steel as a Structural Material for Submarines, Part II, Naval Engineers Journal, 1965, 4,193-200
    [31] Thompson S.W., Krauss G., Copper Precipitation During Continuous Cooling and Isothermal Aging of A710-Type Steels.,Metallurgical and Materials Transactions A, 1996, 27(6),1573-1588
    [32] Yoo,J.Y. Choo,W.Y. Park T.W., et al, Microstructures and Age Hardening Characteristics of Direct Quenched Cu Bearing HSLA Steel, ISIJ International, 1995,38(8),1034-1040
    [33] Deschamps A., Militzer M., .Poole.W.J,, Comparison of Precipitation Kinetics and Strengthening in an Fe-0.8wt%Cu Alloy a 0.8%Cu-Containing Low Carbon Steel, ISIJ International, 2003,43(11),1826-1832
    [34] 张文钺, 焊接物理冶金, 天津大学出版社, 1991
    [35] Yukio,Tomita,Toshiaki,T.Haze et al, Development of 590Mpa Class High Tensile Strength Steel with Superior HAZ Toughness by Copper Precipitation., ISIJ International, 1994, 34(10),836~842.
    [36] 潭佃龙等, 超低碳贝氏体钢焊接热影响区研究, 焊接学报, 1996,17(3),132~137
    [37] Okada H., Matsuda F., Li Z., Decomposition Behavior of M-A Constituent and Recovery of Toughness., Quartly J.Japan Weld.Soc., 1994,12(3),398-403
    [38] Okada H., Matsuda F.. Ikenchi,K. et al, Effect of M-A Constituent and Fracture Behavior of Weld HAZ with High Input in 780and 980 MPa Class HSLA Steels, IIW-DOC-1300-94
    [39] Blicharski M.R., Garcia,C.I. Pytel, S. et al, Structure and Properties of ULCB Plate Steels for Heavy Section Applications. Proceedings of International Symposium on Processing, Microstructure and Properties of HSLA Steels, TMS, Warrendale, PA, 1988
    [40] 王青峰, 含铜超低碳贝氏体钢焊接冶金的研究,[学位论文], 华中理工大学, 2000
    [41] 李亚江,邹增大,吴会强等, HQ130钢热影响区的ICHAZ区组织性能.焊接学报,2001,22(2),54~58
    [42] Hitoshi HATANO, 微細べイナイトによる高強度鋼の大入熱HAZ韌性改善技術の開發,CAMP-ISIJ, 2003,Vol.16,364-367
    [1] 雍歧龙, 马鸣途, 吴宝榕, 微合金钢-物理和力学冶金, 北京, 机械工业出版社, 1989
    [2] 雍歧龙, 钢铁材料中的第二相, 北京, 机械工业出版社, 2006
    [3] 小指军夫(李伏桃 译), 控制轧制控制冷却—改善材质的轧制技术发展, 北京, 冶金工业出版社, 2004
    [4] 王有铭, 钢材的控制轧制和控制冷却, 北京, 冶金工业出版社,2005
    [5] 上田修三(荆洪阳 译), 结构钢的焊接-低合金钢的性能及冶金学, 北京冶金工业出版社, 2004
    [6] 大谷太夫, 大入熱溶接熱影響部韌性向上技術[JFE EWEL]および本技術を用いた厚鋼板の開發, 新技術·新製品, 2004, 43(3),232-234.
