Ta及Ta-O薄膜的制备及其电学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用磁控溅射方法在玻璃基底上制备了纯Ta薄膜和低值Ta-0薄膜。研究了不同制备工艺参数以及热处理过程中上述两种成分薄膜的微观结构、表面形貌以及化学组成的演变及其对电性能的影响。同时研究了n与Ta0_x缓冲层的微观结构、表面特性及其对沉积其上的Ta薄膜微观结构的影响,分析了缓冲层对Ta薄膜的生长机理以及Ta/n和Ta/Ta0_x薄膜微观结构的演变对电学性能的影响。
     溅射功率、沉积温度对Ta薄膜的沉积速率、结晶取向、0/Ta比值以及电性能起着重要作用;所沉积的Ta薄膜均呈现碳污染。随溅射功率的增加,Ta薄膜的沉积速率几乎呈线性增大,薄膜中晶粒取向增多,颗粒尺寸增大,杂质碳原子含量基本不变,0/Ta比值减小,导电性能增加,TcR住正值方向偏移。在300℃~500℃范围沉积的Ta薄膜均为p-Ta,择优取向为p-Ta(200),基底温度增加到650℃,部分B-Ta转化为α-Ta,电阻率迅速下降。随着基底温度的升高,Ta薄膜的表面平均粗糙度和颗粒尺寸变小,致密度提高,0/Ta原子比值减小,电阻率减小。
     不同热处理工艺对Ta薄膜的微观结构、表面特性与相的组成有重要影响,进而影响其电性能。在O-2Pa低真空环境中热处理,其室温电阻率随着热处理温度的上升,呈先上升、后略微下降趋势;而在O-2Pa02中热处理,其室温电阻率随热处理温度的上升而增大。相同的热处理温度,在02中热处理后的Ta薄膜室温电阻率都要比在低真空下热处理后的电阻率大。薄膜热处理后微观结构对电性能的影响机理可以采用简单化的双层并联电阻模型,借助双导电特性来定性解释。
     Ta-0薄膜的微观结构、化学组成与溅射气氛中的0z含量有关。随着溅射气体中02含量的增加,薄膜的结晶相含量迅速减少。650℃高温热处理促进Ta-0薄膜发生结晶析出;Ta-0薄膜中氧的含量及微观结构的演变对电性能起主导作用。真空环境下的电阻-温度曲线随薄膜中氧含量的增加由近似线性关系逐渐演变为近似指数形式,空气环境下的电阻-温度特性曲线表现为冷却时的电阻变化曲线斜率要比加热时的斜率更负。
     对比研究了不同厚度及氧含量的Ta-0薄膜经不同温度、气氛和时间老化后的电学稳定性能。不同厚度的Ta-0薄膜,其AR/R值随着老化时间及温度的增加而增大。Ta-0薄膜在空气环境中经相同温度及时间老化后,其相对电阻变化(AR/R)值随溅射气体中0:含量的增加而增大;Ta-0薄膜存在老化稳定性较差的问题。Ta-0薄膜在空气或氧气气氛下老化处理后微观结构对电性能的影响机理可以用颗粒边界氧扩散-氧化模型来定性解释。
     沉积于玻璃和Si(111)基底的Ta/n薄膜,其各结晶相的体积分数部受Ti缓冲层厚度的影响。n缓冲层的引入能有效抑制Ta薄膜中B-Ta相的生长,而促进α-Ta相的形成。将Ti缓冲层暴露于空气环境后,沉积的Ta薄膜由α-Ta相和β-Ta相组成,其中β-Ta分别呈(200)与(004)晶面择优取向生长,α-Ta仍以(110)晶面择优取向生长。Ti缓冲层对Ta薄膜的生长的影响机理,可用n缓冲层与Ta薄膜之间的晶格匹配来解释。
     Ta0X缓冲层的微观结构与表面形貌对Ta薄膜的微观结构、颗粒尺寸、表面形貌以及断面形貌有重要影响,进而影响其电性能。随着0_2/Ar流量比值的增加,Ta0_x缓冲层的结晶颗粒迅速减少,薄膜逐渐由晶态成分逐渐转变为非晶态成分占主导地位,使沉积其上的Ta薄膜的结晶取向性变差,粒度减小,Ta薄膜与Ta0_x缓冲层之间逐渐出现明显的分界面。Ta/Ta0_x薄膜内Ta颗粒的减小,使薄膜内晶界密度增加,从而增强晶界电子散射效应,使Ta/Ta0_x薄膜的室温电阻率增加。
In this paper, Ta and Ta-O films were deposited on glass substrates by direct current magnetron sputtering. The microstructure, surface morphology and chemical composition evolution of two types of the films were investigated as a function of sputtering parameters and heat treatment procedure, and the effects of microstructure, surface morphology and chemical composition on the electrical properties of the films was also be studied. The microstructure and surface characteristics of Ti and TaO×buffer layer films were researched, and the effects of microstrure and surface characteristics on the tantalum films deposited on them were also investigated. The grown model of the tantalum films deposited on Ti and TaO×buffer layer films was analyzed. Furthermore, it was also studied that the effects of microstructure evolution on electrical properties of the Ta/Ti and Ta/TaO×films in this paper.
     Sputtering power and substrate temperature play a significant role on the deposition rate, crystal orientation, O/Ta ratio and electrical properties of Ta films. All Ta films in our study show the presence of carbon contamination. As increasing sputtering power, the carbon atomic content in films keeps no change, but the deposition rate of Ta films increases linearly nearly, tantalum films show more growth orientation and the grain size in films becomes large and the O/Ta ratio of the films decreases, which increases the conductivity and causes the TCR to shift positive value. The tantalum film was composed of ratio of the tantalum films decreased and the density of the tantalum films increased, which all make the resistivity decreased.
     Different heat treating procedure plays an important role on the microstructure, surface properties and crystal phase of tantalum films, which influence their electrical properties. The electrical resistivity at room temperature of tantalum films annealed at low vacuum of 0.2Pa is continuous increased at the beginning and then decreased gradually as increasing the annealing temperature. However, the electrical resistivity at room temperature of tantalum films annealed at O_2 ambience of 0.2Pa is increased rapidly as increasing the annealing temperature. At the same annealing temperature, the electrical resistivity values at room temperature of tantalum films annealing at0.2Pa O_2 ambience are larger than that annealing at low vacuum of 0.2Pa. The effect ofthe microstructure on the electrical properties of tantalum films after annealed atdifferent procedure can be explained by a simple double layer parallel connectionresistance model and dual conduction model.
     The microsture and chemical compositiom of Ta-O films depends on the relativerates at which oxygen is leaked into the sputtering system. As increasing the flow ratesof oxygen, the incrystal phase content of Ta-O films decreased rapidly. The -vs-Tcurve in vacuum ambience transformed from closely linear to exponential behaviourwith increasing the oxygen content of the films. However, in atmosphere ambience, theslope of the -vs-T curve for heating process was more negative than that for coolingprocess. The value of relative resistance change ( DR R ) was increased with the higheroxygen flow rate.
     It was investigated that the electrical stability of Ta-O films with differentthickness and oxygen content after aging at different temperature, ambience and time.The value of relative resistance change ( DRR ) of Ta-O films with different thicknesswas increased as increasing aging time and temperature. At the same temperature andtime, the value of relative resistance change ( DRR ) of Ta-O films aged in atmospherewas increased with the increase of oxygen flow rate during deposition. The Ta-O filmsshowed poor aging stability. The effect of the microstructure on the electricalproperties of Ta-O films after aged in atmosphere or oxygen ambience can be made aqualitative explaination by an oxygen diffusion-oxidation of grain boundary model.
     The volume fraction of the nanocrystalline phase of Ta/Ti films deposited on glassor Si (111) substrate was influenced from the thickness of Ti buffer layer. The Ti bufferlayer can effectively inhibit the formation of the Ta phase and promote the -Taphase growth in Ta films. When the Ti buffer layer was exposed to atmosphereambience, the Ta films were all composed of Ta phase which still grown at the -Ta(110) preferred orientation and Ta phase which grown at the Ta (200) and Ta(004) preferred orientation, respectively. The effect of Ti buffer layer on the growth ofTa films can be explained by the crystal lattice match between the Ti buffer and Tafilms.
