TC4钛合金表面激光熔覆C与BN原位生成复合涂层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光熔覆原位生成技术是通过在基体表面添加熔覆材料,利用高能密度激光束辐照加热,使熔覆材料与基材表层发生熔化,在熔池中熔覆材料元素与基体元素发生化学冶金反应,从而在基体表层形成冶金结合的熔覆层,达到改善基体表面性质为目的一门新型改性技术。为了改善TC4钛合金耐磨性能差缺陷,本文采用激光熔覆原位生成技术,在TC4钛合金表面预涂覆高纯度C与BN粉末,原位生成Ti-C、TiN、TiB_2、TiB和AlN等陶瓷增强相。通过对不同工艺参数下熔覆层宏观、微观质量的对比分析,选出了最佳的激光熔覆工艺参数范围。利用SEM、XRD和EDXs等测试手段对熔覆层的显微组织和相成份进行分析。利用HXD-1000B型显微维氏硬度计测试了熔覆层的硬度。
     实验结果表明,激光熔覆层的宏观、微观质量与激光熔覆工艺参数密切相关。在最佳激光工艺参数范围为激光功率P=1900-2000W,光斑尺寸为3×2mm~2,预涂层厚度h=0.3-0.5mm,扫描速度V=4-6mm/s时,获得的激光熔覆层表面连续均匀,内部无裂纹的熔覆层,且与TC4钛合金基体实现冶金结合。激光熔覆试样沿层深方向存在三个不同的组织区域,由表及里依次为:熔覆层、结合区及基体热影响区。显微组织成分分析表明,在激光熔覆的过程中,基体中的Ti和Al元素与预置涂层的C、N、B等元素发生化学反应,原位生成TiC、TiN、TiB_2、TiB和AlN等陶瓷增强相。TiC、TiN、TiB_2、TiB和AlN相是以树枝晶和枝晶形式存在。经显微硬度测试,TC4钛合金表面熔覆层的显微硬度相对TC4钛合金有了明显的提高。熔覆层显微硬度(857HV_(0.5)-1454 HV0.5)比钛合金基材硬度(330HV_(0.5)-340HV_(0.5))提高到2-4倍。
In-situ formation by laser cladding is a new modified technique forimproving the surface properties of the substrate. It is using the highdensity energy of laser beam to irradiate the cladding material which isadded on the surface of substrate, resulting in the cladding material andthe surface of substrate melted, and the element of cladding materialreacting with the element of the substrate for formatting cladding layerwhich join to the substrate with metallurgical bonded. In the paper, forimproving the poor tribological properties of TC4 titanium alloy, it is aprocess of in-situ formed composite coating by laser cladding on TC4titanium alloys substrate with preplaced the high purity C and BN powder,in-situ producing TiC, TiN, TiB_2, TiB and AlN ceramic reinforcementphases. Through the comparison analyses of the macroscopic andmicroscopic qualities for the cladding layers, the range of laser claddingparameters were optimized. Microstructure of the cladding layers wascharacterized by XRD, SEM and EDXs. The microhardness of thecladding layers was measured by HXD-1000B type micro-sclerometer.
     The experimental results show that the macroscopic and microscopicquality is related to process parameters of laser cladding. Under theoptimized laser cladding parameters range of P=1700-2000W,S=3×2mm~2, h=0.3-0.5mm, V=4-6mm/s, the cladding layers are obtained, inwhich no cracks appear and surface is distributed uniformly. the lasercladding layers are metallurgically bonded with TC4 titanium alloyssubstrate. The microstructure structure analysis shows that three regionswith different microstructure existed in the surface of laser cladding zone:the cladding layer, the bonded zone of the cladding layer with the substrate, and the heat-affected zone in the substrate. The microstructurecomposition analysis shows that there is a reaction between C, B, N andTi, in-situ producing TiC, TiN, TiB_2, TiB and AlN ceramic reinforcementphases. The in-situ produced TiC, TiN, TiB_2, TiB and AlN shows themorphologies of fine dendrite. The average microhardness of lasercladding layer is remarkably improved. The microhardness is857HV_(0.5)-1454 HV0.5 in the laser cladding layer,which is 2-4 times thatof the TC4 substrate (330HV_(0.5)-340 HV0.5).
引文
[1]蒋平.钛合金激光表面合金化制备Ti5Si3/Ti、Ti5Si3-TiC/Ti耐磨及高温抗氧化复合材料涂层研究[D].北京:北京航空航天大学,2000.
    [2]昝林.激光快速成形TC21钛合金的组织和力学性能研究[D].陕西:西北工业大学,2007.
    [3]蔡利芳,张永忠,石力开.钛合金表面激光熔覆材料研究进展[J].钛工业进展,2006,23(1):1-5.
    [4]孟庆武,耿林,郑镇沫,等.钛合金表面激光熔覆技术的研究进展[J].材料导报,2004,19(9):57-59.