    [7] Nagai Y., Fukami,H. Inoue H., et al, Production of High-Strength and High-Toughness Steel for Offshore Structures. Proceeding of OMAE03 (22nd international conference on offshore mechanics and arctic engineering), Mexico, 2003, 319-325
    [8] Hatano H.,微細べイナイトによる高強度鋼の大入熱 HAZ 韌性改善技術の開發, CAMP-ISIJ, 2003,Vol.16,364-367
    [9] 许祖泽, 新型微合金钢的焊接, 北京, 机械工业出版社,2004
    [10] Kojima,A., Kiyose A., Ruemori, et al, Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles, Nippon Steel Technical Report, 2004, 90,2-6
    [11] 周振丰, 张文钺, 焊接冶金与金属焊接性, 北京, 机械工业出版社,1988
    [12] 船越督已, 稀土元素と B 添加にける高张力钢の大入热溶接ボンド部の组织と韧性の改良,铁と钢, 1977,63(2) ,303-312
    [13] 大野恭秀, Ti-B 系大入热溶接用钢の HAZ 微观组织特, 铁と钢, 1987,73(8) ,94-101
    [14] Dolby R.E., HAZ Toughness of Structural and Pressure Vessels Steel-Improvement and Prediction, Welding Journal, 1979.58(8),22-28s
    [15] Mukae S., Solution of TiN during Synthetic Weld Thermal Cycling and HAZ Toughness in Low Carbon Steels, Trans, JWS, 1987,18(2),58-68
    [16] Zhang L.P., Davis C.L., W.M. Strang, Effect OF TiN Particles and Microstructures on Fracture Toughness in Simulated Heat-Affected-Zones of a Structural Steel, Metallurgical and Material Transactions, 1999,30A(8), 2089-2096
    [17] Liao J.R., Nitride Precipitation in Weld HAZs of a Duplex Stainless Steel. ISIJ International,2001,42(5),460-467
    [18] 尹贵全, 黄龙旺, 微 Ti 钢焊接热循环过程中的第二相粒子, 焊接学报, 2000, 21(4),50-53
    [19] Nakanishi M., Komizo Y., Improvement of Welded HAZ Toughness in Ultra High Strength Steel. ISIJ International, 1983,52(2), 117-131
    [20] Ogibayashi S., Advances in Technology of Oxide Metallurgy, Nippon Steel Technical Report, 1994,61(4), 70-76
    [21] Mill A.R., Nature of Inclusion in Steel Weld Metals and Their Inflence on Formation of Acicular Ferrite, Mater. Sci. Tech., 1987,3(11),1051-1061
    [22] Shim J.H., Cho Y.W., Chung S.H., Shim J.D. and.Lee D.N, Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel, Acta mater., 1999,47(9), 2751-2760
    [23] Harrison P.L., Farrar R.A., Journal of materials science, 1981,16, 2218-2226
    [24] Dowling J.M., Corbett J.M., W.Kerr H., Inclusion Phases and the Nucleation of Acicular Ferrite in Submerged Arc Welds in High Strength Low Alloy Steels, Metallurgical Transactions A, 1986,17A,1611-1623
    [25] Takamura J., Mizoguhci S., Roles of Oxides in Steels Performance-Metallurgy of oxides in steels, Proceedings of The Six International Iron and Steel Congress, 1990, Nagoya, ISIJ,591-597
    [26] Mizoguchi S., Takamura J.,Control of Oxides as Inoculants -Metallurgy of Oxides in Steels-2-. Proceedings of The Six International Iron and Steel Congress, 1990, Nagoya, ISIJ,598-604
    [27] Ogibayashi S., Yamaguchi K., Hirai M., et al, The Features of Oxides in Ti-Deoxidized Steel – Metallurgy of Oxides in Steels -4- Proceedings of The Six International Iron and Steel Congress, 1990, Nagoya, ISIJ, 612-617
    [28] Gregg J.M., Bhadeshia H.K., Titanium-Rich Mineral Phases and the Nucleation of Bainite, Metallurgical and Materials Transactions A, 1994, 25A, 1603-1611
    [29] Shim J.H., Cho Y.W., Chung S.H., et al, Nucleation of Intragranular ferrite at Ti2O3 Particle in Low Carbon Steel, Acta Mater., 1999,47(9), 2751-2760
    [30] Gregg J.M., Bhadeshia H.K., Solid-State Nucleation of Acicular Ferrite on Minerals Added to Molten Steel.,Acta Mater., 1997,45(2),739-748
