芳香羧酸配合物的合成、结构及性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,关于配位聚合物晶体材料的设计、合成、结构及性能研究十分活跃。除了应用较多的吡啶杂环类配体外,芳香羧酸类配体也因具有一系列的特性而被广泛用于配位聚合物的构筑,但所用的合成方法多为常规溶液合成法和水(溶剂)热法。流变相反应法,作为本课题组提出的一种新的软化学合成法,具有反应条件温和、反应速度快、操作简便等优点,已被成功用于一系列功能材料(如锂离子电池正、负极材料等)的制备。然而,对将该方法应用于单晶制备方面的研究还很少。
     本论文主要在运用流变相反应法制备芳香羧酸配合物单晶方面进行了有意义的探索。以氧化锌或氯化锶、稀土氧化物或氯化物、芳香羧酸(苯甲酸、水杨酸、α-呋喃甲酸、α-噻吩甲酸、均苯四甲酸)及邻菲罗啉为原料,通过流变相体系中反应物分子之间的分子识别和自组装作用得到了一系列尚未见文献报道的芳香羧酸配合物或配位聚合物,拓展了该反应方法的应用范围,并为单晶制备提供了一种新方法。对这些配合物的晶体结构进行了解析,并对其光谱性能进行了研究,对物质结构与发光性能间的关系进行了探讨。主要研究成果如下:
     1.合成了具有强绿色发光的一维配位聚合物{[Tb(FUR)_3(H_2O)_2]·DMF}_n。在该配合物中,每个Tb原子处于八面体配位环境中,相邻Tb原子间通过呋喃甲酸配体桥联成一维链状结构。DMF分子未参与配位,仅通过分子间氢键与一维链相连。氢键及芳香堆积作用将一维链连成二维层状结构。
     2.以氯化锶、氯化铽、水杨酸及邻菲罗啉为原料,合成了新型的离子型水杨酸铽二聚物[Tb_2(Hsal)_8(H_2O)_2][(Hphen)_2]·2H_2O。实验中发现Sr~(2+)的存在对该配合物单晶的生长具有调控作用。在该配合物中,[Tb_2(Hsal)_8]~(2-)单元间通过分子间氢键相连成一维链状结构,[Hphen]~+位于一维链的两侧。phen环平面与水杨酸配体苯环平面间的π-π芳香堆积作用进一步将一维链连成二维层。在紫外光激发下,该配合物发出强的绿色荧光,但较差的能级匹配使得该配合物的荧光强度显著低于二元配合物Tb(Hsal)_3(H_2O)_2·2H_2O。
     3.得到了两个具有新颖结构和强红色荧光的离子型二聚物[Eu_2(Hsal)_8][Zn(phen)_3]-(H_2sal)(H_2O)(2-1)和[Eu_2(TPA)_8][Zn(TPA)(phen)_2]_2·(H_2O)_2(2-2)。值得注意的是,在配合物2-1中存在两类[Eu_2(Hsal)_8]~(2-)二聚单元,Eu1为八配位,Eu2为九配位。水杨酸配体和结晶水间的弱分子间氢键将Eu1二聚单元连成一维链状结构。配合物2-2中的【Eu_2(TPA)_8]~(2-)单元与配合物2-1中的Eu1单元相类似,但反应条件的不同却使得两配合物中Zn~(2+)离子周围的配位环境发生了显著改变。
     4.合成、表征了三个Ln-Zn四核异金属配合物Tb_2Zn_2(Bzo)_(10)(phen)_2(3-1)、Tb_2Zn_2(TPA)_(10)(phen)_2(3-2)和Eu_2Zn_2(Bzo)_(10)(phen)_2(3-3)。配合物3-1与配合物3-3的晶体结构基本相同。但羧酸配体的改变对Tb的配位环境产生显著影响:在配合物3-1
    
    中,Tb为八配位,而在配合物3一2中,Tb仅为七配位。在紫外光的激发下,配合物3一1
    和3一2均发出强的绿色荧光,配合物3一3发出强的红色荧光。荧光光谱测定发现:zn2+
    离子及邻菲罗琳的引入均可显著增强配合物的荧光。
     5.高选择性的得到了两个具有良好溶解性能的Ln一Zn异金属一维配位聚合物
    【z,ILnZ(FUR);。(HZo)2]。(Ln二Eu、Tb)。两配合物的晶体结构基本相同,zn、Ln间通过
    吠喃甲酸配体相互桥联成一维链状结构。Zn、Ln的排列顺序为忆n-Ln--Ln,Zn--Ln-Ln--。
    在紫外光激发下,二者的固体样品分别发出强的铺或试的特征荧光。然而,与二元吠喃
    甲酸配合物相比,z矛+离子的引入对配合物的荧光无明显影响。两配合物良好的溶解性
    能为其在电致发光方面的应用提供了可能。
     6.为了研究配合物的结构与发光性质间的关系,采用常规溶液反应法得到了一维配
    位聚合物[E u(H2sal)(Hsal)(sal).H2o]n。通过对该配合物与其它稀土芳香梭酸配合物的结构
    进行对比,提出了关于能量传递的新观点,发现该物质区别于其他芳香梭酸配合物的独
    特一维带状结构是导致其不发光的主要原因。
     7.在运用流变相反应法制备芳香梭酸配合物的过程中,得到了一个新型的质子转移
    盐型配合物(H4BTEC)[HZBTEC』[Hphen』2。该配合物由均苯四甲酸分子、均苯四甲酸阴离
    子和邻菲罗琳阳离子构成。均苯四甲酸分子与均苯四甲酸阴离子间通过分子间氢键相连
    成二维层状结构,[H phen]+离子位于该层的两侧并通过分子间氢键与其相连。在紫外光
    激发下,该配合物发出较强的蓝紫色荧光。
     8.通过苯甲酸锌惰性气氛下的热解,得到了溶解性能良好、结构新颖的四核苯甲酸
    锌配合物Zn4O(C6HsCOZ)6。该化合物具有不常见的较大晶胞参数:a=41 .o063(18)A,犷
    一68953(5)矛,z二48。在该化合物中,四个zn原子通过中心氧原子相连成一正四面体。
    每一个Zn原子呈略扭曲的四面体构型,整个Zn4O(C 6HSCOZ)6分子呈畸变的八面体构型。
