SrTiO_3基阻变存储器的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻变存储(RRAM)以其在存储密度和存储速度上的独特优势,被认为是颇具潜力的下一代非易失性存储技术。然而阻变的微观机制一直不明晰,这成为RRAM存储应用的主要障碍。本论文采用脉冲激光沉积技术(PLD)制备了SrTiO3(STO)基电阻开关薄膜材料,通过改变金属电极和引入介质层的方法,系统研究了阻变器件的电阻开关特性,及其在新原理器件中的应用。本论文主要内容包括以下几个方面:
     1. Au/STO/Ti存储器件的制备和电阻开关性能研究
     以STO薄膜为阻变材料,选取具有不同功函的金属Au(5.1eV)和Ti(4.3eV)作为上下电极制备了Au/STO/Ti结构的存储器件。电学特性研究表明,STO/Ti之间形成欧姆接触,而Au/STO之间为肖特基接触。在±2.5V的偏压范围内,存储器件表现出逆时针双极电阻开关行为,对I-V和C-V曲线的分析表明阻变源于Au/STO界面肖特基势垒宽度或高度的改变,该界面势垒的改变是由缺陷能级的电荷俘获/释放诱导的;在经历了负极性的电形成电压操作后,器件在同样的±2.5V偏压范围内呈现出顺时针双极电阻开关行为,电学特性分析表明该阻变源于氧空位迁移诱导的氧化还原反应。薄膜内缺陷分布的不同导致了这两种不同特征的双极电阻开关行为。
     2. Au/STO/Pt存储器件的电阻开关性能研究及其在实质蕴涵(IMP)逻辑运算中的应用
     (1)由于金属/氧化物界面对存储器件的开关特性有重要影响,选择高功函Pt(5.6eV)为下电极制备了Au/STO/Pt结构的存储器。XPS分析说明STO薄膜所含元素价态分别为Sr2+、Ti4+和O2-,并且有氧空位存在。存储器件的初始态表现出整流行为,在经历过负极性的电形成偏压(约-6~-8V)之后,器件表现出单极或双极性电阻开关行为,其开关极性依赖于电形成过程中所设限制电流的大小。当限制电流为1mA,器件表现出双极电阻开关行为;当限制电流为10mA,表现出单极开关行为,并且两种极性之间可以相互转换。该现象表明不同的限制电流,器件内部形成的缺陷不同。对I-V特性的分析表明双极电阻开关是由于Au/STO界面处肖特基势垒的变化引起的;而单极电阻开关是由于缺陷构成的导电丝的形成与破裂致使的。对器件的非易失性研究表明,单极开关的高、低阻态均具有很好的保持能力,两周时间之后电阻值仍无较大的改变,但双极开关的电阻态仅能保持几个小时。
     (2)IMP逻辑的研究还处于初始阶段,目前还未见单极忆阻器实现IMP“状态”逻辑的报道。本文选择具有单极开关特性的Au/STO/Pt器件为忆阻器构成了IMP逻辑电路,并通过理论模拟计算,探索IMP逻辑运算中电压、电流等参数设置的特点,以及逻辑运算的稳定性。该单极忆阻器具有较大的开关比值(大于1000),且在低阻态呈现线性Ⅰ-V关系,较小的调制因子(1.2)表明由于串联电阻(RG)的引入导致的开关比值的退偏非常弱,这证明IMP的可靠性被有效增强了。但单极开关阈值电压的离散性会影响IMP运算的重复性,计算表明通过选择合适的串联电阻(RG,500Ω)能减小阈值电压不稳定对IMP运算的影响;但彻底解决该问题,应优化忆阻器结构以使开关电压稳定在较小的范围内。
     3. Au/NiO/STO/Pt存储单元的电学性能研究
     界面势垒在电阻开关中起着重要作用,在金属/氧化物间插入非常薄的介质层将改变界面性质,进而影响存储器的电阻开关性质,所以本文采用PLD技术沉积了p-NiO/n-STO异质结,并制备了Au/NiO/STO/Pt结构的阻变存储器件。该器件的电学测试结果如下:
     (1)在电形成过程中设置较小的限制电流,由于界面势垒的存在,器件表现出双极电阻开关行为,并且他们的回线方向可以在顺时针和逆时针间可逆转换;通过对I-V曲线的拟合发现,高阻态和低阻态分别对应肖特基整流和隧穿机制,进一步分析表明,逆时针(顺时针)双极开关是由于NiO/STO上界面处p-n结势垒(STO/Pt下界面肖特基势垒)的改变引起的,该界面势磊的改变由电荷诱捕效应导致。
     (2)在电形成过程中若设置较大的限制电流(10mA),界面势垒消失,器件表现单极电阻开关行为;负偏压下,单极开关能反复切换,但正偏压下,开关仅重复约4-7个周期便消失。其原因是不同极性的偏压驱使氧空位向相反方向移动,使得开关发生的位置随之上下移动。负偏压时,由缺陷组成的导电细丝断开和复合的位置在STO薄膜内;正偏压下,导电细丝的断开位置向NiO/STO上界面移动,同时氧离子将NiO薄膜中的Ni导电丝氧化,致使开关现象消失。
Resistance random access memory (RRAM) is an intriguing approach for next generation non-volatile storage, owing to its attractive combination of density and speed. However, the microscopic physical mechanism of RRAM has been controversial, which became a major obstacle to potential applications. In this dissertation, the RRAM memory cells based on peroskite oxide SrTiO3(STO) are prepared. By means of changing the metal electrode and the introduction of a dielectric layer, the resistance switching characteristics are investigated, and the new principle of logic devices is developed. The main results are as follows:
     1. Study on Au/STO/Ti memory cells
     The Au/STO/Ti memory cells are prepared. The electrical measurements show that the contact on STO/Ti interface is ohmic, while the contact on the Au/STO interface is Schottky. In the range of±2.5V, the memory showes a bipolar resistance switching with counter clockwise polarity. The analyses on I-V and C-V data show that the resistance change is due to the change in Schottky barrier height and/or width by trapping/detrapping effects at Au/STO interface defect states. Netative bias applied to memory can induce a bipolar resistance switching with clockwise polarity which comes from redox reactions induced by the migration of oxygen vacancies. These two bipolar swithing with opposite polarity is due to the different distribution of defect states in STO films.
     2. Study on Au/STO/Pt memory cells and its application in new principle devices
     (I) The metal/oxide interface has crucial effect on the switching properties of memory cells. Pt as bottom electrodes and the electrical characteristics of Au/STO/Pt are investigated. XPS analysis shows that the valence states of contained elements in STO films are Sr2+, Ti4+, O2-,and there exists a certain amount of oxygen vacancies. The initial state of the Au/STO/Pt cell show rectifying characteristics due to Schottky contact between Au and n-STO. The memory, applied a large reverse bias (about-6~-8V) with1mA compliance current (CC), showes bipolar switching behavior. However, if the CC is set to10mA, the memory will show unipolar switching behavior. Both types of switching with different polarity are interchangeable. The polarity dependence of the CC is due to different current in forming process resulting in the formation of different defect density. Bipolar resistance switching is due to the change in Schottky barrier height and/or width by trapping/detrapping effects at Au/STO interface defect states, and unipolar switching is due to the formation and rupture of conductive filament. The non-volatile properties show that the resistance state in unipolar switching has continued for two weeks without significant change, while the resistance state in bipolar switching would be changed after a few hours.
     (2) The study on IMP logic is still in an initial stage, and there is no report about IMP logic enabled by unipolar memristors. In this work, the IMP logic circuit is formed by Au/STO/Pt unipolar switch memory. By means of the combination of theoretical simulation and experiment, it is explored that the electric parameters of voltage and current to obtain IMP logic and the stability of the device. This unipolar memristors have a large switching ratio (>1000), linear I-V relationship in low resistance state, and modulation factor of1.2showing that the weak depolarization of switch. These rusults prove that the reliability of IMP is effectively enhanced. However, there is a large variation in set and reset threshold voltage for the Au/STO/Pt unipolar switching device, which could impact the reproducibility of IMP results. The calculation indicates that the influence of the threshold voltage instability on the IMP operation can be lessened by selecting the appropriate value of RG in series. To thoroughly solve this problem, the set and reset threshold voltage should be stabilized through the optimization of unipolar switching materials and the design of memristor structures.