     The microstructure and surface morphology of TaO×duffer layer play animportant role on the microstructure, grain size, surface and cross-sectional propertiesof Ta films, which influence thier electrical properties. As increasing the O_2/Ar flowrate, the amount of crystal grains in the TaO×duffer layer decreased rapidly, the dominant component in films changed from crystalline phase to amorphous phase, which reduced the crystal orientation and decreased the Ta crystalline granular size of film deposited on it, and showed an abvious interface between Ta film and TaO×duffer layer. The decrease of the Ta crystalline granular size in Ta/TaO×films would increase the crystalline boundary density in the films and enchance electron scattering effect among the crystalline boundary, which increased the room temperature resistivity of Ta/TaO×films.
引文
[1] W. Zhu. Vacuum Microelectronics. New York: John Wiley & Sons, Inc., 2001, 6-300
    [2] R. Singh, D.L. Harame, M.M. Oprysko. Silicon Germanium: Technology, Modeling, and Design. Hoboken: NJ John Wiley & Sons, Inc., 2004, 1-45
    [3] J.J. Van Den Broek, J.J.T.M. Donkers, R.A.F Van Der Rijt, et al., Metal film precision resistors: resistive metal films and a new resistor concept, Philips J. Res., 1998, 51: 429-447
    [4] A.A. Garcia, J. Garcia, E. Castano, et al. Strain sensitivity and temperature influence on sputtered thin films for piezoresistive sensors. Sensors Actuators A, 1993, 6: 37-38
    [5] H.I. Kazi, P.M. Wild, T.N. Moore, et al. The electromechanical behavior of nichrome (80/20 wt %) film. Thin Solid Film, 2003, 433: 337-343
    [6] E. Schippel. The influence of silicon on deposited Ni-Cr films. Thin Solid Films, 1986, 144: 21-28
    [7]杨烈宇,关文铎.材料表面与薄膜技术.北京:人民交通出版社,1991,207—213
    [8]曲喜新.现代电阻薄膜.电子元件与功能材料,1995,14(2):1-9
    [9] J. Musil, J. Vlcek. Magnetron sputtering of films with controlled texture and brain size. Mater. Chem. Phys., 1998, 54: 116-122
    [10] J. Musil, F. Regent. Formation of nanocrystalline NiCr-N films by reactive dc magnetron sputtering. J. Vac. Sci. Technl. A, 1998, 16: 3301-3304
    [11] W.D. Westwood, N. Waterhouse. Structural and electrical properties of tantalum films sputtered in Oxygen-Argon mixtures. J. Appl. Phys., 1971, 42: 2946-2952
    [12] N. Waterhouse. Variation with depth of the electrical properties of sputtered tantalum films. J. Appl. Phys., 1971, 43: 1498-1504
    [13] W.R. Hardy, C. Tam. Ta thin film resistors reactively sputtered onto substrates mounted on a rotating carousel. J. Mater. Sci., 1974, 9: 438-446
    [14] S.M. Kang, S.G. Yoon, S.J. Suh, et al. Control of electrical resistivity of TaN thin films by reactive sputtering for embedded passive resistors. Thin Solid Films, 2008, 516: 3568-3571
    [15] Y.M. Lu, R.J. Weng, W.S. Hwang, et al. Study of phase transition and electrical resistivity of tantalum nitride films prepared by DC magnetron sputtering with OES detection system. Thin Solid Films, 2001, 398-399: 356-360
    [16] C.T. Backhouse, G. Este, J.C. Sit, et al. WSix thin films for resistors. Thin SolidFilms, 1997, 311: 299-303
    [17] A.F. Jankowski, J.P. Hayes. Ti-Cr-Al-O thin film resistors. Thin Solid Films,2002, 420-421: 487-491
    [18] Ma. Erming, W.A. Anderson. Mechanism of stabilizing RuO2/Ta2N double layerthin film resistors. Mater. Sci. Eng. B, 1997, 47: 161-166
    [19] W.D. Westwood, N. Waterhouse, P.S. Wilcox. Tantalum Thin Films. London:Academic Press Inc., 1975, 1-255
    [20] G.L. Miller. Tantalum and niobium. New York: Academic Press, 1959, 1-87
    [21] T.E. Tietz, J.W. Wilson. Behavior and properties of refractory metals. Stanford:Stanford University Press, 1965, 1-30
    [22] S.L. Lee, J. Mueller, D. Windover. Real-Time XRD Characterization of Growth ofSputtered Tantalum Films. Mater. Res. Soc. Symp. Proc., 2005, 840: 371-376
    [23] M. Oda, A. Ozawa, S. Ohki, et al. An X-ray mask using SiC membrance depositedby ECR plasma CVD. Microelectron. Eng., 1990, 11: 241-244
    [24] K. Holloway, P. M. Fryer. Tantalum as a diffusion barrier between copper andsilicon. Appl. Phys. Lett., 1990, 57: 1736-1738
    [25] K. Kondo, M. Nakabayashi, K. Kawakami, et al. Stress stabilization of -tantalumand its crystal structure. J. Vac. Sci. Technol. A, 1993, 11: 3067-3071
    [26] L.A. Clevenger, N.A. Bojarczuk, K. Holloway, et al. Comparison of high vacuumand ultra-high-vacuum tantalum diffusion barrier performance against copperpenetration. J. Appl. Phys., 1993, 73: 300-308
    [27] M. Stavrev, D. Fischer, F. Praessler, et al. Behavior of thin Ta-based films in theCu/barrier/Si system. J. Vac. Sci. Technol. A, 1999, 17: 993-1001
    [28] G.S. Chen, S.T. Chen, S.C. Huang, et al. Growth mechanism of sputter depositedTa and Ta-N thin films induced by an underlying titanium layer and varyingnitrogen flow rates. Appl. Surf. Sci., 2001, 169-170: 353-357
    [29] P. Catania, J.P. Doyle, J.J. Cuomo. Low resistivity body-centered cubic tantalumthin films as diffusion barriers between copper and silicon. J. Vac. Sci. Technol. A,1992, 10: 3318-3321
    [30] Z.L. Yuan, D.H. Zhang, C.Y. Li, et al. A new method for deposition of cubic Tadiffusion barrier for Cu metallization. Thin Solid Films, 2003, 434: 126-129
    [31] V.M. Amosov, B.A. Karelin, N.I. Kisilenko, et al. Production of tantalum anodesof electrolytic condensers. Power Metall. Met. C., 1972, 11: 42-46
    [32] K. Ohta, K. Yamoda, K. Shimiru, et al. Quadruply Self-Aligned StackedHigh-Capacitance RAM Using Ta2O5 High-Density VLSI Dynamic Memory.IEEE Trans. Electron. Devices, 1982, 29: 368-376
    [33] H. Fujikawa, Y. Taga. Effects of additive elements on electrical properties of tantalum oxide films. J. Appl. Phys., 1994, 75:2538-2544
    [34] H. Shinriki, M. Nakata. UV-O3 and Dry-O2: Two-step Annealed Chemical Vapor-Deposited Ta2O5 Films for Storage Dielectrics of 64-Mb DRAM’s. IEEE Trans. Electron. Devices, 1991, 38: 455-462
    [35] C. Chaneliere, J.L. Autran, R.A.B. Devine, et al. Mater. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Sci. Eng. R, 1998, 22: 269-322
    [36] K.A. McKinley, N.P. Sandler. Tantalum pentoxide for advanced DRAM applications. Thin Solid Films, 1996, 290: 440-446
    [37] F.C. Chiu. J.J. Wang, J.Y. Lee, et al. Leakage currents in amorphous Ta2O5 thin films. J. Appl. Phys., 1997, 81: 6911-6915
    [38] L. Liu, Y. Wang, H. Gong. Annealing effects of tantalum films on Si and SiO2/Si substrates in various vacuums. J. Appl. Phys., 2001, 90: 416-420
    [39] P.N. Baker. Preparation and properties of tantalum thin films. Thin Solid Films, 1972, 14: 3-25