    [31] yun J.S., Shim J.H., Cho,Y.W. et al, Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel, Acta mater., 2003,51,1593-1606
    [32] Lee J.L., Pan Y.T., The Formation of Intragranular Acicular Ferrite in Simulated Heat-affectedZone, ISIJ International, 1995,35(8), 1027-1033
    [33] Mabuchi H., Uemori R., Fujioka M., The Role of Mn Depletion in Intra-Granular Ferrite Transformation in the Heat Affected Zone of Welded Joints With Largge Heat Input in Structural Steels, ISIJ International, 1996,36(11),1406-1412
    [34] Greegg J.M., Bhadeshia. H.K., Bainite Nucleation from Minerals, Acta Mater., 1994, 42(10), 3321-3330
    [35] 冶金部钢铁研究总院 编, 合金钢手册(上册), 北京, 中国工业出版社, 1971
    [36] 冶金部钢铁研究总院 编, 合金钢手册(下册), 北京, 中国工业出版社,1971
    [37] Yamamoto K., Matsuda S,Haze T., A Newly Developed Ti-Oxide Bearing Steel Having High HAZ Toughness, Residual and Unspecified Elements in Steel, ASTM STP, 1989,266-284
    [38] Farrar R.A., Acicular Ferrite in Carbon Manganese Weld Metals: an overview. Journal of materials science, 1987,22,3812-3820
    [39] Use of Fine Inclusions in Microstructure Control of Steels, Final Report of Fine Inclusions Committee, The Iron and Steel Institute of Japan, Tokyo,1995
    [40] Ishikawa F., Takahashi T., The Formation of Intragranular Ferrite Plates in Medium-Carbon Steels for Hot-Forging and Its Effect on the Toughness, ISIJ International, 1995,35(9),1128-1133
    [41] Hanamura T., Shibata H., Waseda,Y. et al, In-situ Observation of Intragranular Ferrite Nucleation at Oxide Particles., ISIJ International, 1999,3999(11), 1188-1193
    [42] Casper E., Lassila I., Grong, O. et al, Ferrite Nucleation on Ce-Oxysulphide Inclusions in Low Alloyed Steels.,AIST/TMS Conference: Materials Science and Technology 2004, New Orleans, USA, 2004, September,1-8
    [43] Ma Z.T., Janke D., Characteristics of Oxide Precipitation and Growth During Solidification of Deoxidized Steel, ISIJ International, 1998,38(1),45-52
    [44] Sawai T., Wakoh M., Ueshima Y., et al, Analysis of Oxide Dispersion During Solidification in Ti,Zr Deoxidized Steels, ISIJ International, 1992,32(1), 169-173
    [1] 豐原力, 造船の溶接, 溶接の世纪(20 世纪总括)第 1 部, 溶接技术, 2002,2, 83-91
    [2] 矢島浩, 多田益男, 川村昭宣, et al, TMCP 型高張力鋼板の船舶, 三菱重工技報, 1986, 23(4),383-392
    [3] 宫崎建雄, 造船にぉける溶接の高速化.溶接学会志, 1999,68(3),24-27
    [4] 木本, 勇本江, 敦忠, 大入热工レケトロガスアーク溶接ぉよびュレクトロスラグ溶接の极厚钢材への适用, 溶接技术, 2002,12,98-107
    [5] 廖建国, 大线能量焊接用厚钢板的发展, 宽厚板, 2002, 8(2),44-48
    [6] Shinichi S., Ryuji M., Tadashi O., et al, Steel Products for Shipbuilding, JFE Technical Report, 2004, 3(3),41-48
    [7] 岡野重雄, 小林洋一郎, 浜中孝道, 大形コンテナ船用大入熱溶接型厚肉降伏點390N/mm2 級鋼板, 神戶制鋼技報, 1997, 47(2),79
    [8] Masanori M., Koji I., uji, F.Y et al, 390MPa Yield Strength Steel Plate for Large Heat-input Welding for Large Container Ships, Nippon Steel Technical Report, 2004, 90,7-10
    [9] 柴田光明, 岡野重雄, 浜中孝道, 大入熱溶接用 YP460 鋼板の開發, CAMP-ISIJ, 1998,11,521
    [10] Shinichi D., Kazuhide T., Shigeru E., et al, Steels for Production, Transportation, and Storage of Energy, JFE Technical Report, 20042(3),55-67
    [11] 章小浒, 李小燕, 大焊接线能量储罐用钢的开发与应用, 压力容器, 2003, 20(1), 16-19
    [12] 张莉芹, 袁泽喜, 卜勇, 等, 大线能量的焊接裂纹敏感性钢的焊接(一)热影响区强韧化机理研究, 焊接技术, 2002,119(7),29-34
    [13] 张莉芹, 卜勇, 陈晓, 大线能量的焊接裂纹敏感性钢的焊接(二)热影响区组织及晶内铁素体形核机理的研究, 焊接技术, 2002, 119(8),35-38
    [14] Babu S.S., Reidenbach F., David S.A., et al. Effect of High Energy Density Welding Processes on Inclusion and Microstructure Formation in Steel Welds, Science and Technology of Welding and Jointing, 1999,4(2),63-73