     3. Study on Au/NiO/STO/Pt memory cells
     The interface barrier plays an important role in resistance switching, so p-NiO/n-STO heterojunction prepared by PLD technique. and resistance switching characteristics of the Au/NiO/STO/Pt memory are investigated in detail. The main results are follows:
     (1) When a lower CC is set during the electrical test, the memory presents bipolar resistance switching due to the presence of the interface barrier, which can reversiblly convert between clockwise and counter clockwise. The bipolar resistance switching with clockwise (counter clockwise) is due to a change in interface barrier height and/or width by trapping/detrapping effects at NiO/STO (STO/Pt) interface defect states.
     (2) When a higher CC (10mA) is set during the electrical test, the memory shows unipolar resistance switching due to the disappearance of the interface barrier. The unipolar switching can be repeatedly switched in the negative bias, while in positive bias the switching disappear after only about4-7cycles. The reason is the different bias polarity driving oxygen vacancies in opposite direction, so the location of switch moves up and down with the bias. Under negative bias, conductive filaments consisted of defects rupture and form in STO films. While under positive bias the rupture position of conductive filaments move to the NiO/STO interface, and the Ni conductive filaments in NiO films is oxidized by O2-, which results in the disappearance of switch.
引文
[]] S. Y. Lee and K. Kim, Prospects of emerging new memory technologies, IEEE International Conference on integrated Circuit Design and Technology,2004,45.
    [2]D. Kahng and S. M. Sze, A floating gate and its application to memory devices, Bell Systems Technical Journal,1967,46,1288.
    [3]F. Masuoka, M. Asano, H. Iwahashi, T. Komuro, and S. Tanaka, A new flash E2PPOM cell using triple polysilicon technology, IEDM Tech. Dig.,1984,464.
    [4]R. Shirota, A review of 256Mbit NAND flash memories and NAND flash future trend, in Nonvolatile Memory workshop, Monterey, California,2000.
    [5]International Technology Roadmap For Semiconductors:http://www.itrs.net,2005.
    [6]Roberto Bez, Innovative technologies for high density non-volatile semiconductor memories, Microelectronic Engineering,2005,80,249.
    [7]G.I. Meijer, Who wins the nonvolatile memory race? Science,2008,319,1625.
    [8]J. F. Scott and C. A. P. de Argujo, Ferroelectric memories, Science,1989,246,1400.
    [9]R. E. Jones, P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, P. Chu, and S. J. Gillespie, Ferroelectric non-volatile memory for low-voltage, low-power applications, Thin Solid Films,1995,270,584.
    [10]周益春,唐明华,铁电薄膜及铁电存储器的研究进展,材料导报:综述篇,2009,23,1-190.
    [11]付承菊,郭冬云,铁电存储器的研究进展,微纳电子技术,2006,9,414.
    [12]S. R. Ovshinsky, Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett., 1968,21,1450.
    [13]A. V. Kolobov, P. Fons, A. I. Frenkel, A. Ankudinov, J. Tominaga, and T. Uruga, Understanding the phase-change mechanism of rewritable optical media, Nat. Mater.,2004,3,703.
    [14]R. Bez, Chalcogenide PCM:a memory technology for next decade, IEDM Tech. Dig..2009:89.
    [15]R. E. Simpson. M. Krbal. P. Fons. A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida. Toward the ultimate limit of phase change in Ge2Sb?Te5, Nano Lett.,2010,10,414.
    [16]J. Maimon. K. Hunt. J. Rodgers, I.. Burcin. and K. Knowles. Results of radiation effects on a chalcogenide non-volatile memory arrays, IEEE Aerospace Conference Proceedings,2004,4.2306.
    [17]黄征,庄奕琪,一种新型存储器件-磁电存储器,国外电子元器件,2004,4,59.
    [18]M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices, Phys. Rev. Lett., 1988,61,2472.
    [19]M. Buttiker, Coherent and sequential tunneling in series barriers, IBM J. Research & Development, 1988,32,63.
    [20]S. Q. Liu, N. J. Wu, and A. Ignatiev, Electric-pulse-induced reversible resistance change effect in magnetoresistance films, Appl. Phys. Lett.,2000,76,2749.
    [21]A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer, Reproducible switching effect in thin oxide films for memory applications, Appl. Phys. Lett.,2000,77,139.
    [22]Y. Tokunaga, Y. Kaneko, J. P. He, T. Arima, A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Colossal electroresistance effect at metal electrode/La1-xSr1+xMnO4 interfaces, Appl. Phys. Lett.,2006,88, 223507.
    [23]J. R. Jameson, Y. Fukuzumi, Z. Wang, P. Griffin, K, Tsunoda, G. I. Meijer, and Y. Nishi, Field-programmable rectification in rutile TiO2 crystals, Appl. Phys. Lett.,2007,91,112101.
    [24]S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh, J. S. Lee, B. Kahng, J. H. Jang, M. Y. Kim, D.-W. Kim, and C. U. Jung, Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors, Appl. Phys. Lett.,2008,92,183507.
    [25]W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, and M.-J. Tsai. Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications, Appl. Phys. Lett.,2008,92, 022110.
    [26]Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides, Phys. Rev. Lett.,2007, 98,146403.
    [27]R. Waser, R. Dittmann, G. Staikov, and K. Szot, Redox-based resistive switching memories, prospects, and challenges, Adv. Mater.,2009,21,2632.
    [28]王源,贾嵩,甘学温,新一代存储技术:阻变存储器,北京大学学报(自然科学版),2011,47,565.
    [29]W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee. L. Stecker, A. Burmaster. D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya. A. Sakiyama, Y. Wang, S. Q. Liu. N. J. Wu, and A. Ignatiev, Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM), IEDM. Washington DC:IEEE Press,2002,193.
    [30]Y. C. Chen, C. F. Chen, C. T. Chen,J. Y. Yu. S. Wu. S. L. Lung. R. Liu, and C.-Y. Lu, An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device. IEDM. Washington DC,2003,905.
    [31]S.-E. Ahm. M.-J. Lee, Y. Park, B. S. Kang, C. B. Lee. and K. H. Kim. Write current reduction in transition metal oxide based resistance-change memory. Adv. Mater.,2008,319,1625.
    [32]X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, Direct resistance profile for an electrical pulse induced resistance change device, Appl. Phys. Lett.,2005,87,233506.
    [33]Z. W. Xing, N. J. Wu, and A. Ignatiev, Electric-pulse-induced resistive switching effect enhanced by a ferroelectric buffer on the Pr0.7Ca0.3MnO3 thin film, Appl. Phys. Lett.,2007,91,052106.
    [34]A. Baikalov, Y. Q. Wang, B. Shen, B. Lorenz, S. Tsui, Y. Y. Xue, and C. W. Chu, Field-driven hysteretic and reversible resistive switching at the Ag-Pr0.7Ca0.3MnO3 interface, Appl. Phys. Lett., 2003,83,957.
    [35]S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Xue, C. W. Chu, L. Chen, and A. J. Jacobson, Field-induced resistive switching in metal-oxide interfaces, Appl. Phys. Lett.,2004,85,317.
    [36]S. Tsui, Y. Q. Wang, Y. Y. Xue, and C. W. Chu, Mechanism and scalability in resistive switching of metal-Pr0.7Ca0.3MnO3 interface, Appl. Phys. Lett.,2006,89,123502.
    [37]S. Asanuma and H. Akoh, Relationship between resistive switching characteristics and band diagrams of Ti/Pr1-xCaxMnO3 junctions, Phys. Review B,2009,80,235113.
    [38]D.-J. Seong, M. Hassan, H. Choi, J. Lee, J. Yoon, J.-B. Park, W. Lee, M.-S. Oh, and H. Hwang, Resistive-switching characteristics of Al/Pr0.7Ca0.3MnO3 for nonvolatile memory applications, IEEE Electron Device Lett.,2009,30,919.
    [39]D. S. Shang, Q. Wang, L. D. Chen, R. Dong, X. M. Li, and W. Q. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures, Phys. Review B,2006,73,245427.
    [40]R. Dong, Q. Wang, L. D. Chen, D. S. Shang, T. L. Chen, X. M. Li, and W. Q. Zhang. Retention behavior of the electric-pulse-induced reversible resistance change effect in Ag-La0.7Ca0.3MnO3-Pt sandwiches, Appl. Phys. Lett.,2005,86,172107.