    [40] R.B. Marcus. Electrical and structural properties of epitaxial bcc tantalum films. J. Appl. Phys., 1966, 37: 3121-3127
    [41] R. Chandrasekharan, I. Park, R.I. Masel, et al. Thermal oxidation of tantalum films at various oxidation states from 300 to 700 . J. Appl. Phys., 2005, 98: 1149081-1149089
    [42] R.R. Krishnan, K.G. Gopchandran, V.P. MahadevanPillai, et al. Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films. Appl. Surf. Sci., 2009, 255: 7126-7135
    [43] T. Mikolajick, R. Kuhnhold, H. Ryssel. The pH-sensing properties of tantalum pentoxide films fabricated by metal organic low pressure chemical vapor deposition. Sensor Actuat. B: Chem., 1997, 44: 262-267
    [44] Y.M. Wang, A.M. Hodge, P.M. Bythrow, et al. Negative strain rate sensitivity in ultrahigh-strength nanocrystalline tantalum. Appl. Phys. Lett., 2006, 89: 0819031-0819033
    [45] V.Z. Peter. Microchip Fabrication. New York: McGraw-Hill, 2000, 431-432
    [46] A.R. Sethuraman, J.F. Wang, L.M. Cook. Review of planarization and reliability aspects of future interconnect materials. J. Electron. Mater., 1996, 25: 1617-1622
    [47] C.M. Tan, A. Roy. Elecromigration in ULSI interconnects. Mater. Sci. Eng. R,2007, 58: 1-75
    [48] Y.K. Lee, K.M. Latt, K.J. Hyung, at al. Study of diffusion barrier properties of ionized metal plasma (IMP) deposited tantalum (Ta) between Cu and SiO2. Mater. Sci. Eng. B, 1999, 68: 99-103
    [49] S.J. Kim, D.J. Duquette. Growth of conformal copper films on TaN by electrochemical deposition for ULSI interconnects. Surf. Coat. Technol., 2006, 201: 2712-2716
    [50] Y. Zhao, G. Lu. First-principles simulations of copper diffusion in tantalum and tantalum nitride. Phys. Rev. B, 2009, 79: 214104-214113
    [51] E. Wieser, M. Peikert, C. Wenzel, et al. Improvement of Ta-based thin film barriers on copper by ion implantation of nitrogen and oxygen. Thin Solid Films, 2002, 410: 121-128
    [52] D.H. Zhang, L.Y. Yang, C.Y. Li, et al. Ta-SiCN bilayer barrier for Cu-ultra low k integration. Thin Solid Films, 2006, 504: 235-238
    [53] J.J. Tan, X.P. Qu, Q. Xie, et al. The properties of Ru on Ta-based barriers. Thin Solid Films, 2006, 504: 231-234
    [54] J.-P. Jacquemin, E. Labonne, C. Yalicheff, et al. TaN/Ta bilayer barrier characteristics and integration for 90 and 65 nm nodes. Microelectron. Eng., 2005, 82: 613-617
    [55] L. Chen, N. Nagtoto, B. Ekstrom, et al. Effect of surface impurities on the Cu/Ta interface. Thin Solid Films, 2000, 376: 115-123
    [56] Q. Xie, X.P. Qu, J.J. Tan, et al. Superior thermal stability of Ta/TaN bi-layer structure for copper metallization. Appl. Surf. Sci., 2006, 253: 1666-1672
    [57] B.S. Kang, S.M. Lee, J. Kwak, et al. The effectiveness of Ta prepared by ion-assisted deposition as a diffusion barrier between copper and silicon. J. Electrochem. Soc., 1997, 144: 1807-1812
    [58] D.S. Yoon, H.K. Baik, S.M. Lee. Tantalum-microcrystalline CeO2 diffusion barrier for copper metallization. J. Appl. Phys., 1998, 83: 1333-1336
    [59] T. Oku, E. Kawakami, M. Uekubo, et al. Diffusion barrier property of TaN between Si and Cu. Appl. Surf. Sci., 1996, 99: 265-272
    [60] H.Y. Tsai, S.C. Sun, S.J. Wang. Characterization of sputtered tantalum carbide barrier layer for copper metallization. J. Electrochem. Soc., 2000, 147: 2766-2772
    [61] T. Laurila, K.J. Zeng, J. Molarius, et al. Tantalum carbide and nitride diffusion barriers for Cu metallization. Microelectron. Eng., 2001, 60: 71-80
    [62] J.W. Lim, Y. Ishikawa, K. Miyake, et al. Improvement of Ta barrier filmproperties in Cu interconnection by using a non-mass separated ion beam deposition methed. Mater. Trans., 2002, 43: 478-481
    [63] G.S. Chen, P.Y. Lee, S.T. Chen. Phase formation behavior and diffusion barrier property of reactively sputtered tantalum-based thin films used in semiconductor metallization. Thin Solid Films, 1999, 353: 264-273
    [64] M.H. Tsai, S.C. Sun, C.E. Tsai, et al. Comparison of the diffusion barrier properties of chemical-vapor-deposited TaN and sputtered TaN between Cu and Ta. J. Appl. Phys., 1996, 79: 6932-6937
    [65] M. Takeyama, A. Noya, T. Sase, et al. Properties of TaN×films as diffusion barrier in the thermally stable Cu/Si contact systems. J. Vac. Sci. Technol. B, 1996, 14: 674-678
    [66] J. Imahori, T. Oku, M. Murakami. Diffusion properties of TaC between Si and Cu. Thin Solid Films, 1997, 301: 142-148
    [67] M.T. Wang, Y.C. Lin, M.C. Chen, et al. Barriers properties of very thin Ta and TaN layers against copper diffusion.m, J. Electrochem. Soc., 1998, 145: 2538-2544
    [68] A.E. Kaloyeros, X. Chen, S. Lane, et al. Tantalum diffusion barrier grown by inorganic plasma-promoted chemical vapor deposition: performance in copper metallization. J. Mater. Res., 2000, 15: 2800-2810
    [69] K.H. Min, K.C. Chun, K.B. Kim. Comparative study of tantalum and tantalum nitrides (Ta2N and TaN) as a diffusion barrier for Cu metallization. J. Vac. Sci. Technol. A, 1996, 14: 3263-3269
    [70] C.Y. Li, L. He, J.J. Wu, et al. Comparative study of ionized metal plasma Ta, TaN and multistacked Ta/TaN structure as diffusion barriers for Cu metallization. Surf. Rev. Lett., 8: 459-464
    [71] Z. W. Yang, D.H. Zhang, C.Y. Li, et al. Barrier layer effects on reliabilities of copper metallization. Thin Solid Films, 2004, 462-463: 288-291
    [72] W.T. Anderson, A.A. Iiiadis, S.N. Mohammad, et al. Electrical, microstructural, and thermal stability characteristics of Ta/Ti/Ni/Au contacts to n-GaN. J. Appl. Phys., 2004, 95: 1516-1524
    [73] S.N. Mohammad. Contact mechanisms and design principles for alloyed ohmic contacts to n-GaN. J. Appl. Phys., 2004, 95: 7940-7953
    [74] T. Laurila, K. Zeng, K. Joma, et al. Effect of oxygen on the reactions in the Si/Ta/Cu metallization system. J. Mater. Res., 2001, 16: 2939-2946
    [75] T. Laurila, K. Zeng, J. Molarius, et al. Effect of oxygen on the reactions inSi/Ta/Cu and Si/TaC/Cu system. Microlelctron. Eng., 2002, 64: 279-287
    [76] T. Laurila, J. Molarius, J.K. Kivilahti. Interfacial reactions in the Si/TaC/Cu system. Microelectron. Eng., 2004, 71: 301-307
    [77] S.T. Lin, C. Lee. Characteristics of sputtered Ta-B-N thin films as diffusion barriers between copper and silicon. Appl. Surf. Sci., 2006, 253: 1215-1221
    [78] E. Kolawa, P.J. Pokela, J.S. Reid, et al. Amorphous Ta-Si-N diffusion barriers in Si/Al and Si/Cu metallizations. Appl. Surf. Sci., 1991, 53: 373-376
    [79] P.J. Pokela, E. Kolawa, R. Ruiz, et al. Characterization of the Al/Ta-Si-N/Cu metallization. Thin Solid Films, 1991, 203: 259-266