    [15] Yu D., Dunne D.P., Chandra T., et al, Austenite Grain Coarsening and Formation of Intragranular Ferrite in HSLA Steels Deoxidized with Ti and Al. Materials Transacitions, JIM, 1996, 37(10), 1554-1560
    [16] Evans G.M., Microstructure and Properties of Ferritic Steel Welds Containing Al and Ti,Welding Research Supplement, 249s-261s
    [17] Jeong H.C., An Y.H., Choo W.Y., et al, The Effects of TiN Particles on the HAZ Microstructure and Toughness in High Nitrogen TiN Steel, International Journal of Korean Welding Society, 2002, 2(1),25-28
    [18] Nakanishi M., Komizo Y., Seta I., Improvement of Welded HAZ Toughness by Dispersion with Nitride Particles and Oxide Particles, J.Jpn.Weld.Soc., 1983, 52(2), 117-124
    [19] Joonoh M., Jonggeun R., Changhee L., et al, Coarsening Kinetics of TiN Particle in the Low Alloyed Steel Weld HAZ-Considering Critical Particle Size. Preprints of the National Meeting of J.W.S., 2005, 76,14-15
    [20] Mukae S., Fukada. Y., Solution of TiN during Synthetic Weld Thermal Cycling and HAZ Toughness in Low Carbon Steels, Transaction JWS, 1987,18(2), 58-61
    [21] 郑庆, 朱立新, 氧化物冶金技术的理论与工艺, 世界钢铁, 2005,2,1-7
    [22] 陈茂爱, 微合金钢 CGHAZ 韧化机理及 SiCp/Al 复合材料焊接性研究, [学位论文] ,上海交通大学, 1997,7
    [23] 杨颖, 敖列哥, 李宪林, 氧化物冶金技术研究的进展, 炼钢, 2005, 21(5), 54-57
    [24] Mizoguchi.S., “Oxides Metallurgy”-Present and Future Prospects. The fourth workshop on high performance steel, Pohang, Corea. 2002.1, 79-88
    [25] Beomjoo K., Sangho U., Changhee.L., Effects of Inclusions and Microstructures on Impact Energy of High Heat-Input Submerged-Arc-Weld Metals, Journal of Engineering Materials and Technology, 2005, 127,204-213
    [26] Kang,Y. Kim H.J., Hwang S.K., Effect of Mn and Ni on the Variation of the Microstructure and Mechanical Properties of Low Carbon Weld Metals, ISIJ International, 2000, 40(12), 1237-1245
    [27] Sanhong Z., Nobuyuki H., Masato E., et al, Ferrite Nucleation at Ceramic/Austenite Interfaces, ISIJ International, 1996, 36(10), 1301-1309
    [28] 陈襄武, 炼钢过程的脱氧, 北京, 机械工业出版社, 1991, 85
    [29] Zhongting M., Dieter J., Characteristics of Oxide Precipitation and Growth During Slodification of Deoxidized Steel, ISIJ International, 1998, 38(1),46-52
    [30] 王明林, 低碳钢凝固过程含 Ti 析出物的析出行为对凝固组织影响的机理研究, [学位论文], 北京, 钢铁研究总院, 2003, 6
    [31] Park S.C., .Jung I.H, Oh K.S., et al, Effect of Al on the Evolution of Non-metallic Inclusionsin the Mn-Si-Ti-Mg Deoxidized Steel During Soldification: Experiments and Thermodynamic Calculations, ISIJ International, 2004, 44(6),1016-1023
    [32] Fujii K., Tetsuya N., Mitsutaka H., Activities of the Constituents in Spinel Solid Solution and Free Energies of Formation of MgO,MgO·Al2O3. ISIJ International, 2000, 40(11),1059-1066
    [33] Fabienne R.M., Jean L., Henri. G. ,Thermodynamic Analysis of Inclusions in Ti-Deoxidized Steels.,Scandinavian Journal of Metallurgy, 2000, 29,206-212
    [34] Henri G., Philippe,R. .jean L, et al, Kinetics of Inclusion Precipitation During Steel Solidification.,Steel Research, 1999,70(8),356-361
    [35] Young W.C., Byun, J.S., Shim J.H.. Effect of Ti Addition on Mixed Microstructure of Allotriomorphic and Bainitic Ferrite in Wrought C-Mn Steels,Materials Science Forum, 2003,426-432, 1511-1516