    该配合物中存在一系列不相交叉的平行孔道和大量的孔洞。这些孔道和孔洞有可能可以
    吸附如水、苯等小分子,使得该化合物在微孔材料方面具有潜在的应用前景。在紫外或
    可见光的激?
In recent years, much attention has been paid to the design, syntheses, crystal structures and properties of coordination polymers. Besides the extensive application of nitrogen-containing heterocyclic ligands, such as 4,4'-bipyridine, aromatic carboxylic acids, owing to their unique characteristics, have also been used in the construction of coordination polymers. However, the methods usually used are conventional solution and hydro(solvo)thermal reaction methods. Rheological phase reaction method, as a new soft chemistry synthetic method put forward by our laboratory, has been successfully applied in the preparation of many functional materials, such as the positive and negative electrode materials of lithium ion secondary battery. This method has many advantages, for example, the reaction condition is mild, the reaction time is short and the operation is very simple. However, the researches on its application to the preparation of single crystals are still rare.
    In this research, valuable explorations about the application of rheological phase reaction method to the preparation of aromatic carboxylate single crystals were carried out. With zinc oxide or strontium chloride, lanthanide oxide or chloride, aromatic carboxylic acids (benzoic acid, salicylic acid, ct-furancarboxylic acid, a-thiophenecarboxylic acid, 1,2,4,5-benzenetetracarboxylic acid) and 1,10-phenanthroline, a series of novel aromatic carboxylate complexes or coordination polymers were obtained through the molecular recognition and self-assembly of the reactants in the rheological phase system, which open a new way for this synthetic method and offer a new method for single crystal growth. Their crystal structures and spectral properties were characterized. The relationship between crystal structures and luminescent properties were discussed. The main results are as follows:
    1. An 1-D coordination polymer {[Tb(FUR)3(H2O)2]-DMF}n with intense green luminescence was synthesized, in which each Tb atom is eight-coordinated and the adjacent Tb atoms are linked into 1-D chains through bridging furancarboxylate ligands. The DMF molecules do not coordinate to the Tb atom and are linked to the 1-D chains through intermolecular hydrogen bonds. These 1-D chains are connected into 2-D layers through hydrogen bonds and π-π aromatic stacking interactions.