    [41]R. Yang, X. M. Li, W. D. Yu, D. Gao, S. Shang, J. Liu, X. Cao, Q. Wang, and L. D. Chen, The polarity origin of the bipolar resistance switching behaviors in metal/La0.7Ca0.3MnO3/Pt junctions, Appl. Phys. Lett.,2009,95.072105.
    [42]Y. W. Xie, J. R. Sun, D. J. Wang, S. Liang, and B. G. Shen, Reversible electroresistance at the Ag/Lao.67Sro.33Mn03 interface, J. Appl. Phys.,2006,100,033704.
    [43]Y. Xia, W. He, L. Chen, X. Meng, and Z. Liu, Field-induced resistive switching based on space-charge-limited current, Appl. Phys. Lett.2007,90,022907.
    [44]R. Dong, W. F. Xiang, D. S. Lee, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, M. Chang. M. Jo, M. Hasan, and H. Hwang, Improvement of reproducible hysteresis and resistive switching in metal-La0.7Ca0.3MnO3-metal heterostructures by oxygen annealing, Appl. Phys. Lett.,2007,90, 182118.
    [45]T. Zhang. Z. H. Su, H. J. Chen, L. H. Ding, and W. F. Zhang, Resistance switching properties of sol-gel derived La0.7Ca0.3Mn03 thin films on F-doped SnO2 conducting glass, Appl. Phys. Lett.,2008. 93,172104.
    [46]A. Sawa. A. Yamamoto, H. Yamada, T. Fujii, M. Kawasaki, J. Matsuno. and Y. Tokura. Colossal electroresistance effect at metal electrode/La1-xSr1+xMnO4 interfaces. Appl. Phys. Lett.,2006,88, 223507.
    [47]D. Hsu, J. G. Lin, W. F. Wu, C. T. Wu, and C. H. Chen, Voltage-current hysteretic characteristics in ME/Nd0.7Ca0.3MnO3 thin films with ME=Au, Pt, Ag, Cu, IEEE Trans. Magnetics,2007,43,3067.
    [48]A. Beck, G. J. Bednorz, C. Gerber, C. Rossel, and D. Widmer, Reproducible switching effect in thin oxide films for memory applications, Appl. Phys. Lett.,2000,77,139.
    [49]C. Rossel, G. I. Meijer, D. Bremaud, and D. Widmer, Electrical current distribution across a metal-insulator-metal structure during bistable switching, Appl. Phys.,2001.90,2892.
    [50]C.-Y. Liu, P.-H. Wu, A. Wang, W.-Y. Jang, J.-C. Young, K.-Y. Chiu, and T.-Y. Tseng, Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film, IEEE Electron Device Lett.,2005,26, 351.
    [51]C.-C. Lin, C.-Y. Lin. M.-H. Lin, C.-H. Lin, and T.-Y. Tseng, Voltage-polarity-independent and high-speed resistive switching properties of V-doped SrZrO3 thin films, IEEE Trans. Electron Devices, 2007,54,3146.
    [52]C.-C. Lin, B.-C. Tu, C.-C. Lin, C.-H. Lin, and T.-Y. Tseng, Resistive switching mechanisms of V-doped SrZrO3 memory films, IEEE Electron Device Lett.,2006,27,725.
    [53]C.-Y. Lin, M.-H. Lin, M.-C. Wu, C.-H. Lin, and T.-Y. Tseng, Improvement of resistive switching characteristics in SrZrO3 thin films with embedded Cr layer, IEEE Electron Device Lett.,2008,29, 1108.
    [54]C.-Y. Lin, C.-C. Lin, C.-G. Huang, C.-H. Lin. and T.-Y. Tseng, Resistive switching properties of sol-gel derived Mo-doped SrZrO3 thin films. Surface and Coatings Technology,2007,202,1319.
    [55]Y. Watanabe, J. G. Bednorz, A. Bietsch, C. Gerber. D. Widmer, A. Beck, and S. J. Wind, Current-driven insulator-conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals, Appl. Phys. Lett.,2001,78,3738.
    [56]K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nature Mater.,2006,5,312.
    [57]H. Sim, H. Choi, D. Lee, M. Chang, D. Choi, Y. Son, E.-H. Lee, W. Kim, Y. Park, I.-K. Yoo, and H. Hwang, Excellent resistance switching characteristics of Pt/SrTiO3 Schottky junction for multi-bit nonvolatile memory application,IEDM Tech. Dig.,2006,777.
    [58]D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications, Appl. Phys. Lett.,2006,88,082904.
    [59]R. Muenstermann, R. Dittmann, K. Szot, S. Mi, C.-L. Jia. P. Meuffels, and R. Waser, Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3, Appl. Phys. Lett.,2008,93,023110.
    [60]A. Shkabko, M. H. Aguirre, I. Marozau, T. Lippert, and A. Weidenkaff, Measurements of current-voltage-induced heating in the Al/SrTiO3-xNy/AI memristor during electroformation and resistance switching, Appl. Phys. Lett.,2009,95,152109.
    [61]T. Menke, R. Dittmann, P. Meuffels. K. Szot. and R. Waser. Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells, J. Appl. Phys.,2009,106. 114507.
    [62]K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Impact of defect distribution on resistive switching characteristics of Sr2TiO4 Thin Films, Adv. Mater.,2010,22.411.
    [63]J. Y. Son, Y.-H. Shin, and C. S. Park, Bistable resistive states of amorphous SrRuO3 thin films, Appl. Phys. Lett.,2008,92,133510.
    [64]S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim,I. S. Byun, J.-S. Kim, J. S. Choi, and B. H. Park, Reproducible resistance switching in polycrystalline NiO films, Appl. Phys. Lett.,2004,85,5655.
    [65]D. C. Kim, S. Seo, S. E. Ahn, D.-S. Suh, M. J. Lee, B.-H. Park,I. K. Yoo, I. G. Baek, H.-J. Kim, E. K. Yim, J. E. Lee, S. O. Park, H. S. Kim, U-In Chung, J. T. Moon, and B. I. Ryu, Electrical observations of filamentary conductions for the resistive memory switching in NiO films, Appl. Phys. Lett.,2006, 88,202102.
    [66]C. B. Lee, B. S. Kang, M. J. Lee, S. E. Ahn, G. Stefanovich, W. X. Xianyu, K. H. Kim, J. H. Hur, H. X. Yin, Y. Park, I. K. Yoo, J.-B. Park, and B. H. Park, Electromigration effect of Ni electrodes on the resistive switching characteristics of NiO thin films, Appl. Phys. Lett.,2007,91,082104.
    [67]R. Jung, M.-J. Lee, S. Seo, D. C. Kim, G.-S. Park, K. Kim, S. Ahn, Y. Park,I.-K. Yoo, J.-S. Kim, and B. H. Park, Decrease in switching voltage fluctuation of Pt/NiOx/Pt structure by process control, Appl. Phys. Lett.,2007,91,022112.
    [68]M.-J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S.-E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I.-K. Yoo, D. H. Seo, X.-S. Li, J.-B. Park, J.-H. Lee, and Y. Park, Electrical manipulation of nanofilaments in transition-metal oxides for resistance-based memory, Nano Lett.,2009,9,1467.
    [69]A. Chen. S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, and S. Kaza, Switching characteristics of Cu2O metal-insulator-metal resistive memory, Appl. Phys. Lett.,2007,91,123517.
    [70]A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, and Z. Lan, Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory, Appl. Phys. Lett.,2008,92,013503.
    [71]A. Chen, S. Haddad, and Y.-C. Wu, A temperature-accelerated method to evaluate data retention of resistive switching nonvolatile memory, IEEE Electron Device Lett.,2008,29,38.
    [72]H. B. Lv, M. Yin, X. F. Fu, Y. L. Song, L. Tang, P. Zhou, C. H. Zhao, T. A. Tang, B. A. Chen, and Y. Y. Lin, Resistive memory switching of CuxO films for a nonvolatile memory application, IEEE Electron Device Lett.,2008,29,309.
    [73]M. Yin, P. Zhou, H. B. Lv, J. Xu, Y. L. Song, X. F. Fu, T. A. Tang, B. A. Chen, and Y. Y. Lin, Improvement of resistive switching in CuxO using new RESET mode, IEEE Electron Device Lett., 2008,29,681.