    [36] Lee J.L., Pan Y.T.. The Formation of Intragran ular Acicular Ferrite in Simulated Heat-affected Zone, ISIJ International, 1995, 35(8),1027-1033
    [37] Homma H., Okita S., Matsuda S., Yamamoto K.., Improvement of HAZ Toughness in HSLA Steel by Introducing Finely Dispersed Ti-oxide, Welding Journal, 1987,66,301-309
    [38] Wu K.M., Enomoto.M., Three-Dimensional Morphology of Dgenerate Ferrite in an Fe-C-Mo Alloy, Scripta Materialia, 2002,46,569-574
    [39] Zhao M.C., Yang K., Shan.Y.Y., Comparison on Strength and Toughness Behaviors of Microalloyed Pipeline Steels with Acicular Ferrite, Materials Letters, 2003, 57, 1496-1500
    [40] Nakajima H., Nagai K., Tsuzaki K., et al, Effect of Uniformly Dispersed Oxide Precipitates on Enhancement of Intragranular Ferrite Formation in Heat Affected Zone of Welding Steels, Proceedings of the International Conference on Solid Phase Transformation, 1999,1569-1572
    [41] Thewlis G., Transformation Kinetics of ferrous weld metals, Materials Science and Technology, 1994,10(4),110-124
    [42] Ali A., Bhadeshia H.K.D.H.. Microstructure of High Strength STEEL Refined with Intragranularly Nucleated Widmanstatten ferrite, Materials Science and Technology, 1991, 7, 895-903
    [43] 张文钺, 焊接冶金学, 北京 机械工业出版社, 1993, 12
    [1] Ohkita S., Homma H., Mori, N. et al, The Effect of Oxide Inclusions on Microstructures of Ti-B Containing Weld metal, Australian Welding Journal, 1984, 19(3),29-36
    [2] G.M. Evans. Microstructure and Properties of Ferritic Steel Welds Containing Al and Ti, Welding Journal, 1995, 74(8),249s-261s
    [3] A.O.Kluken, O.Grong, Mechanisms of Inclusion Formation in Al-Ti-Si-Mn deoxidized steel Weld Metals, Metall.Transaction, 1989,20A:1335-1349
    [4] Liu S., Olson D.L., The Role of Inclusions In Controlling HSLA Steel Weld Microstructure, Welding Research Supplement, 1986, 65(6), 139s-150s
    [5] Abson J.D., Dolby R.E., Hart P.H.M., The Role of Non-metallic Inclusions in Ferrite Nucleation in Carbon Steel Weld Metals,Proc, International Conference on Trends in Steels and Consumables for Welding, London, The welding Insititute, 1978,75
    [6] Horil Y., Study on the Toughness of Large-Heat Input Weld Metal for Low Temperature-Service TMCP Steel, Nippon Steel Technical Report, 1988, 37(4),15-21
    [7] ToshiakH. i, Yasuhide O., Steel Plates With Superior HAZ Toughness for Offshore Structures, Nippon Steel Technical Report, 1988,36(1), 1-6
    [8] 高村仁一, 氧化物对钢性能的作用, 世界钢铁,2005,2,8-11
    [9] 郑庆, 朱立新, 氧化物冶金技术的理论与工艺, 世界钢铁, 2005, 2, 1-6
    [10] Yu D., Dunne D.P., Chandra T., et al, Austenite Grain Coarsening and Formation of Intragranular Ferrite in HSLA Steels Deoxidized with Ti and Al, Materials Transacitions, JIM, 1996, 37(10), 1554-1560
    [11] Yamamoto K., Takamura J., Effect of Boron on Intragranular Ferrite Formation in Ti-Oxide Bearing Steels, ISIJ International, 1996,36(1), 80-86
    [12] Eijk V.D., Walmsley J., Mechanisms of Inclusion Formation in Low Alloy Steels Deoxidized with Titanium, Mater. Sci. Techn., 2000, 1, 55-61
    [13] 余圣甫, 雷毅, 黄安国等, 氧化物冶金技术及其应用, 材料导报, 2004, 18(8), 50-52
    [14] Nagai Y., Fukami H., Hajime, et al, Production of High-Toughness Steel for Offshore Structures, Proceedings of OMAE03 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003, 6,319-325
    [15] Terada Y., Tamehiro H., Morimoto H., et al, X100 Line-pipe with Excellent HAZ Toughness andDeformability, Proceedings of OMAE03 22nd International Conference on Offshore Mechanics and Arctic Engineering, Cancun, Mexico, 2003, 6,287-293