    [5]郭桂芳,陈芙蓉,李林贺.激光熔覆技术在钛合金表面改性中的应用[J].表面技术,2006,35(1):66-69.
    [6]张松,张春华.钛合金表面激光熔覆原位生成TiC增强复合涂层[J].中国有色金属学报,2001,21(6):18-22.
    [7] Wang Xin-hong, Zou Zeng-da, Qu Shi-yao. Microstructure of Fe-Based AlloyHardfacing Coating Reinforced by TiC-VC Particles[J]. Journal of iron and steelresearch.international,2006,13(4):51-55.
    [8]罗建军,王世洪,沈桂琴,等.Ti-6Al-4V合金微动磨损的表面防护[J].稀有金属材料与工程,1995,24(4):53-58.
    [9]张清辉.模具材料及表面处理[M].北京:电子工业出版社,2004.
    [10] Tamer Ezz,Philip Crouse,Lin Li,et al. Synthesis and coating ofmicro-metal-matrixcompositebycombinedlasersol–gelprocessing[J].Surface&CoatingsTechnology,2007,201(15):5809–5814.
    [11] S. Taktaka, H. Akbulut. Dry wear and friction behaviour of plasma nitridedTi-6Al-4Valloyafter explosive shock treatment[J]. TribologyInternational, 2007,40(3):423–432.
    [12] Y.S. Tian, C.Z. Chen, D.Y. Wang, et al. Laser surface alloying of pure titaniumwith TiN–B–Si–Ni mixed powders[J]. Applied Surface Science, 2005,250(1-4):223–227
    [13] S.Dallairea, D.Dubeb, M.Fiset. Laser melting of plasma-sprayed copper–ceramiccoatings for improved erosion resistance [J].Wear, 1999, 231(1):102–107.
    [14] Y.T. Pei, V. Ocelik, J.Th.M. et al. SiCp/Ti6Al4V functionally graded materialsproduced by laser melt injection[J]. Acta Materialia, 2002, 50:2035–2051.
    [15] Xu Yue, Ji Hong, Chen Xiang, et al. Influence of Surface Gas-Phase Rare EarthPermeation Plus Laser Melting Solidification on Microstructure and CorrosionResistance of PureIron[J]. Joural of Rare Earths, 2002,20(2):120-123.
    [16] F.Vollertsen, K.Partes, J.Meijer. State of the art of Laser Hardening andCladding[R]. Munich: Proceedings of the Third International WLT-Conference onLasers in Manufacturing 2005, 2005:1-25.
    [17]孙会来,赵方方,林树忠,等.激光熔覆研究现状与发展趋势[J].激光杂志,2008,29(1):4-6.
    [18] J.A.Vreeling, V.Ocel?k,J.T.M. De Hosson. Ti–6Al–4V strengthened by laser meltinjection ofWCp particles[J]. Acta Materialia,2002,50(19):4913–4924
    [19]张晓东.钛合金表面激光熔覆镍包石墨涂层的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [20] J.P. Kruth a, L. Froyen b, J. Van Vaerenbergh, et al. Selective laser melting ofiron-based powder[J]. Journal of Materials Processing Technology, 2004,149(1):616–622.
    [21]王新林,漆海滨.厚层激光熔覆层裂纹控制的综合实验研究与理论分析[J].南华大学学报(理工版),2001,15(3):36-41.
    [22]李子夫,吴国正,黄正,等.镍基合金激光熔覆γ-TiAl基合金涂层组织研究[J].焊接技术,2004,33(4):16-18.
    [23]刘秀波,王华明.La2O3对TiAl合金激光熔覆复合材料涂层组织与耐磨性的影响[J].中国激光,2005,32(7):1011-1016.
    [24]张松,王茂才,毕红运,等.激光熔覆TiC/Ti复合材料的组织及摩擦学性能[J].摩擦学学报,1999,19(1):18-22.
    [25]王华明,郭淑平.TiAl金属间化合物合金的激光气体合金化表面改性研究[J].中国激光,1997,24(11):1049-1052.
    [26]何秀丽,王华明,郑启光,等.TiAl金属间化合物碳元素激光表面合金化[J].金属学报,1998.34(9):983-986.
    [27]何秀丽,于利根. BT9钛合金碳元素激光表面合金化组织研究[J].金属热处理,2000,(5):4-6.
    [28]武万良,黄文荣,杨德庄,等.Ti-6Al-4V激光熔覆材料合金体系与熔覆工艺研究[J].新技术新工艺,2003,(9):41-43.
    [29]武晓雷,陈光南.激光形成原位TiC颗粒增强涂层的组织及性能[J].金属学报,1998,34(12):1284-1288.
    [30]杨森,钟敏霖,刘文今.激光熔覆制备Ni/TiC原位自生复合涂层及其组织成形规律研究[J].应用激光,2002,22(2):105-109.