    [74]P. Zhou. M. Yin, H. J. Wan, H. B. Lu, T. A. Tang, and Y. Y. Lin, Role of TaON interface for Cu.rO resistive switching memory based on a combined model, Appl. Phys. Lett.,2009.94,053510.
    [75]H. J. Wan. P. Zhou. L. Ye. Y. Y. Lin, T. A. Tang, H. M. Wu, and M. H. Chi. In situ observation of compliance-current overshoot and its effect on resistive switching, IEEE Electron Device Lett.,2010. 31.246.
    [76]T. Sakamoto. N. Banno, N. Iguchi, H. Kawaura, H. Sunamura, S. Fujieda, K. Terabe. T. Hasegawa. and M. Aono, A Ta2O5 solid-electrolyte switch with improved reliability, Symp. VLSI Tech.,2007,38.
    [77]M. Terai, Y. Sakotsubo, S. Kotsuji, and H. Hada, Resistance controllability of Ta2O5/TiO2 stack ReRAM for low-voltage and multilevel operation, IEEE Electron Device Lett.,2010,31,204.
    [78]C. Ho, E. K. Lai, M. D. Lee, C. L. Pan, Y. D. Yao, K. Y. Hsieh, R. Liu, and C. Y. Lu, A highly reliable self-aligned graded oxide WOx resistance memory conduction mechanisms and reliability, Symp. VLSI Tech.,2007,228.
    [79]W. Guan, S. Long, R. Jia, and M. Liu, Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide, Appl. Phys. Lett.,2007,91,062111.
    [80]Q. Liu, W. Guan, S. Long, R. Jia, M. Liu, and J. Chen, Resistive switching memory effect of ZrO2 films with Zr+ implanted, Appl. Phys. Lett.,2008,92,012117.
    [81]W. Guan, M. Liu, S. Long, Q. Liu, and W. Wang, On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt, Appl. Phys. Lett.,2008,93,223506.
    [82]Q. Liu, W. Guan, S. Long, M. Liu, S. Zhang, Q. Wang, and J. Chen, Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory application, J. Appl. Phys.,2008,104,114514.
    [83]Q. Liu, S. Long, W. Wang, Q. Zuo, S. Zhang, J. Chen, and M. Liu, Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions, IEEE Electron Device Lett.,2009,30,1335.
    [84]Y. Wang, Q. Liu, S. Long, W. Wang, Q. Wang, M. Zhang, S. Zhang, Y. Li, Q. Zuo, J. Yang, and M. Liu, Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications, Nanotechnology,2010,21.045202.
    [85]Q. Zuo, S. Long, S. Yang, Q. Liu, L. Shao, Q. Wang, S. Zhang, Y. Li, Y. Wang, and M. Liu, ZrO2-based memory cell with a self-rectifying effect for crossbar WORM memory application, IEEE, Electron Device Lett.,2010,31,344.
    [86]N. Xu, B. Gao, L. F. Liu. B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, A unified physical model of switching behavior in oxide-based RRAM, Symp. VLSI Tech.,2008,100.
    [87]N. Xu, L. Liu, X. Sun, X. Liu, D. Han, Y. Wang, R. Han, J. Kang, and B. Yub, Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories, Appl. Phys. Lett.,2008,92,232112.
    [88]B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, R. Q. Han, J. F. Kang, B. Yu, and Y. Y. Wang, Oxide-based RRAM switching mechanism:a new ion-transport-recombination model, IEDM Tech. Dig.,2008,563.
    [89]B. Gao, H. W. Zhang, S. Yu, B. Sun, L. F. Liu, X. Y. Liu, Y. Wang, R. Q. Han, J. F. Kang, B. Yu, and Y. Y. Wang, Oxide-based RRAM:uniformity improvement using a new material-oriented methodology, Symp. VLSI Tech.,2009,30.
    [90]Y. C. Yang, F. Pan, F. Zeng, and M. Liu, Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory:From carrier trapping/detrapping to electrochemical metallization. J. Appl. Phys.,2009,106.123705.
    [91]Y. C. Yang, F. Pan, and F. Zeng, Bipolar resistance switching in high-performance Cu/ZnO:Mn/Pt nonvolatile memories:active region and influence of Joule heating, New J. Phys.,2010,12,023008.
    [92]H. Shima, F. Takano, H. Muramatsu, M. Yamazaki, H. Akinaga, and A. kogure, Local chemical state change in Co-O resistance random access memory, Phys. Stat. Sol. (RRL),2008,2,99.
    [93]S. Kim and Y.-K. Choi, Resistive switching of aluminum oxide for flexible memory, Appl. Phys. Lett., 2008,92,223508.
    [94]X. Sun, B. Sun, L. Liu, N. Xu, X. Liu, R. Han, J. Kang, G. Xiong, and T. P. Ma, Resistive switching in CeOx films for nonvolatile memory application, IEEE Electron Device Lett.,2009,30,334.
    [95]X. Cao, X. Li, X. Gao, W. Yu, X. Liu, Y. Zhang, L. Chen, and X. Cheng, Forming-free colossal resistive switching effect in rare-earth-oxide Gd2O3 films for memristor applications, J. Appl. Phys., 2009,106,073723.
    [96]H. Y. Lee, Y. S. Chen, P. S. Chen, T. Y. Wu, F. Chen, C. C. Wang, P. J. Tzeng, M.-J. Tsai, and C. Lien, Low-power and nanosecond switching in robust hafnium oxide resistive memory with a thin Ti cap, IEEE Electron Device Lett.,2010,31,44.
    [97]C. Yoshida, M. Kurasawa, Y. M. Lee, M. Aoki, and Y. Sugiyama, Unipolar resistive switching in CoFeB/MgO/CoFeB magnetic tunnel junction, Appl. Phys. Lett.,2008,92,113508.
    [98]S. Zhang, S. Long, W. Guan, Q. Liu, Q. Wang, and M. Liu, Resistive switching characteristics of MnOx-based ReRAM, J. Phys. D:Appl. Phys.,2009,42,055112.
    [99]D. Lee, D.-J Seong,1. Jo, F. Xiang, R. Dong, S. Oh, and H. Hwang, Resistance switching of copper doped MoOr films for nonvolatile memory applications, Appl. Phys. Lett.,2007,90,122104.
    [100]S. Kim and Y.-K. Choi, A comprehensive study of the resistive switching mechanism in Al/TiOx/TiO2/Al-structured RRAM, IEEE Trans. Electron Device,2009,56,3049.
    [101]K. M. Kim, B. J. Choi, and C. S. Hwang, Localized switching mechanism in resistive switching of atomic-layer-deposited TiO2 thin films, Appl. Phys. Lett.,2007,90,242906.
    [102]S. C. Chae, J. S. Lee, S. Kim, S. B. Lee, S. H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C. U. Jung, S. Seo, M.-J. Lee, and T. W. Noh, Random circuit breaker network model for unipolar resistance switching, Adv. Mater.,2008,20,1154.
    [103]D.-H. Kwon, K. M. Kim, J. H. Jang. J. M. Jeon, M. H. Lee., G. H. Kim, X.-S. Li, G.-S. Park. B. Lee. S. Han, K. Miyoung, and H. S. Cheol, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory, Nature Nanotechnol.,2010,5,148.
    [104]S. Seo, M. J. Lee, D. C. Kim, S. E. Ahn, B.-H Park, Y. S. Kim, I. K. Yoo, I. S. Byun, I. R. Hwang, S. H. Kim, J.-S. Kim, J. S. Choi, J. H. Lee, S. H. Jeon, S. H. Hong, and B. H. Park, Electrode dependence of resistance switching in polycrystalline NiO films, Appl. Phys. Lett.,2005,87,263507.
    [105]J. S. Choi, J.-S. Kim, I. R. Hwang, S. H. Hong, S. H. Jeon, S.-O. Kang, B. H. Park, D. C. Kim, M. J. Lee, and S. Seo, Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes, Appl. Phys. Lett.,2009,95,022109.
    [106]C.-Y. Lin. C.-Y. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, and T.-Y. Tseng. Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEE Electron Device Lett., 2007,28.366.
    [107]S. H. Jo, K.-H. Kim, and W. Lu, Programmable resistance switching in nanoscale two-terminal devices, Nano lett.,2009,9,469.