    [80] E. Ivanov. Evaluation of tantalum silicide sputtering target materials for amorphous Ta-Si-N diffusion barrier for Cu metallization. Thin Solid Films, 1998, 332: 325-325
    [81] R. Hubner, M. Hucker, N. Mattern, et al. Effect of nitrogen content on the degradation mechanisms of thin Ta-Si-N diffusion barriers for Cu metallization. Thin Solid Films, 2006, 500: 259-267
    [82] C. Lee, Y.H. Shin. Ta-Si-N as a diffusion barrier between Cu and Si. Mater. Chem. Phys., 1998, 57: 17-22
    [83] J.O. Olowolafe, I. Rau, K.M. Unruh, et al. Effect of composition on thermal stability and electrical resistivity of Ta–Si–N films. Thin Solid Films, 2000, 356: 19-21
    [84] Y.K. Lee, B.S. Suh, S.K. Rha, et al. Structural and chemical stability of Ta–Si–N thin film between Si and Cu. Thin Solid Films, 1998, 320: 141-146
    [85] C.M. Eichfeld, M.A. Horsey, S.E. mohney, et al. Ta-Ru-N diffusion barriers for high-temperature contacts to p-type SiC. Thin Solid Films, 2005, 485: 207-211
    [86] Y.Z. Liu, S.X. Song, D.L. Mao, et al. Diffusion barrier performance of reactively sputtered Ta-W-N between Cu and Si. Microelectron. Eng., 2004, 75: 309-315
    [87] S. Vinayak, H.P. Vyas, V.D. Vankar. Microstructure and electrical characteristics of Ni-Cr thin films. Thin Solid Films, 2007, 515: 7109-7116
    [88] I.E. Klein, M. Hershkovich, I.A. Goldberg. The mechanism of oxidation of thin Ni-Cr films. J. Microelectron., 1988, 19: 17-23
    [89] N.G. Dhere, D.G. Vaiude, W. Losch. Composition and temperature coefficient of resistance of Ni-Cr thin films. Thin Solid Films, 1979, 59: 33-41
    [90] R.K. Waits. Silicon-chromium thin film resistor reliability. Thin Solid Films, 1973, 16: 237-247
    [91] F.B. Chang, L.N. Kang. The influence of iron on properties of deposited Ni-Cr-Siresistors. Thin Solid Films, 1990, 185: 341-346
    [92] X.D. Zhu, H. Wang, R.J. Zhan, et al. Investigations of Ta film resistors onchemically vapor deposited diamond plates. Appl. Surf. Sci., 1999, 153: 19-22
    [93] W.R. Hardy, D. Mills. Effects of deposited temperatures on Ta thin films resistorsreactively sputtered in oxygen. J. Vac. Sci. Technol., 1973, 1-2: 303-306
    [94] G. Golan, A. Axelevitch, R. Margolin, et al. Novel approach to sputtered tantalumfilm resistors with controlled pre-defined resistance. J. Microelectron., 2001, 32:61-67
    [95] X. Sun, E. Kolawa, J.S. Chen, et al. Properties of reactively sputtered-depositedTa-N thin films. Thin Solid Films, 1993, 236: 347-351
    [96] D.A. McLean. Thin films in microelectronics. Thin Solid Films, 1971, 8: 1-17
    [97] R.G. Duckworth. Tantalum thin films resistors. Thin Solid Films, 1972, 10:337-353
    [98] T. Riekkinen, J. Molarius, T. Laurila, et al. Reactive sputter deposition andproperties of TaxN thin films. Microelectron. Eng., 2002, 64: 289-297
    [99] R. Saha, J.A. Barnard. Effect of structure on the mechanical properties of Ta andTa(N) thin films prepared by reactive DC magnetron sputtering. J. Cryst. Growth,1997, 174: 495-500
    [100] N.D. Cuong, D.J. Kim, B.D. Kang, et al. Structural and electricalcharacterization of tantalum nitride thin film resistors deposited on AlN substratesfor -type attenuator applications. Mater. Sci. Eng. B, 2006, 135: 162-165
    [101] G.R. Lee, J.J. Lee, C.S. Shin, et al. Self-organized lamellar structuredtantalum-nitride by UHV unbalanced-magnetron sputtering. Thin Solid Films,2005, 475: 45-48
    [102] C.C. Chang, J.S. Jeng, J.S. Chen. Microstructural and electrical characteristics ofreactively sputtered Ta-N thin films. Thin Solid Films, 2002, 413: 46-51
    [103] W. Engelmaier. Thermal behavior and aging of tantalum nitride thin film resistorunder pulsed operation. Microelectron. Reliab., 1971, 10: 422-423
    [104] C.S. Shin, Y.W. Kim, D. Gall, et al. Phase composition and microstructure ofpolycrystalline and epitaxial TaNx layers grown on oxidized Si (001) and MgO(001) by reactive magnetron sputter deposition. Thin Solid Film, 2002, 402:172-182
    [105] K. Radhakrishnan, N. G. Lng, R. Gopalakrish. Reactive sputter deposition andcharacterization of tantalum nitride thin films. Mater. Sci. Eng. B, 1999, 57:224-227
    [106] H. Shen, R. Ramanathan. Fabrication of a low resistivity tantalum nitride thinfilm. Microelectron. Eng., 2006, 83: 206-212
    [107] X. Sun, E. Kolawa, J.S. Chen, et al. Properties of reactively sputtered-depositedTa-N thin films. Thin Solid Films, 1993, 236: 347-351
    [108] S.M. Na, I.S. Park, S.Y. Park, et al. Electrical and structural properties of Ta-Nthin film and Ta/Ta-N multilayer for embedded resistor. Thin Solid Films, 2008,516: 5465-5469
    [109] J.W. Bae, J.W. Lim, K. Mimura, et al. Ion beam deposition of -Ta films bynitrogen addition and improvement of diffusion barrier. Thin Solid Films, 2007,515: 4768-4773
    [110] T.C. Li, B.J. Lwo, N.W. Pu, et al. The effects of nitrogen partial pressure on theproperties of the TaNx films deposited by reactive magnetron sputtering. Surf.Coat. Tech., 2006, 201: 1031-1036
    [111] M.L. Lovejoy, G.A. Patrizi, D.J. Roger, et al. Thin-film tantalum-nitride resistortechnology for phosphide-based optoelectronics. Thin Solid Films, 1996, 290-291:513-517
    [112] W.R. Hardy, J. Shewchun, D. Kuenzig, et al. Reactivity sputtered tantalum thinfilm resistors part 1. physical and electrical properties. Thin Solid Films, 1971, 8:81-100
    [113] S. Abdin, C. Val. The production of tantalum nitride film resistors using acontinuous sputtering machine. Thin Solid Films, 1979, 57: 327-331
    [114] M. Deery, K.H. Goh, K.G. Stephens, et al. Reactive ion bombardment of tantalumthin film resistors. Thin Solid Films, 1973, 17: 59-66
    [115] E. Misra, Y. Wang, N.D. Theodore, et al. Evaluation of diffusion barrier andelectrical properties of tantalum oxynitride thin films for silver metallization.Thin Solid Films, 2004, 457: 338-345
    [116] C.A. Jong, T.S. Chin. Optical characteristics of sputtered tantalum oxynitrideTa(N,O) films. Mater. Chem. Phys., 2002, 74: 201-209
    [117] M. Stavrev, D. Fischer, A. Preub, et al. Study of nanocrystalline Ta(N,O)diffusion barrier for use in Cu metallization. Microelectron. Eng., 1997, 33:269-275
    [118] M. Stavrev, D. Fischer, C. Wenzel, et al. Crystallographic and morphologicalcharacterization of reactively sputtered Ta, Ta-N, and Ta-N-O thin films. ThinSolid Films, 1997, 307: 79-88
    [119] D. Gerstenberg, C.J. Calbick. Effects of nitrogen, methane and oxygen onstructure and electrical properties of thin tantalum films. J. Appl. Phys., 1964, 35: 402-407
    [120] F. Climent, R. Capellades, J. Cil. Frequency dependence of capacitance and series resistances of Ta/Ta2O5/electrolyte. Electrochim. Acta., 1993, 38: 285-289.