    [31]马乃恒,方小汉,梁工英,等.激光熔覆原位合成TiCp/Al复合材料[J].中国有色金属学报,2000,(5):27-29.
    [32]董奇志,张晓宇,胡建东等.激光熔覆Ni基TiC强化复合涂层中内生TiC颗粒的生长机理[J].应用激光,2001,21(4):237-240.
    [33]陈瑶,王华明.激光熔覆TiC增强FeAl金属间化合物基复合材料涂层磨损性研究[J].稀有金属材料与工程,2003,32(10):840-843.
    [34]孙荣禄,郭立新.钛合金表面激光熔覆NiCrBSi-TiC复合涂层的组织研究[J].中国激光,2001,28(3):275-278.
    [35]蒋平,张继娟,于利根.Ti-6Al-4V合金激光表面合金化制备Ti5Si3/Ti耐磨复合材料涂层研究[J].稀有金属材料与工程,2000,29(4):269-272.
    [36] X.H.Wang, M.Zhang, X.M.Liu, et al. Microstructure and wear properties ofTiC/FeCrBSi surface composite coating prepared by laser cladding[J]. Surface &Coatings Technology, 2008,202(15):3600-3606.
    [37] B. Courant, J.J. Hantzpergue, S. Benayoun. Surface treatment of titanium bylaser irradiation to improve resistance to dry-sliding friction[J].Wear,1999,236(1):39–46.
    [38] MU Jiu-fang, HU Fang-you, HUILi, et al, ZHAO Jin. Microstructure of laserclad Ti+Al+SiO2+C powders on Ti6Al4V alloy[J]. Journal of Materials andMetallurgy,2006,5(4):300-303.
    [39] L. Lu, J.Y.H. Fuh, Z.D. Chen, et al. In situ formation of TiC composite usingselective laser melting[J]. Materials Research Bulletin, 2000, 35(9):1555-1561.
    [40] M.S.F. Lima, F. Folio, S. Mischler. Microstructure and surface properties oflaser-remelted titanium nitride coatings on titanium[J]. Surface & CoatingsTechnology , 2005,199(1) :86-91.
    [41] C Blanco-Pinzon, Z Liu, K Voisey, et al. Excimer laser surface alloying oftitanium with nickel and palladium for increased corrosion resistance[J].Corrosion Science, 2005,47(5), Pages 1251-1269.
    [42] L.N. Jian, H.M. Wang. Microstructure and wear behaviours of laser-cladCr13Ni5Si2-based metal-silicide coatings on a titanium alloy[J]. Surface &Coatings Technology, 2005 ,192 (2) :305–310.
    [43]王东生,陈长军,郭文渊等.镁合金激光表面改性研究进展[J].材料保护,2003,36(1):25-26.
    [44] Nikolay K. Tolochko, Tahar Laoui, et al. Absorptance of powder materialssuitable for laser sintering[J]. Rapid Prototyping Journal, 2000 , 6 ( 3 ):155-160.
    [45] Patil R B, Yadava V. Finite element analysis of temperature distribution in singlemetallic powder layer during metal laser sintering[J]. International Journal ofMachine Tools & Manufacture, 2007, 47: 1069-1080.
    [46]路有勤,郭伟.激光熔覆温度场的研究现状[J].山西机械,1999,(l):36-38.
    [47] L.J.liet. A study of the Mechanism of laser cladding processes[J]. laser processingof Material. Porc. of 113th Annual Meeting Aime,1985,84-88.
    [48]刘江龙.高能束热处理[M].北京:机械工业出版社,1997.
    [49]李强,欧阳家虎,雷廷权,等.材料表面激光熔覆研究进展[J].材料科学与工艺,1996,4(4):22-36.
    [50]吴健.影响激光熔覆层品质的主要因素分析[J].机械制造与自动化,2004,33(4):52-56.
    [51]黄新民.材料分析测试方法[M].北京:国防工业出版社,2006.
    [52]虞觉奇,易文质,陈邦迪.二元合金状态图[M].上海科学技术出版社,1987:252
    [53]吕维洁,张小农,张获,等.原位合成TiC/Ti基复合材料增强体的生长机制[J].金属学报,1999,35(5):536-540.
    [54]戴景杰.纯钛TA2合金表面改性试验与机理研究[D].兰州:兰州理工大学,2006.
    [55]张幸红,田振辉,徐强. TiB/Ti基金属陶瓷燃烧合成反应热力学[J].材料科学与工艺,2002,10(4):412-415.
    [56]戴遐明,丁明勤,李庆丰,等. Al2O3-C-N2体系中合成AlN粉反应温度的热力学研究[C].北京:第四届全国超微颗粒学术研讨会论文集,1998,128-131.
    [57]孙明.激光制备WC及原位TiC陶瓷增强复相涂层[D].兰州:兰州理工大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700