    [108]M. N. Kozicki, M. Balakrishnan, C. Gopalan, C. Ratnakumar, and M. Mitkova, Programmable metallization cell memory based on Ag-Ge-S and Cu-Ge-S solid electrolytes, Non-Volatile Memory Technology Symposium,2005,83.
    [109]R. Symanczyk, R. Bruchhaus, R. Dittrich, and M. Kund, Investigation of the reliability behavior of conductive-bridging memory cells, IEEE Electron Device Lett.,2009,30,876.
    [110]Z. Wang, P. B. Griffin, J. McVittie, S. Wong, P. C. McIntyre, and Y. Nishi, Resistive switching mechanism in ZnxCd1-xS nonvolatile memory devices, IEEE Electron Device Lett.,2007,28,14.
    [111]T. Sakamoto, H. Sunamura, H. Kawaura, T. Hasegawa, T. Nakayama, and M. Aonob, Nanometer-scale switches using copper sulfide, Appl. Phys. Lett.,2003,82,3032.
    [112]M. H. Zhai, K. B. Yin, L. Shi, J. Yin, and Z. G. Liu, Conductance switching effect in the Cu/CuI0.76S0.14/Pt structure, J. Phys. D:Appl. Phys.2007,40,3702.
    [113]K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Quantized conductance atomic switch, Nature, 2005,433,47.
    [114]R. S. Potember, T. O. Pochler, and D. O. Cowan. Electrical switching and memory phenomena in CuTCNQ thin films, Appl. Phys. Lett.,1979,34,405.
    [115]R. S. Potember, T. O. Pochler, A. Rappa, D. O. Cowan, and A. N. Bloch, A reversible field induced phase transition in semiconducting films of silver and copper TNAP radical-ion salts, J. Am. Chem. Soc.,1980,102,3659.
    [116]T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, and C. Adachi, Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition, App. Phys. Lett.,2003,83,1252.
    [117]E. Y. H. Teo, C. Zhang, S. L. Lim, E.-T. Kang, D. S. H. Chan, and C. Zhu, An organic-based diode-memory device with rectifying property for crossbar memory array applications, IEEE Electron Device Lett.,2009,5.487.
    [118]L. P. Ma, J. Liu, and Y. Yang, Organic electrical bistable devices and rewritable memory cells, Appl. Phys. Lett.,2002,80,2997.
    [119]H. P. Wang, S. Pigeon, R. lzquierdo, and R. Martel, Electrical bistability by self-assembled gold nanoparticles in organic diodes, Appl. Phys. Lett.,2006,89,183502.
    [120]V. S. Reddy, S. karak, and A. Dhar, Multilevel conductance switching in organic memory devices based on AlQ3 and Al/A12O3 core-shell nanoparticles, Appl. Phys. Lett.,2009,94,173304.
    [121]J. Ouyang, C. W. Chu, C. R. Szmanda, L. P. Ma, and Y. Yang, Programmable polymer thin film and non-volatile memory device, Nat. Mater.,2004,3,918.
    [122]C. W. Chu, J. Y. Ouyang, J.-H. Tseng, and Y. Yang, Organic donor-acceptor system exhibiting electrical bistability for use in memory devices. Adv. Mater.,2005,17,1440.
    [123]R. J. Tseng, J. X. Huang. J. Y. Ouyang. R. B. Kaner. and Y. Yang, Polyaniline nanofiber/gold nanoparticle nonvolatile memory, Nano Lett.,2005.5.1077.
    [124]Y. Yang, J. Y. Ouyang, L. P. Ma. R. J.-H. Tseng, and C.-W. Chu. Electrical switching and bistability in organic/polymeric thin films and memory devices, Adv. Func. Mat.,2006,61,1001.
    [125]Q. D. Ling, Y. Song, S. J. Ding, C. X. Zhu, D. S. H. Chan, D.-L. Kwong, E.-T. Kang, and K.-G. Neoh, A non-volatile polymer memory device based on a novel copolymer of N-vinylcarbazole and eu-complexed vinylbenzoate, Adv. Mater.,2005,17,455.
    [126]Q. D. Ling, S.-L. Lim, Y. Song, C.-X. Zhu, D. S.-H. Chan, E.-T. Kang, and K.-G. Neoh, Nonvolatile polymer memory device based on bistable electrical switching in a thin film of poly (N-vinylcarbazole) with covalently bonded C6o, Langmuir,2007,23,312.
    [127]M. A. Reed, J. Chen, A. M. Rawlett, D. W. Price, and J. M. Tour, Molecular random access memory cell, Appl. Phys. Lett.,2001,78,3735.
    [128]H. B. Akkerman, P. W. M. Blom, D. M. De Leeuw, and B. De Boer, Towards molecular electronics with large-area molecular junctions, Nature,2006,441,69.
    [129]D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, Molecule-independent electrical switching in Pt/organic monolayer/Ti devices, Nano Lett.,2004,4,133.
    [130]J. C. Scott and L. D. Bozano, Nonvolatile memory elements based on organic materials, Adv. Mat., 2007,19,1452.
    [131]S. Moller, C. Perlov, W. Jackson, C. Taussig, and S. R. Forrest, A polymer/semiconductor write-once read-many-times memory, Nature,2003,426,166.
    [132]R. Waser and M. Aono, Nanoionics-based resistive switching memories, Nature Mater.,2007,6,833.
    [133]D. L. Lewis, H. S. Lee, Architectural evaluation of 3D stacked RRAM caches, IEEE International Conference on 3D System Integration, San Francisco,2009,1.
    [134]M.-J. Lee, C. B. Lee, S. Kim, H. Yin. J. Park, S. E. Ahn, B. S. Kang, K. H. Kim, G. Stefanovich, I. Song, S.-W. Kim, J. H. Lee, S. J. Chung, Y. H. Kim, C. S. Lee, J. B. Park, I. G. Baek, C. J. Kim, and Y. Park, Stack friendly all-oxide 3D RRAM using GalnZnO peripheral TFT realized over glass substrates, IEDM. Tech. Dig.,2008,85.
    [135]M. J. Lee, Y. Park, B. S. Kang, S.E. Ahn, C. Lee. K. Kim, W. Xianyu, G. Stefanovich, J. H. Lee. S. J. Chung, Y. H. Kim, C. S. Lee. J. B. Park, and I. K. Yoo,2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications, IEDM. Washington DC,2007, 771.
    [136]Y. C. Chen, C. F. Chen, C. T. Chen,.I. Y. Yu. S. Wu, S. L. Lung, R. Liu, and C.-Y. Lu. An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device, IEDM. Washington DC,2003,905.
    [137]S. H. Jo and W. Lu, CMOS compatible nanoscale nonvolatile resistance switching memory, Nano. Lett.,2008,8,392.
    [138]Q. Zuo, S. Long, S. Yang, Q. Liu, L. Shao, Q. Wang, S. Zhang, Y. Li, Y. Wang, and M. Liu. ZrO2-based memory cell with a self-rectifying effect for crossbar WORM memory application, IEEE. Electron Device Lett.,2010.31.344.
    [139]B. S. Kang, S. E. Ahn, M. J. Lee. G. Stefanovich. K. H. Kim, W. X. Xianyu, C. B. Lee, Y. Park,I. G. Baek,B. H. Park, High-current-density CuOx/InZnOx thin-film diodes for cross-point memory applications, Adv. Mater.,2008,20,3066.
    [140]W. W. Zhang, W. Pan, B. D. Ulrich,J. J. Lee, L. Stecker. A. Burmaster. D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka. K. Inoue. I. Naka, N. Awaya, A. Sakiyama. Y. Wang. S. Q. Liu, N. J. Wu. and A. Ignatiev, Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM), Int. Elec. Dev. Meet. San Francisco, CA, USA.2002,193.
    [141]L. O. Chua, Memristor-The missing circuit element, IEEE Trans. Circuit. Theory,1971, CT-18,507.
    [142]D. B. Strukov, G. S. Snider, D. R. Stewart, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature,2008,453,80.
    [143]J. M. Tour and H.Tao, Electronics:the fourth element, Nature,2008,453,42.
    [144]J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S. Williams,'Memristive' switches enable'stateful'logic operations via material implication, Nature,2010,464,873.
    [145]A. Sawa, Resistance switching in transition metal oxides, Mater. Today,2008,11,28.