    [121] J.M. Martinez-Duat, J.M. Albella, J. Baonza. Electronic properties of thin film Ta-Ta2O5-Au capacitors. Thin Solid Films, 1976, 36: 371-374
    [122] H. Ando, Y. Kito, H. Sakamoto. Electrical-resistivity of reactive sputtered Ta-N-O films as a function of temperature. J. Jpn. Inst. Met., 1984, 48: 566-570
    [123] N. Mattern, M. Stavrev, D. Fischer. Structure of reactively sputtered Ta-N-O films. In: 5th European Powder Diffraction Conference (EPDIC 5). Parmaitaly, 1997, 466-471
    [124] C.A. Steidel. Electrical and structural properties of co-sputtered tantalum aluminum films. J. Vac. Sci. Technol., 1969, 6: 694-698
    [125] J.C. Schuster, Z. Metallkd. Phase and phase relations in the system Ta-Al. Mater. Res. Adv. Tech., 1985, 76: 724-727
    [126] P.R. Subramanian, D.B. Miracle, S. Mazdiyasni. Phase relations in the Al-Ta system. Metall. Mater. Trans. A, 1990, 21: 539-545
    [127] S. Mahne, B. Harbrecht. Al69Ta39-a new variant of a face-centered cubic giant cell structure. J. Alloy. Compd., 1994, 203: 271-279
    [128] Y. Du, R. Schmid-Fetzer. Thermodynamic modeling of the Al-Ta system. J. Phase Equilibria, 1996, 17: 311-324
    [129] M. Saqib, J.M. Hampikian, D.I. Potter. Improving tantalum oxidation resistance by Al ion-implantation. Metall. Mater. Trans. A, 1989, 20: 2101-2108
    [130] X.Y. Yuan, Z.Q. Wu, A. Hu, et al. Textures of Ta/Al multilayer films. J. Appl. Phys., 1993, 73: 3827-3829
    [131] A. Hu, S.S. Jiang, H. Chen, et al. Anomalous annealing behavior of Ta/Al multilayer films. Phys. Stat. Sol., 1990, 117: 221-226
    [132] P.J. Su, C.K. Chung. Amorphization of Ta-Al films using magnetron sputtering. Surf. Coat. Tech., 2005, 200: 1664-1668
    [133] P.K. Reddy, G.K. Bhagavat, S.R. Jawalekar. Ta-Al-N thin films resistors with improved electrical properties. Thin Solid Films, 1980, 70: 27-35
    [134] J.M. Schoen, D. Gerstenberg, C.T. Hartwig. Properties of Ta-Al films reactivity sputtered in an argon-nitrogen atmosphere. Thin Solid Films, 1974, 28: 251-264
    [135] J. Yamazaki, T. Kamo, M. Nakamura. High density thin films hybrid IC utilizing Ta-Al-N resistor and Ta2O5 capacitor. Microelectron. Reliab., 1975, 14: 32-33
    [136] C.K. Chung, T.S. Chen. Effect of nitrogen flow ratios on the microstructure and properties of Ta-Al-N thin films by reactive cosputtering. J. Electrochem. Soc., 2009, 156: 119-122
    [137] P.K. Reddy, S.R. Jawalekar. High-frequency performance of Ta-Al-N capacitors made with an aluminum under-layer. Thin Solid Films, 1983, 109: 339-343
    [138] P.K. Reddy, S.R. Jawalekar. Temperature-compensated RC networks developed using Ta-Al-N films. Thin Solid Films, 1982, 96: 271-277
    [139] P.K. Reddy, S.R. Jawalekar. R-C components using Ta-Al-N and Ta-N films. Vac. News, 1981, 12: 12-16
    [140] T.M. Berlicki, G. Beensh-marchwicka, E.L. Prociow, et al. Resistivity of Si-Ni and Si-Ta layers made by magnetron sputtering method. Vacuum, 2002, 65: 169-175
    [141] Y.J. Lee, B.S. Suh, C.O. Park. Co-sputter deposited Ta-Si diffusion barrier between Si and Cu: the effects of Si content on the barrier property. Thin Solid Film, 1999, 357: 237-241
    [142] M. Guziewicz, A. Piotrowska, E. Kaminska, et al. Ta-Si contacts to n-SiC for high temperature devices. Mater. Sci. Eng. B, 2006, 135: 289-293
    [143] T. Nakamori, T. Tsuruoka, T. Kanamori, et al. Ta-Si-C high resistivity thin films for thermal printing heads. IEEE. T. Comp. Tech., 1987, 3: 446-451
    [144] A.S. Ozcan, K.F. Ludwig Jr, C. Lavoie, et al. Evolution of microstructure in Ti-Ta bilayer thin films on polycrystalline-Si and Si (001). Thin Solid Films, 2004, 466: 238-249
    [145] M. Ferroni, E. Comini, P.G. Merli, et al. Effects of Ta/Nb doping on titania-based thin films for gas-sensing. Chem. Senses, 2004, 20: 28-29
    [146] N.J. Welham. Ambient temperature formation of (Ta, Nb)C and (Ta, Nb)N. J. Mater. Sci., 1999, 34: 21-27
    [147] K. Sasaki, T. Umezawa. Electrical properties and Auger electron spectroscopy analysis of oxide layers formed by anodization on Nb-Ta and Nb-Ta-N films. Thin Solid Films, 1980, 74: 83-88
    [148] Z.H. Cao, P.Y. Li, X.K. Meng. Nanoindentation creep behaviors of amorphous, tetragonal, and bcc Ta films. Mater. Sci. Eng. A, 2009, 516: 253-258
    [149] P. Klaver, B. Thijsse. Thin Ta films: growth, stability, and diffusion studied by molecular-dynamics simulations. Thin Solid Films, 2002, 413: 110-120
    [150] S. Tsukimoto, M. Moriyama, M. Murakami. Microstructure of amorphous tantalum nitride thin films. Thin Solid Films, 2004, 460: 222-226
    [151] D. Kahng, M.M. Atalla. Silicon-silicon dioxide surface device. In: IRE solid-state device research conference. Pittsburg, 1960, 45-51
    [152] L. Ding, T.P. Chen, Y. Liu, et al. Dielectric function of SiO2 film embedded with silicon nanocrystals. J. Cryst. Growth, 2006, 288: 87-91
    [153] D.A. Muller, T. Sorsch, S. Moccio, et al. The electronic structure at the atomic scale of ultra-thin gate oxides. Nature, 1999, 399: 758
    [154] S.P. Tang, R.M. Wallace, A. Seabaugh, et al. Evaluating the minimum thinness of gate oxide on silicon using firs-principle method. Appl. Surf. Sci., 1998, 135: 137-141
    [155] B. Neaton, D.A. Muller, N.W. Ashcroft. Electronic properties of the Si/SiO2 interface from first principles. Phys. Rev. Lett., 2000, 85: 1298-1301
    [156] P. Burggraaf. 2000 begins with a revised industry roadmap. Sol. Stat. Tech., 2000, 43: 31-35
    [157] C. Chaneliere, J.L. Autran, R.A.B. Devine, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications. Mater. Sci. Eng. R, 1998, 22: 269-322
    [158] H. Shinriki, M. Nakata. UV-O3 and dry-O2: two-step-annealed chemical vapor deposited Ta2O5 films for storage dielectrics of 64 DRAMs. IEEE Trans. Electron. Devices ED, 1991, 38: 455-462
    [159] K. Ohta, K. Yamada, K. Shinriki, et al. Quadruply self-aligned stacked high capacitance RAM using Ta2O5 high-density VLSI dynamic memory. IEEE Trans. Electron. Devices ED, 1982, 29: 368-376
    [160] T. Kaga, T. Kure, H. Shinriki, et al. Crown-shaped stacked-capacitor cell for 1.5-V operation 64-M DRAMs. IEEE Trans. Electron. Devices ED, 1991, 38: 255-261
    [161] M. Ino, N. Inoue, M. Yoshimaru. Silicon nitride thin-film deposition by LPCVD with in situ HF vapor cleaning and its application to stacked DRAM capacitor fabrication. IEEE Trans. Electron. Devices ED, 1994, 41: 703-708
    [162] T. Kaga, M. Ohkura, F. Murai, et al. Process and device technologies for 1Gbit dynamic random-access memory cells. J. Vac. Sci. Tschnol. B, 1995, 13: 2329-2334
    [163] K.W. Kwon, C.S. Kang, S.O. Park, et al. Thermally robust Ta2O5 capacitor for the 256-Mbit DRAM. IEEE Trans. Electron. Devices ED, 1996, 43: 919-923
    [164] D. Mills, L. Young, F.G.R. Zobel. Ionic conductivity, dielectric constant, and optical properties of anodic oxide films on two types of sputtered tantalum films.J. Appl. Phys., 1966, 37: 1821-1824
    [165] K.C. Kalra, P. Katyal. Electrical breakdown and electronic current of tantalum tantalum-oxide aqueous electrolyte systems. Thin Solid Films, 1991, 201: 203-216
    [166] K. Shimizu, K. Kobayashi, G.E. Thompson, et al. The migration of fluoride ions in growing anodic oxide films on tantalum. J. Electrochem. Soc., 1997, 144: 418-423
    [167] S.W. Park, H.B. Im. Effects of oxidation conditions on the properties of tantalum oxide films on silicon substrate. Thin Solid Films, 1992, 207: 258-264
    [168] S. Seki, T. Unagami, O. Kogure, et al. Formation of high-quality, magnetron-sputtered Ta2O5 films by controlled the transition region at the Ta2O5/Si interface. J. Vac. Sci. Technol. A, 1987, 5: 1771-1774
    [169] S. Oshio, M. Yamamoto, J. Kumata, et al. Interaction of reactively sputtered TaO×thin films with In-Sn-O thin films and properties of TaO×thin films. J. Appl. Phys., 1992, 71: 3471-3478
    [170] P.H. Chang, H.Y Liu. Structures of tantalum pentoxide thin films formed by reactive sputtering of Ta metal. Thin Solid Films, 1995, 258: 56-63
    [171] S. Shibata. Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering. Thin Solid Films, 1996, 277: 1-4
    [172] J. Hudner, P.E. Hellberg, D. Kusche, et al. Tantalum oxide films on silicon grown by tantalum evaporation in atomic oxygen. Thin Solid Films, 1996, 281-282: 415-418
    [173] F. Gitmans, Z. Sitar, P. Gunter. Growth of tantalum oxide and lithium tantalite thin films by molecular beam epitaxy. Vacuum, 1995, 46: 939-942
    [174] K. Kukli, J. Ihanus, M. Ritala, et al. Tailoring the dielectric properties of HfO2-Ta2O5 nanolaminates. Appl. Phys. Lett., 1996, 68: 3737-3739
    [175] J.J. McNally, G.A. Al-Jumaily, J.R. McNeil. Ion-assisted deposited of Ta2O5 and Al2O3 thin films. J. Vac. Sci. Technol. A, 1986, 4: 437-439
    [176] P.J. Martin, A.Bendavid, M. Swain, et al. Properties of thin films of tantalum oxide deposited by ion-assisted deposition. Thin Solid Films, 1994, 239: 181-185
    [177] P.M. Natishan, E. McCafferty, P.R. Puckett, et al. Ion beam assisted deposited tantalum oxide coatings on aluminum. Corros. Sci., 1996, 38: 1043-1049
    [178] S.K. Jeon, S.W. Han, J.W. Park. Effect of rapid thermal annealing treatment on electrical properties and microstructure of tantalum oxide thin film deposited by plasma-enhanced chemical vapor deposition. J. Appl. Phys., 1995, 78: 5978-5981.