    [16] Kojima A., Kiyose A., Uemori R., et al, Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles, 新日铁技报, 2004, 380,2-5
    [17] Hara T., Asahl H., amehiroH.T, et al. Steel Having Improved Toughness in Welding Heat-Affected Zone, United States Patent, 5985053, 1999, 11, 16
    [18] Li J., Wang F.M., Zhang X.Y., et al, Effcet of Magnesium-Contained Deoxidizer on Cleanliness of Liquid Steel and Mechanical Properties of Final Sheets, 2006 International Symposium on Slab Casting and Rolling, 2006,4,430-434
    [19] 陈襄武, 炼钢过程的脱氧, 北京, 机械工业出版社, 1991, 85
    [20] Zhongting M., Dieter J., Characteristics of Oxide Precipitation and Growth During Slodification of Deoxidized Steel, ISIJ International, 1998, 38(1),46-52
    [21] 王明林, 低碳钢凝固过程含 Ti 析出物的析出行为对凝固组织影响的机理研究, [学位论文], 北京, 钢铁研究总院, 2003, 6
    [22] Kojima A., Kiyose A., Ruemori, et al, Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles, Nippon Steel Technical Report, 2004, 90,2-6
    [23] Lee J.L., Pan Y.T., The Formation of Intragranular Acicular Ferrite in Simulated Heat-affected Zone., ISIJ International, 1995,35(8),1027-1033
    [24] Shim J.H., Cho Y.W., Chung S.H., et al, Nucleation of Intragranular ferrite at Ti2O3 Particle in Low Carbon Steel, Acta Mater., 1999,47(9), 2751-2760
    [25] Park S.C., Jung I.H., Oh K.S., et al, Effect of Al on the Evolution of Non-metallic Inclusions in the Mn-Si-Ti-Mg Deoxidized Steel During Soldification: Experiments and Thermodynamic Calculations, ISIJ International, 2004, 44(6), 1016-1023
    [26] Chang C.H., Jung I.H., Park S.C., et al, Evolution of Inclusions and Resultant Microstructural Change with Mg Addition in Mn/Si/Ti Deoxidized Steels, Script Materialia, 2005, 53,1253-1258
    [27] Chang C.H., Jung I.H., Park S.C., et al, Effect of Mg on the Evolution of Non-metalic Inclusions in Mn-Si-Ti Deoxidized Steel during Solidification, Experiments and Thermodynamic Calculations, Ironmaking and Steelmaking, 2005,32(3),251-257
    [28] 李尚兵, 王谦, 何生平, 镁合金对钢液脱氧脱硫的作用, 钢铁钒钛, 2007,28(2), 74-77
    [29] Mizoguchi S., “Oxides Metallurgy”-Present and Future Prospects, The fourth workshop on high performance steel, Pohang, Corea, 2002,1, 79-88
    [30] Lee J.L., Evaluation of the nucleation potential of intragranular acicular ferrite in steel weldments, Acta mater, 1994,42(10), 3291-3298
    [31] Oh K.S., Choo W.Y., Lee H.G., Behavior of Nonmetallic Inclusions During Steelmaking Processes for Acicular Ferrite Formation in C-Mn Structural Steel. The fourth workshop on high performance steel, Pohang, Corea,2002,1,103-107
    [32] Oh K.S., Effect of Small Amounts of Al,Mg, and Zr Addition to the Ti Oxide Steel Melt on Behavior of Nonmetallic Inclusions For IAF Formation at HAZ, The fourth workshop on high performance steel, Pohang, Corea, 2002,1, 253-257
    [33] 王蕾, 陈晓, 习天辉, 大线能量低焊接裂纹敏感性钢的研究, 材料导报, 2002,16(5), 24-26
    [34] 习天辉, 陈晓, 李平和, 含 Zr 钢中夹杂物对低温韧性的影响, 钢铁,2004, 39(12),60-63
    [35] 习天辉, 陈晓, 陈颜堂, Zr 微合金化 HSLA 钢粗晶热影响区的组织和性能, 特殊钢, 2005,26(2), 16-19
    [36] Guo A.M., Li,S.R. Guo J., Li P.H., et al, Effect of Zirconium Addition on the Impact Toughness of the Heat Affected Zone in a High Strength Low Alloy Pipeline Steel, Materials Characterization, Article in Press, 2007,1-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700