    [146]H. Akinaga and H. Shima, Resistance random access memory (ReRAM) based on metal oxides, Proceedings of the IEEE,2010,98,2237.
    [147]R. Yasuhara, K. Fujiwara, K. Horiba, H. Kumigashira, M. Kotsugi, M. Oshima, and H. Takagi, Inhomogeneous chemical states in resistance-switching devices with a planar-type PdCuO/Pt structure, Appl. Phys. Lett.,2009,95,012110.
    [148]J. Y. Son and Y. H. Shin, Direct observation of conducting filaments on resistive switching of NiO thin films, Appl. Phys. Lett.,2008,92,222106.
    [149]L. Yang, C. Kuegeler, K. Szot, A. Ruediger, and R. Waser, The influence of copper top electrodes on the resistive switching effect in TiO2 thin films studied by conductive atomic force microscopy, Appl. Phys. Lett.,2009,95,013109.
    [150]C. Schindler, M. Weides. M. N. Kozicki, and R. Waser, Low current resistive switching in Cu-SiO2 cells, Appl. Phys. Lett.,2008,92,122910.
    [151]D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere, J. Appl. Phys.,2008,104,123716.
    [152]H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, Electrode dependence of resistive switching in Mn-doped ZnO:Filamentary versus interfacial mechanisms, Appl. Phys. Lett.,2010,96,192113.
    [153]J. S. Choi, J.-S. Kim,1. R. Hwang, S. H. Hong, S. H. Jeon, S.-O. Kang, B. H. Park, D. C. Kim, M. J. Lee, and S. Seo, Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes, Appl. Phys. Lett.,2009,95,22109.
    [1]A. Sawa, Resistance switching in transition metal oxides, Mater. Today,2008,11,28.
    [2]T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3, Appl. Phys. Lett.,2005,86,012107.
    [3]H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, Electrode dependence of resistive switching in Mn-doped ZnO:Filamentary versus interfacial mechanisms, Appl. Phys. Lett.,2010,96,192113.
    [4]J. S. Choi, J.-S. Kim, I. R. Hwang, S. H. Hong, S. H. Jeon, S.-O. Kang, B. H. Park, D. C. Kim, M. J. Lee, and S. Seo, Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes, Appl. Phys. Lett.,2009,95,22109.
    [5]D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul. and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature (London),2004,430,657.
    [6]A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature (London),2004,427,423.
    [7]D. J. Seong, M. Jo, D. Lee, and H. Hwang, HPHA effect on reversible resistive switching of Pt/Nb-doped SrTiO3 schottky junction for nonvolatile memory application, Electrochem. Solid-State. Lett.,2007,10, H168.
    [8]X. T. Zhang, Q. X. Yu, Y. P. Yao, and X. G. Li, Ultrafast resistive switching in SrTiO3:Nb single crystal, Appl. Phys. Lett.,2010,97,222117.
    [9]T. Fujii, M. Kawasaki, A. Sawa, Y. Kawazoe, H. Akoh, and Y. Tokura, Electrical properties and colossal electroresistance of heteroepitaxial SrRuO3/SrTi1-xNbxO3 (0.0002≤x≤0.02) Schottky junctions, Phys. Rev. B,2007,75,165101.
    [10]X. W. Sun, G. Q Li, X. A. Zhang, L. H Ding, and W. F. Zhang, Coexistence of the bipolar and unipolar resistive switching behaviors in Au/SrTiO3Pt cells. J. Phys. D:Appl. Phys.,2011,44, 125404.
    [11]B. P. Andreasson, M. Janousch, U. Staub. G. I. Meijer. and B. Delley, Resistance switching in Cr-doped SrTiO3:an x-ray absorption spectroscopy study. Mater. Sci. Eng. B,2007,144,60.
    [12]C.-C. Lin, J.-S. Yu, C.-Y. Lin, C.-H. Lin, and T.-Y. Tseng, Stable resistive switching behaviors of sputter deposited V-doped SrZrO3 thin films. Thin Solid Films,2007,516,402.
    [13]M. H. Lin, M. C. Wu, C. H. Lin, and T. Y. Tseng, Effects of vanadium doping on resistive switching characteristics and mechanisms of SrZrO3-based memory films, IEEE Tran. electron devices,2010,57, 1801.
    [14]Z. G. Sheng, J. Gao, and Y. P. Sun, Current-induced resistive switching effect in oxygen-deficient La0.8Ca0.2MnO3-δ films, Phys. Rev. B,2009,79,014433.
    [15]A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface, Appl. Phys. Lett.,2004,85,4073.
    [16]K. Shono, H. Kawano, T. Yokota, and M Gomi, Origin of negative differential resistance observed on bipolar resistance switching device with Ti/Pro.7Cao.3Mn03/Pt structure, Appl. Phys. Express,2008,1, 055002.
    [17]K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films, Adv. Mater.,2010,22,411.
    [18]R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices, Adv. Mater.,2010, 22,4819.
    [19]R. Yang, X. M. Li, W. D. Yu, X. D. Gao, D. S. Shang, X. J. Liu, X. Cao, Q. Wang, and L. D. Chen, The polarity origin of the bipolar resistance switching behaviors in metal/Lao 7Ca0.3MnO3/Pt junctions, Appl. Phys. Lett.,2009,95,072105.
    [20]李美成,陈学康,杨建平,脉冲激光纳米薄膜制备技术,红外与激光工程,2000,29,31.
    [21]叶云霞,王大承,张永康,脉冲激光沉积制备薄膜的研究动态,江苏理工大学学报(自然科学版),2001,22.56.
    [22]C. Tantigate, T. Lee, and A. Safari, Processing and properties of Pb(Mg1/3Nb2/3)O3-PbTiO3 thin films by pulsed laser deposition, Appl. Phys. Lett.,1995,66,1611.
    [23]B. Shin, J. P. Leonard, J. W. McCamy, and M. J. Aziz, Comparison of morphology evolution of Ge(001) homoepitaxial films grown by pulsed laser deposition and molecular-beam epitaxy, Appl. Phys. Lett.,2005,87,181916.
    [24]陈光华,邓金祥,新型电子薄膜材料,北京:化学工业出版社,2002,460.
    [25]汤育欣,陶杰,张焱焱,吴涛,陶海军,包祖国,导电玻璃上室温沉积钛膜及TiO2纳米管阵列的制备与表征,物理化学学报,2008,24,2191.
    [26]S. A. Howard, J. K. Yau, and H. U. Anderson, Structural characteristics of Sr1-xLaxTi3+δ as a function of oxygen partial pressure at 1400 ℃, J. Appl. Phys.,1989,65,1492.
    [27]C. Park, Y. Seo. J. Jung, and D. W. Kim, Electrode-dependent electrical properties of metal/Nb-doped SrTiO3 junctions, J. Appl. Phys.,2008,103,054106.
    [28]K. Szot. W. Speier. R. Carius, U. Zastrow, and W. Beyer, Localized metallic conductivity and self-Healing during thermal reduction of SrTiO3, Phys. Rev. Lett.,2002,88,075508.
    [1]Q. Liu, C. M. Dou, Y. Wang, S. B. Long, W. Wang, M. Liu, M. H. Zhang, and J. N. Chen, Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device, Appl. Phys. Lett.,2009,95,023501.
    [2]C. Y. Lin, C. Y. Wu, C. Y. Wu, T. C. Lee, F. L.Yang, C. M. Hu, and T. Y. Tseng, Effect of top electrode material on resistive switching properties of ZrO2 film memory devices, IEEE Electron Device Lett., 2007,28,366.
    [3]W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications, Appl. Phys. Lett.2008,92, 022110.
    [4]L. Goux. J. G. Lisoni, M. Jurczak. D. J. Wouters, L. Courtade and Ch. Muller, Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers, J. Appl. Phys.2010,107,024512.
    [5]S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D-W. Kim, and T. W. Noh, Occurrence of both unipolar memory and threshold resistance switching in a NiO film, Phys. Rev. Lett.,2009,102,026801.
    [6]S. Seo, M. J. Lee, D. H. Seo. E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo, Reproducible resistance switching in polycrystalline NiO films, Appl. Phys. Lett.,2004,85,5655.
    [7]J. Y. Son and Y.-H. Shin, Direct observation of conducting filaments on resistive switching of NiO thin films, Appl. Phys. Lett.2008,92,222106.