    [179] F.C. Chiu, J.J. Wang, J.Y. Lee, et al. Leakage currents in amorphous Ta2O5 thin films. J. Appl. Phys., 1997, 81: 6911-6915
    [180] W.M. Paulson, F.S. Hickernell, R.L. Davis. Effects of deposition parameters on optical loss for rf-sputtered Ta2O5 and Si3N4 waveguides. J. Vac. Sci. Technol., 1979, 16: 307-310
    [181] S.Seki, T. Unagami, O. Kogure, et al. Effects of Surface Oxide on Leakage Current of Magnetron-Sputtered Ta2O5 on Si. J. Electrochem. Soc., 1985, 132: 3054-3055
    [182] X.M. Wu, S.R. Soss, E.J. Rymaszewski, et al. Dielectric constant dependence of Poole-Frenkel potential in tantalum oxide thin films. J. Mater. Chem. Phys., 1994, 38: 297-300
    [183] E. Atanassova, T. Dimitrova and J. Koprinarova. AES and XPS study of thin RF-sputtered Ta2O5 layers. Appl. Surf. Sci., 1995, 84: 193-202
    [184] D.A. Vermilyea. Some effects of annealing Ta2O5 at high temperature. Acta. Metall., 1957, 5: 113-115
    [185] A. Pignolet, G. Mohan Rae, S.B. Krupanidhi. Rapid thermal processed thin films of reactively sputtered Ta2O5. Thin Solid Films, 1995, 258: 230-235
    [186] D. Spassov, E. Atanassova. Conduction mechanisms in Ta2O5 stack in response to rapid thermal annealing. Microelectron. Eng., 2008, 85: 214-222
    [187] D. Spassov, E. Atanassova, G. Beshkov. Effects of rapid thermal annealing in vacuum on electrical properties of thin Ta2O5–Si structures. J. Microelectron., 2000, 31: 653-661
    [188] Y. Zhao, Y. Wang, H. Gong, et al. Annealing effects on structure and laser induced damage threshold of Ta2O5/SiO2 dielectric mirrors. Appl. Surf. Scri., 2003, 210: 353-358
    [189] J.P. Masse, H. Szymanowski, O. Zabeida, et al. Stability and effect of annealing on the optical properties of plasma-deposited Ta2O5 and Nb2O5 films. Thin Solid Films, 2006, 515: 1674-1682
    [190] S.J. Wu, B. Houng, B. Huang. Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method. J. Alloy. Compd., 2009, 476: 488-493
    [191] L.G. Feinstein, R.D. Huttemann. Annealing and phase stability of tantalum films sputtered in Ar-O2. Thin Solid Films, 1974, 20: 103-114
    [192] E. Atanassova, N. Novkovski, A. Paskaleva, et al. Oxygen annealing modification of conduction mechanism in thin rf sputtered Ta2O5 on Si. SolidState Electron., 2002, 46: 1887-1898
    [193] E. Atanassova, A. Paskaleva. Breakdown fields and conduction mechanisms in thin Ta2O5 layers on Si for high density DRAMs. Microelectron. Reliab., 2002, 42: 157-173
    [194] A. Y. Mao, K. A. Son, D. A. Hess, et al. Annealing ultra thin Ta2O5 films deposited on bare and nitrogen passivated Si (100). Thin Solid Films, 1999, 349: 230-237
    [195] M. Pecovska-Gjorgjevich, N. Novkovski, E. Atanassova. Electrical properties of thin RF sputtered Ta2O5 films after constant current stress. Microelectron. Reliab., 2003, 42: 157-173
    [196] T. Dimitrova, K. Arshak, E. Atanassova. Crystallization effects in oxygen annealed Ta2O5 thin films on Si. Thin Solid Films, 2001, 383: 31-38
    [197] W.K. Choi, L.S. Tan, J.Y. Lim. et al. Electrical characterisation of RF sputtered tantalum oxide films rapid thermal annealed with Ar, N2, O2 and N2O. Thin Solid Films, 1999, 343-344: 105-107
    [198] E. Atanassova, G. Tyuliev, A. Paskaleva, et al. XPS study of N2 annealing effect on thermal Ta2O5 layers on Si. Appl. Surf. Sci., 2004, 225: 86-99
    [199] E. Atanassova, D. Spassov, A. Paskaleva, et al. Composition of Ta2O5 stacked films on N2O and NH3-nitrided Si. Appl. Surf. Sci., 2006, 253: 2841-2851
    [200] A. Cappellani, J.L. Keddie, N.P. Barradas, et al. Processing and characterization of sol-gel deposited Ta2O5 and TiO2-Ta2O5 dielectric thin films. Solid State Electron., 1999, 43: 1095-1099
    [201] E. Atanassova, D. Spassov. Hydrogen annealing effect on the properties of thermal Ta2O5 on Si. Microelectron. J., 1999, 30: 265-274
    [202] H. Treichel, A. Mitwalsky, N.P. Sandler, et al. Low-Pressure chemical vapour deposition of tantalum pentoxide films for ulsi devices using tantalum pentaethoxide as precursor. Adv. Mater. Opt. Electron., 1992, 1: 299-308
    [203] S. Tanimoto, M. Matsui, K. Kamisako, et al. Investigation on Leakage Current Reduction of Photo-CVD Tantalum Oxide Films Accomplished by Active Oxygen Annealing. J. Electrochem. Soc., 1992, 139: 320-328
    [204] C. Isobe and M. Saitoh. Effect of ozone annealing on the dielectric properties of tantalum oxide thin films grown by chemical vapor deposition. Appl. Phys. Lett., 56: 907-909
    [205] H. Treichel, A. Mitwalsky, G. Tempel, et al. Deposition, annealing and characterisation of high-dielectric-constant metal oxide films. Adv. Mater. Opt.Electron., 1995, 5: 163-178
    [206] E. Atanassova, A. Paskaleva. Challenges of Ta2O5 as high-k dielectric for nanoscale DRAMs. Microelectron. Reliab., 2007, 47: 913-923
    [207] A.P. Huang, S.L. Xu, M.K. Zhu, et al. Crystallization control of sputtered Ta2O5 thin films by substrate bias. Appl. Phys. Lett., 2003, 83: 3278-3280
    [208] Y. Takaishi, M. Sakao, S. Kamiyama, et al. Low-temperature integrated process below 500°C for thin Ta2O5 capacitor for giga-bit DRAMs. Int. Electron. Devices Meet., 1994, 11-14: 839-842
    [209] J. Lin, N. Masaaki, A. Tsukune, et al. Ta2O5 thin films with exceptionally high dielectric constant. Appl. Phys. Lett., 1999, 74: 2370-2372
    [210] K. Nomura, H. Ogawa, A. Abe. Electrical Properties of Al2O3-Ta2O5 Composite Dielectric Thin Films Prepared by RF Reactive Sputtering. J. Electrochem. Soc., 1987, 134: 922-925
    [211] H.J. Kim, J.S. Song, I.S. Kim, et al. Electrical characteristics of Ti–O/Ta2O5 thin film sputtered on Ta/Ti/Al2O3 substrate. Thin Solid Films. 2004, 446: 124-127
    [212] Y. Matsui, M. Hiratani, S. Kimura, et al. Combining Ta2O5 and Nb2O5 in Bilayered Structures and Solid Solutions for Use in MIM Capacitors. J. Electrochem. Soc., 1995, 152: 54-59
    [213] K. Kukli, J. Ihanus, M. Ritala, et al. Properties of Ta2O5-Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy. J. Electrochem. Soc., 1997, 144: 300-306
    [214] I. Jogi, K. Kukli, M. Ritala, et al. Atomic layer deposition of high capacitance density Ta2O5–ZrO2 based dielectrics for metal–insulator–metal structures. Microelectron. Eng., 2010, 87: 144-149
    [215] H. Fujikawa, Y. Taga. Effects of additive elements on electrical properties of tantalum oxide films. Mater. Res. Soc. Symp. Proc., 1995, 378: 1025-1030