    [8]C. H. Kim, Y. H. Jang, H. J. Hwang, Z. H. Sun, H. B. Moon, and J. H. Cho, Observation of bistable resistance memory switching in CuO thin films, Appl. Phys. Lett.,2009,94,102107.
    [9]D. S. Jeong, H. Schroeder, U. Breuer, and R. Waser, Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere, J. Appl. Phys.,2008,104,123716.
    [10]H. Schroeder and D. S. Jeong. Resistive switching in a Pt/TiO2/Pt thin film stack-a candidate for a non-volatile ReRAM, Microelectro. Eng.,2007,84,1982.
    [11]N. Xu, L. F. Liu, X. Sun. C. Chen, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, Bipolar switching behavior in TiN/ZnO/Pt resistive nonvolatile memory with fast switching and long retention, Semicond. Sci. Technol., 2008,23,075019.
    [12]C. C. Lin, J. S. Yu, C. Y. Lin, C. H. Lin, and T. Y. Tseng, Stable resistive switching behaviors of sputter deposited V-doped SrZrO3 thin films, Thin Solid Films,2007,516,402.
    [13]D. S. Shang, Q. Wang, L. D. Chen, R. Dong, X. M. Li, and W. Q. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures, Phys. Rev. B, 2006,73,245427.
    [14]K. Shono, H. Kawano, T. Yokotal, and M. Gomi, Origin of negative differential resistance observed on bipolar resistance switching device with Ti/Pr0.7Ca0.3MnO3/Pt structure, Appl. Phys. Express,2008, 1,055002.
    [15]K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films, Adv. Mater.,2010,22, 411.
    [16]D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Reversible resistive switching of SrTiO^ thin films for nonvolatile memory applications, Appl. Phys. Lett.,2006,88,082904.
    [17]K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3, Nature Mater.,2006,5,312.
    [18]M. Janousch, G.I. Meijer, U. Staub, B. Delley, S. F. Karg, and B. P. Andreasson, Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory, Adv. Mater.,2007,19,2232.
    [19]Y. D. Xia, W. Y. He, L. Chen. X. K. Meng, and Z. G. Liu, Field-induced resistive switching based on space-charge-limited current, Appl. Phys. Lett.,2007,90,022907.
    [20]U. Russo, D. lelmini, C. Cagli, and A. L. Lacaita, Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices, IEEE Trans. Electron Devices, 2009,56,193.
    [21]S. A. Howard, J. K. Yau, and H. U. Anderson, Structural characteristics of Sr1-xLaxTi3+δ as a function of oxygen partial pressure at 1400 ℃, J. Appl. Phys.,1989,65,1492.
    [22]S. B. Lee, A. Kim, J. S. Lee. S. H. Chang, H. K. Yoo, T. W. Noh, B. Kahng, M.-J, Lee, C. J. Kim, and B. S. Kang, Reduction in high reset currents in unipolar resistance switching Pt/SrTiOx/Pt capacitors using acceptor doping, Appl. Phys. Lett.,2010,97,093505.
    [23]J. Son, J. Cagnon, and S. Stemmer, Electrical properties of epitaxial SrTiO3 tunnel barriers on (001) Pt/SrTiO3 substrates, Appl. Phys. Lett.,2009,94,062903.
    [24]S. A. Howard, J. K. Yau, and H. U. Anderson, Structural characteristics of Sr1-xLaxTi3+δ as a function of oxygen partial pressure at 1400 ℃, J. Appl. Phys.,1989,65,1492.
    [25]陈光华,邓金祥,新型电子薄膜材料,北京:化学工业出版社,2002,460.
    [26]Y. Nakano, N. Ichinose, Oxygen adsorption and VDR effect in (Sr, Ca)TiO3-x based ceramics, J Mater. Res.,1990,5,2910.
    [27]D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature (London),2004,430,657.
    [28]A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature (London),2004,427,423.
    [29]A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokurad, Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface, Appl. Phys. Lett.,2004,85,4073.
    [30]I. H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches:homogeneous/inhomogeneous transition of current distribution, Phys. Rev. B,2008,77,035105.
    [31]H. Schmalzried, Progress in Solid State Chemistry (Pergamon, New York) Vol.2, Chap.8.
    [1]International Technology Roadmap for Semiconductors (ITRS), Emerging Research Devices, ITRS technical report 2009.
    [2]H. Dery, P. Dalal, L. Cywinski, and L. J. Sham, Spin-based logic in semiconductors for reconfigurable large-scale circuits, Nature,2007,447,573.
    [3]J. Wang, H. Meng, and J. P. Wang, Programmable spintronics logic device based on a magnetic tunnel junction element, J. Appl. Phys.,2005,97,10D509.
    [4]Y. Chen, G. Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams, Nanoscale molecular-switch crossbar circuits, Nanotechnology,2003,14, 462.
    [5]J. E. Green, J. W. Choi, A. Boukai, and Y. Bunimovich, A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimeter. Nature,2007,445.414.
    [6]R. Waser, R. Dittman, G. Staikov, and K. Szot. Redox-based resistive switching memories-nanoionic mechanism, prospects, and challenges, Adv. Mater.,2009,21,2632.
    [7]J. Borghetti, Z. Li, J. Straznicky, X. Li, D. A. A. Ohlberg, W. Wu, D. R. Stewart, and R. S. Williams, A hybrid nanomemristor/transistor logic circuit capable of self-programming, Proc. Natl. Acad. Sci. USA,2009,106,1699.
    [8]G. Snider, P. Kuekes, T. Hogg, and R. S. Williams, Nanoelectronic architectures, Appl. Phys. A,2005, 80,1183.
    [9]Y. Luo, C. P. Collier, J. O. Jeppesen, K. A. Nielsen, E. Delonno, G. Ho, J. Perkins, H.-R. Tseng, T. Yamamoto, J. F. Stoddart, and J. R. Heath, Two-dimensional molecular electronics circuits, Chem. Phys. Chem.,2002,3,519.
    [10]A. DeHon, Array-based architecture for FET-based, nanoscale electronics, IEEE Trans. NanoTechnol., 2003,2,23.
    [11]A. N. Whitehead and B. Russell, Principia Mathematica, Vol 1,7 (Cambridge University Press,1910).
    [12]J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang. D. R. Stewart, and R. S. Williams,'Memristive' switches enable'stateful'logic operations via material implication. Nature,2010,464,873.
    [13]L. O. Chua, Memristor-The missing circuit element, IEEE Trans. Circuit Theory,1971, CT-18,507.
    [14]D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, The missing memristor found, Nature, 2008,453,80.
    [15]W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications, Appl. Phys. Lett.,2008,92, 022110.
    [16]S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D. W. Kim, and T. W. Noh, Occurrence of both unipolar memory and threshold resistance switching in a NiO film, Phys. Rev. Lett.,2009,102,026801.
    [17]C. H. Kim, Y. H. Jang, H. J. Hwang, Z. H. Sun, H. B. Moon, and J. H. Cho, Observation of bistable resistance memory switching in CuO thin films, Appl. Phys. Lett.,2009,94,102107.
    [18]D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Reversible resistive switching of SrTiOx thin films for nonvolatile memory applications, Appl. Phys. Lett.,2006,88,082904.
    [19]K. Shibuya, R. Dittmann, S. Mi, and R. Waser, Impact of defect distribution on resistive switching characteristics of Sr3Ti04 thin films, Adv. Mater.,2010,22,411.
    [20]D. S. Shang, Q. Wang, L. D. Chen, R. Dong, X. M. Li, and W. Q. Zhang, Effect of carrier trapping on the hysteretic current-voltage characteristics in Ag/La0.7Ca0.3MnO3/Pt heterostructures, Phys. Rev. B, 2006,73.245427.
    [21]K. Shono, H. Kawano, T. Yokota, and M. Gomi, Origin of negative differential resistance observed on bipolar resistance switching device with Ti/Pr0.7Ca0.3MnO3/Pt structure, Appl. Phys. Express,2008,1. 055002.
    [22]H. Y. Jeong, J. Y. Lee, and S. Y. Choi, Interface-engineered amorphous TiO2-based resistive memory devices, Adv. Funct. Mater.,2010,20,3912.
    [23]W. C. Chien, E. K. Lai, K. P. Chang, C. H. Yeh, M. H. Hsueh, Y. D. Yao, T. Luoh, S. H. Hsieh, T. H. Yang, K. C. Chen, Y. C. Chen, K. Y. Hsieh, R. Liu, and C. Y. Lu, Unipolar switching characteristics for self-aligned WOx resistance RAM (R-RAM),2008 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA),21-23 April,2008, T97,144.
    [24]Y. V. Pershin and M. D. Ventra, Memory effects in complex materials and nanoscale system, Adv. Phys.,2011,60,145.
    [25]P. J. Kuekes, D. R. Stewart, and R. S. Williams, The crossbar latch:logic value storage, restoration, and inversion in crossbar circuits, J. Appl. Phys.,2005,97,034301.
    [1]H. Y. Peng, G. P. Li, J. Y. Ye, Z. P. Wei, Z. Zhang, D. D. Wang, G. Z. Xing, and T. Wu, Electrode dependence of resistive switching in Mn-doped ZnO:Filamentary versus interfacial mechanisms, Appl. Phys. Lett.,2010,96,192113.
    [2]J. S. Choi, J.-S. Kim, I. R. Hwang, S. H. Hong, S. H. Jeon, S.-O. Kang, B. H. Park, D. C. Kim, M. J. Lee, and S. Seo, Different resistance switching behaviors of NiO thin films deposited on Pt and SrRuO3 electrodes, Appl. Phys. Lett.,2009,95,022109.
    [3]D. S. Shang, J. R. Sun, L. Shi, and B. G. Shen, Photoresponse of the Schottky junction Au/SrTiO3:Nb in different resistive states, Appl. Phys. Lett.,2008,93,102106.
    [4]Y. Tokunaga, Y. Kaneko, J. P. He, T. Arima, A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Colossal electroresistance effect at metal electrode/La1-xSr1+xMnO4 interfaces, Appl. Phys. Lett.,2006,88, 223507.
    [5]T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.0103, Appl. Phys. Lett.2005,86,012107.
    [6]T. Fujii and M. Kawasaki, Electrical properties and colossal electroresistance of heteroepitaxial SrRuO3/SrTi1-xNbxO3 (0.0002≤x≤0.02) Schottky juntions, Phys. Rev. B,2007,75, 165101.
    [7]S. B. Lee. A. Kim. J. S. Lee, S. H. Chang, H. K. Yoo, T. W. Noh, B. Kahng, M.-J. Lee, C. J. Kim, and B. S. Kang, Reduction in high reset currents in unipolar resistance switching Pt/SrTiOx/Pt capacitors using acceptor doping, Appl. Phys. Lett.,2010,97,093505.
    [8]Z. B. Yan, S. Z. Li, K. F. Wang, and J.-M. Liu, Unipolar resistive switching effect in YMn1-δ>O3 thin films, Appl. Phys. Lett.,2010,96,012103.
    [9]D. Choi, D. Lee, H. Sim, M. Chang, and H. Hwang, Reversible resistive switching of SrTiO, thin films for nonvolatile memory applications, Appl. Phys. Lett.,2006,88,082904.
    [10]S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D-W. Kim, and T. W. Noh. Occurrence of Both Unipolar Memory and Threshold Resistance Switching in a NiO Film, Phys. Rev. Lett.,2009,102,026801.
    [11]S. B. Lee, J. S. Lee, S. H. Chang, H. K. Yoo, B. S. Kang, B. Kahng, M.-J. Lee, C. J. Kim, and T. W. Noh, Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching, Appl. Phys. Lett.,2011,98,033502.
    [12]X. W. Sun, G. Q. Li. X. A. Zhang, L. H. Ding, and W. F. Zhang, Coexistence of the bipolar and unipolar resistive switching behaviours in Au/SrTiO3/Pt cells, J. Phys. D:Appl. Phys.2011,44, 125404.
    [13]D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3, Nature (London),2004,430:657.
    [14]A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature (London),2004,427:423.
    [15]X. Wang, L. Li, Y. Zhang, S. Wang, Z. Zhang, L. Fei, and Y. Qian, High-yield synthesis of NiO nanoplatelets and their excellent electrochemical performance, Crystal Growth & Design,2006,6(9), 2163.
    [16]K. Shibuya, R. Dittmann, S. Mi and R. Waser, Impact of defect distribution on resistive switching characteristic of Sr2TiO4 thin films, Adv. Mater.,2010,22,411.
    [17]R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Coexistence of filamentary and homogeneous resistive switching in Fe-deped SrTiO3 thin-film memristive devices, Adv. Mater.,2010, 22,4819.
    [18]R. Yang, X. M. Li, W. D. Yu. X. D. Gao. D. S. Shang, X. J. Liu, X. Cao, Q. Wang, and L. D. Chen, The polarity origin of the bipolar resistance switching behaviors in metal /La0.7Ca0.3MnO3/Pt junctions, Appl. Phys. Lett.,2009,95,072105.
    [19]S. A. Howard, J. K. Yau, and H. U. Anderson, Structural characteristics of Sr1-xLaxTi3+δ as a function of oxygen partial pressure at 1400 ℃, J. Appl. Phys.,1989,65,1492.
    [20]N. Gakushiin, Proc. Jpn. Acad.,1979,5543.
    [21]吴刚,材料结构表征及应用,化学工业出版社,2001.
    [22]J. J. Yang, M. D. Pickett, X. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nature Nanotechnology,2008,3,429.
    [23]K. C. Kao, Dielectric phenomena in solids (Elsevier Academic, San Diego,2004), Chap.7.
    [24]S. M. Sze, Physics of semiconductor devices,2nd ed., Wiley, New York (1981).
    [25]C. Liu, S. C. Chae, J. S. Lee, S. H. Chang, S. B. Lee, D.-W. Kim, C. U. Jung, S. Seo, S.-E. Ahn, B. Kahng, and T. W. Noh, Abnormal resistance switching behaviours of NiO thin films:possible occurrence of both formation and rupturing of conducting channels, J. Phys. D:Appl. Phys.,2009,42, 015506.
    [26]U. Russo, D. Jelmini, C. Cagli, A. L. Lacaita. S. Spiga. C. Wiemer, M. Perego, and M. Fanciulli, Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM, in IEDM Tech. Dig.,2007.775.
    [27]S. B. Lee, S. C. Chae, S. H. Chang, J. S. Lee. S. Park, Y. Jo, S. Seo, B. Kahng and T. W. Noh, Strong resistance nonlinearity and third harmonic generation in the unipolar resistance switching of NiO thin films, Appl. Phys. Lett.,2008,93,252102.
    [28]X. B. Yan, Y. D. Xia, H. N. Xu, X. Gao, H. T. Li, R. Li, J. Yin, and Z. G. Liu, Effects of the electroforming polarity on bipolar resistive switching characteristics of SrTiO3-δ films, Appl. Phys. Lett.,2010,97,112101.
    [29]K. M. Kim, S. J. Song, G. H. Kim, J. Y. Seok, M. H. Lee, J. H. Yoon, J. Park, and C. S. Hwang, Collective motion of conducting filaments in Pt/n-Type TiO2/p-Type NiO/Pt stacked resistance switching memory, Adv. Mater.,2011,22,1587.
    [30]M.-J. Lee, S.I. Kim, C. B. Lee, H. Yin, S.-E. Ahn, B. S. Kang, K. H. Kim, J. C. Park, C. J. Kim, I. Song, S. W. Kim, G. Stefanovich, J. H. Lee, S. J. Chung, Y. H. Kim, and Y. Park, Low-temperature-grown transition metal oxide based storage materials and oxide transistors for high-density non-volatile memory, Adv. Funct. Mater.,2009,19,1587.
    [31]C. Park, S. H. Jeon, S. C. Chae, S. Han, B. H. Park, S. Seo, and D.-W. Kim, Role of structural defects in the unipolar resistive switching characteristics of Pt/NiO/Pt structures, Appl. Phys. Lett.,2008,93, 042102.
    [32]C. Yoshida, K. Kinoshita, T. Yamasaki, and Y. Sugiyama, Direct observation of oxygen movement during resistance switching in NiO/Pt film, Appl. Phys. Lett.,2008,93,042106.
    [33]G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, and S. Seo, Observation of electric-field induced Ni filament channels in polycrystalline NiOx film, Appl. Phys. Lett.,2007,91,222103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700