    [216] R.F. Cava, W.F. Peck, J.J. Krajiewski. Enhancement of the dielectric constant of Ta2O5through substitution with TiO2. Nature, 1995, 377: 215-217
    [217] Y. Wang, Y.J. Jiang. Composition dependence of dielectric properties of (Ta2O5)1?×(TiO2)×polycrystalline ceramics. Mater. Sci. Eng. B, 2003, 99: 221-225
    [218] K.M.A. Salam, H. Konish, M. Mizuno, et al. Electrical properties of (1-x)Ta2O5-xTiO2 crystalline thin films prepared by metalorganic decomposition. Jpn. J. Appl. Phys., 2001, 40: 1431-1432
    [219] J.Y. Gan, Y.C. Cheng, T.B. Wu, Dielectric property of (TiO2)x-(Ta2O5)1?x thin films. Appl. Phys. Lett., 1998, 72: 332-334
    [220] J.L. Waring, R.S. Roth. Effect of oxide additions on the polymorphism of tantalum pentoxide (system Ta2O5–TiO2). J. Res. Nat. Bur. Std., 1968, 72: 175-186
    [221] J.F. Meng, B.K. Rai, R.S. Katiyar et al. Bhalla, Raman investigation on (Ta2O5)1?×(TiO2)×system at different temperatures and pressures. J. Phys. Chem. Solids, 1997, 58: 1503-1506
    [222] N. Novkovski, E. Atanassva, A. Paskaleva. Stress-induced leakage currents of the RF sputtered Ta2O5 on N-implanted silicon. Appl. Surf. Sci., 2007, 253: 4396-4403
    [223] T. Dimitrova, E. Atanassva. Interface and oxide properties of rf sputtered Ta2O5- Si structures. Vacuum, 1998, 51: 151-152
    [224] E. Atanassova. Thin RF sputtered and thermal Ta2O5 on Si for high density DRAM application. Microelectron. Reliab., 1999, 39: 1185-1217
    [225] E. Atanassova, D. Spassov, A. Paskaleva, et al. Influence of oxidation temperature on the microstructure and electrical properties of Ta2O5 on Si. J. Microelectron., 2002, 33: 907-920
    [226] Q. Fang, J.Y. Zhang, Z.M. Wang, et al. Interface of tantalum oxide films on silicon by UV annealing at low temperature. Thin Solid Films, 2003, 428: 248-252
    [227] A.P. Huang, P.K. Chu. Characteristics of interface between Ta2O5 thin film and Si (100) substrate. Surf. Coat. Tech., 2005, 200: 1714-1718
    [228] A.Y. Mao, K.A. Son, D.A. Hess, et al. Annealing ultra thin Ta2O5 films deposited on bare and nitrogen passivated Si (100). Thin Solid Films, 1999, 349: 230-237
    [229] C.S. Kang, H.J. Cho, R. Choi. Bonding states and electrical properties of ultrathin HfOxHy gate dielectrics. Appl. Phys. Lett., 2002, 81: 2593-2595
    [230] Y.X. Leng, H. Sun, P. Yang, et al. Biomedical properties of tantalum nitride films synthesized by reactive magnetron sputtering. Thin Solid Films, 2001, 398-399: 471-475
    [231] W.M. Yang, Y.W. Liu, Q. Zhang, et al. Biomedical response of tantalum oxide films deposited by DC reactive unbalanced magnetron sputtering. Surf. Coat. Tech., 2007, 201: 8062-8065
    [232] T. Minami. Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films, 2008, 516: 5822-5828
    [233] Y.S. Chen, I.E. Wachs. Tantalum oxide-supported metal oxide (Re2O7, CrO3, MnO3, WO3, V2O5, and Nb2O5) catalysts: synthesis, Raman characterization andchemically probed by methanol oxidation. J. Catal., 2003, 217: 468-477
    [234] K. Kitayama. Thermogravimetric study of the Ta-Ni-O and Nb-Ni-O system. J. Solid State Chem., 1989, 83: 37-44
    [235] H. Zitter, H. Plenk Jr. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. J. Biomed. Mater., 1987, 21: 881-896
    [236] R.R. Krishnan, K.G. Gopchandran, V.P. Mahadevanpillai, et al. Microstructural, optical and spectroscopic studies of laser ablated nanostructured rantalum oxide thin films. Appl. Surf. Sci., 2009, 255: 7126-7135
    [237] P. Gimmel, K.D. Schierbaum, W. Gopel, et al. Microstructured solid-state ion-sensitive menbrabes by thermal oxidation of Ta. Sensor Actuat. B-Chem., 1990, 1: 345-349
    [238] P.C. Provenzano, G.R. Jindal, J.R. Sweet, et al. Flame-excited luminescence in the oxides Ta2O5, Nb2O5, TiO2, ZnO, and SnO2. J. Lumin., 2001, 92: 297-305
    [239] R.O. Tornqvist, T.O. Tuomi. DC electroluminescence in In×Oy-Ta2O5-ZnS: Mn-Ta2O5-Al thin film structures. J. Lumin., 1981, 24-25: 901-904
    [240] F. Lahoz, I.R. Martin, D.P.Shepherd, et al. Room temperature infrared-laser-induced upconversion in Nd3+ dope Ta2O5 waveguides. Chem. Phys. Lett., 2006, 421: 198-204
    [241] K. Tajima, Y. Yamada, S.H. Bao, et al. Electrochemical evaluation of Ta2O5 thin film for all-solid-state switchable mirror glass. Solid State Ionics, 2009, 180: 654-658
    [242] F. Rubio, J. Denis, J.M. Albella, et al. Sputtered Ta2O5 antireflection coatings for silicon solar cells. Thin Sloid Films, 1982, 90: 405-408
    [243] S. Satoh, K. Susa, I. Matsuyama. Sol-Gel preparation and optical properties of SiO2-Ta2O5 glass. J. Non-Cryst. Solids, 2002, 306: 300-308
    [244] M, Zhou, Z. Fu, Q. Qin. An optical emission spectroscopic study on visible laser ablation of Ta2O5 in ambient O2. Appl. Surf. Sci., 1998, 125: 208-212
    [245] P. Catania, R.A. Roy, J.J. Cuomo. Phase formation and microstructure changes in tantalum thin films induced by bias sputtering. J. Appl. Phys., 1993, 74: 1008-1014
    [246] P.J. Kelly, R.D. Arnell. Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000, 56: 159-172
    [247]力学丹,万英超,姜祥琪等.真空沉积技术.杭州:浙江大学出版社, 1994, 31-96
    [248] M.H. Shapiro, P. Lu. The influence of the ion-atom potential on moleculardynamics simulations of sputtering. Nucl. Instrum. Meth. B, 2004, 215: 326-329
    [249] R.D. Gould, S.A. Awan. DC conductivity in RF magnetron sputtered gold-silicon nitride-gold sandwich structures. Thin Solid Films, 2001, 398-399: 454-459
    [250] R.D. Gould, S.A. Awan. Dielectric properties of AlNx thin films prepared by RF magnetron sputtering of Al using a N2/Ar sputtering gas mixture. Thin Solid Film, 2004, 469-470: 184-189
    [251] H. Fujiyama, T. Sumomogi, T. Endo. Effect of O2 gas partial pressure on mechanical properties of SiO2 films deposited by radio frequency magnetron sputtering. J. Vac. Sci. Technol., 2002, 20: 356-361
    [252] A.F. Jankowshi. Characterizing and modeling the apparent anomalous behavior of resistivity in Cr-Si-O thin films. Thin Solid Films, 1998, 1-2: 272-276
    [253] C. Gladun, A. Heinrich, F. Lange, et al. Electrical transport properties of high resistance Cr-Si-O thin films. Thin Solid Films, 1985, 1-2: 101-106
    [254] D. Reitz, H. Heuer, S. Baunack, et al. Investigation of a Ta-Si-O/Ta-Si-N bilayer system for embedded SAW finger structures. Microelectron. Eng., 2005, 82: 301-306
    [255] W.T. Young, S.R.P. Silva, J.V. Anguita, etc. Low temperature growth of gallium nitride. Diam. Relat. Mater., 2000, 9: 456-459
    [256] M.M. Larijani, N. Tabrizi, Sh. Narouzian, etc. Structural and mechanical properties of ZrN films prepared by ion beam sputtering with varying N2/Ar ratio and substrate temperature. Vacuum, 2006, 81: 550-555
    [257] S. Boughaba, M.U. Islam, G.I. Sproule, et al. Characterization of tantalum oxide films grown by pulsed laser deposition. Surf. Coat. Technol., 1999, 120-121: 757-764
    [258] Y. Hu, Y.Q. Chen, Y.C. Wu, etc. Structural, defect and optical properties of ZnO films grown under various O2/Ar ratios. Appl. Surf. Sci., 2009, 255: 9279-9284
    [259] S.V. Krishnaswamy, W.A. Hester, J.R. Szedon. R.F.-magnetron-sputtered AlN films for microwave acoustic resonators. Thin Solid Films, 1985, 125: 291-298
    [260] D. Kilm. The structural and optoelectrical properties of TiON/Au/TiON multilayer films. Mater. Lett., 2010, 64: 668-670
    [261]麻莳立男著,陈国荣,刘晓萌,夏晓亮编译.真空镀膜基础.北京:北京电子工业出版社,1988,186—193
    [262] J.M. Seeman. Bias sputtering: its techniques and applications. Vacuum, 1967, 17: 129-137
    [263] C.A. Steidel, D. Gerstenberg. Thermal oxidation of sputtered thin films between100o and 525 J. Appl. Phys., 1969, 40, 3828-3835
    [264] A. Razborsek, F. Schwager. Thin film systems for low TCR resistors. Vacuum,1988, 38: 689-692
    [265] L.G. Feinstein. R.D. Huttemann. Factors controlling the structure of sputtered Tafilms. Thin Solid Films, 1973, 16: 129-145
    [266] S. Sato. Nucleation properties of magnetron-sputtered Tantalum. Thin SolidFilms, 1982, 94: 321-329
    [267] D.W. Face, D.E. Prober. Nucleation of body-centered-cubic tantalum films witha thin niobium underlayer. J. Vac. Sci. Technol., 1987, 5: 3408-3411
    [268] S. Ezhilvalavan, T.Y. Tseng. Electrical properties of Ta2O5 thin films depositedon Ta. Appl. Phys. Lett., 1999, 74: 2477-2479
    [269] F.S. Ham, D.C. Mattis. Electrical properties of thin-film semiconductors. IBM J.Res. Dev., 1960, 4: 143-151
    [270] P.J. Price. Anisotropic conduction in solids near surfaces. IBM J. Res. Dev.,1960, 4: 152-157
    [271] M.I. Kaganov, M. Ya. Azbel. Electron theory of metals. Sov. Phys. JETP, 1954,27: 762-771
    [272] P.L. Hartman, J.R. Nelson, J.G. Siegfried. Reflection spectrum and structure inthe execition adsorption peak in NaCl and KCl. Phys. Rev., 1956, 105: 123-130
    [273] N.F. Mott. Electrons in disordered structures. Adv. Phys., 1967, 16: 49-129
    [274] B. Abeles, P. Sheng, M.D. Coutts, et al. Structural and electrical properties ofgranular metal films. Adv. Phys., 1975, 24: 407-461
    [275] J. Sosniak, W.J. Polito, G.A. Rozgonyi. Effect of Background-gas impurities onthe formation of sputtered -tantalum films. J. Appl. Phys., 1967, 38: 3041-3044
    [276] J. Sosniak. Mass spectroscopy of background gases in glow discharge sputteringof tantalum thin films. J. Vac. Sci. Technol., 1966, 4: 87-91
    [277] L.L. Kazmerski, D.M. Racine. Growth, environmental, and electrical propertiesof ultrathin metal films. J. Appl. Phys., 1975, 46: 791-795
    [278] L.E. Seitznan, R.N. Bolster, I.L. Singer. X-ray diffraction of MoS2 coatingsprepared by ion-beam-assisted deposition. Surf. Coat. Technol., 1992, 52: 93-98
    [279] D. Mills. Ionic conductivity, dielectric constant, and optical properties of anodicoxide films on two types of sputtered tantalum films. J. Appl. Phys., 1966, 37:1821-1824
    [280] K. Kuwahara, H. Fujiyama. Application of the Child-Langmuir law to magnetrondischarge plasmas. IEEE. T. Plasma. Sci., 1994, 22: 442-448
    [281] R. Marcelli, S.A. Nikitov, A. Yu, et al. Magnetostatic surface wave brightsoliton propagation in ferrite-dielectric-metal structures. IEEE T. Mgan., 2006, 42:1785-1801
    [282] S.R. Dong, D.M. Wang, G.C. Ren, et al. Thin films by surface metallization ofhigh frequency PZT ceralic and its structures. Chinese J. Nonferrous Metals, 2002,12: 168-172
    [283] L.P. Ward, P.K. Datta. Crystallographic structure of magnetron sputtered Nbcoating using reflection high energy electron diffraction studies. Thin Solid Films,1996, 272: 52-59
    [284] L. Gladczuk, A. Patel, C.S. Paur, et al. Tantalum films for protective coating ofsteel. Thin Solid Films, 2004, 467: 150-1567
    [285] M. Zhang, Y.F. Zhang, P.D. Rack, et al. Nanocrystalline tetragonal tantalum thinfilms. Scr. Mater., 2007; 57: 1032-1035
    [286] A .Schauer, M. Roschy. R.F. sputtered -tantalum films. Thin Solid Films 1972;12: 313-317
    [287] W.D. Westwood. Orientation effects in the resistivity of Ta films sputtered inoxygen. Appl. Phys. Lett., 1970, 17: 264-265
    [288] X.M. Wu, P.K. Wu, T.-M. Lu, et al. Reactive sputtering deposition of lowtemperature tantalum suboxide thin films. Appl. Phys. Lett., 1993, 62: 3624-3266.
    [289] H.P. Klug, L.E. Alexander. X-ray diffraction procedures for polycrystalline andamorphous materials. New York: Wiley, 1974: 1-109
    [290] J. Harvey, J. Corkhill. Sputtering yields of gold and tantalum argon-oxygenmixtures. Thin Solid Films, 1970, 6: 277-287
    [291] J. Harvey, J. Corkhill. Sputtered Au-Ta-O cermet for thin film resistors: apreliminary study. Thin Solid Films, 1971, 8: 427-445
    [292] P.M. Hall. Appl. Phys. Letts., 1968, 12: 212-214
    [293] C.L. Standley, L.I. Maissel. Some Observations on conduction through thintantalum oxide films. J. Appl. Phys., 1964, 35: 1530-1534
    [294] N. Waterhouse, P.S. Wilcox, D.J. Willmott. Effect of oxygen on the electrical andstructural properties of triode-sputtered tantalum films. J. Appl. Phys., 1971, 42:5649-5653
    [295] G. Boureau, P. Gerdanian. High temperature thermodynamics of solutions ofoxygen in vanadium, niobium and tantalum. J. Phys. Chem. Solids., 1981, 42:749-753
    [296] J.S. Lee, C.J. Alistetter. Diffusion of oxygen in tantalum-based alloys. Acta.Metal., 1986, 34: 131-138
    [297] F.J.M. Boratto, R.E. Reed-Hill. Oxygen and nitrogen diffusion in tantalum. Scripta. Mater., 1978, 12: 313-318
    [298] T. Kallfass. A single Ta/Al film for temperature-compensated resistors and capacitors. Thin Solid Films., 1979, 56: 357-360
    [299] D.K. Reddy. Ta/Al thin film resistors with improved electrical properties. Thin Solid Films., 1980, 70: 27-35
    [300] A. Masesaka, N. Sugawara, A. Okabe, et al. Influence of microstructure on thermal stability of spin-valve multilayers. J. Appl. Phys., 1998, 83: 7628-7633
    [301] A.F. Mayadas, M. Shatzkes. Electrical-resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces. Phys. Rev. B1, 1970, 1: 1382-1389

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700