    2. A novel ionic dimer [Tb2(Hsal)8(H2O)2][(Hphen)2]-2H2O was synthesized from SrCh, TbCb, salicylic acid and 1,10-phenanthroline. During the experiment, it was found that the existence of Sr2+ plays a control role in the crystal growth. In this complex, the dimeric [Tb2(Hsal)8(H2O)2]2- anions are linked into 1-D chains by intermolecular hydrogen bonds. The mono-protonated [(Hphen)2]+ cations are located on the both sides of the 1-D chains. The π-π stacking interactions between the phen molecules and the benzene rings of salicylate ligands link the 1-D chains into 2-D layers. When irradiated by UV light, it emits intense green luminescence of Tb3+ ions, however, due to the energy mismatch, its luminescent
    III
    
    
    intensity is lower than that of the binary complex Tb(Hsal)3(H2O)2-2H2O.
    3. Two ionic dimeric complexes with novel crystal structures and strong red luminescence were obtained. It is worth to note that in [Eu2(Hsal)8][Zn(phen)3]-(H2salXH2O) (2-1), there are two independent dimeric [Eu2(Hsal)8]2" anions. Eul is eight-coordinated and Eu2 is in a nine-coordination environment. Weak intermolecular hydrogen bonds formed between the salicylate ligands and the lattice water molecules link the dimeric Eul anions into 1-D chains. In [Eu2(TPA)8][Zn(TPA)(phen)2]2-(H2O)2(2-2), the coordination environment of Eu3+ ion is the same as that of Eul in complex 2-1. While in these two complexes the coordination geometries around the Zn atoms are obviously different because of the different reaction conditions.
    4. Three Ln-Zn tetranuclear heterometallic complexes Tb2Zn2(Bzo)io(phen)2 (3-1), Tb2Zn2(TPA)io(phen)2 (3-2) and Eu2Zn2(Bzo)io(phen)2 (3-3) were synthesized and charact
引文
[1] M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O'Keeffe, O.M. Yaghi, Modular chemistry: secondary building units as a basis for the design of highly porous and robudt metai-organic carboxylate frameworks, Acc. Chem. Res., 2001, 34, 319.
    [2] R. Robson, A net-based approach to coordination polymers, J. Chem. Soc., Dalton Trans., 2000, 3735.
    [3] 张琳萍,侯红卫,樊耀亭,程凤宏,配位聚合物,无机化学学报,2001,16(1),2.
    [4] K. Biradha, Y. Hongo, M. Fujita, Helical coordination polymers with large chiral cavities, Angew. Chem. lnt. Ed., 2000, 39, 3843.
    [5] H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, Establishing microporosity in open metal-organic frameworks: gas isomers for Zn(BDC) (BDC = 1,4-benzenedicarboxylate), J. Am. Chem. Soc., 1998, 120, 8571.
    [6] M. Eddaoudi, J. Kim, M. O'Keeffe, O.M. Yaghi, [Cu_2(o-Br-C_6H_3(CO_2)_2)]_2(H_2O)_2.(DMF)_8(H_2O)_2: a framework deliberately designed to have the NbO structure type, J. Am. Chem. Soc., 2002, 124, 376.
    [7] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 1999, 402, 276.
    [8] J. Tao, M.L. Tong, J.X. Shi, X.M. Chen, S.W. Ng, Blue photoluminescence zinc coordination polymers with supertetranuclear cores, Chem. Commun., 2000, 2043.
    [9] R. Owen, W. Lin, Crystal engineering of NLO materials based on metal-organic coordination networks, Acc. Chem. Res., 2002, 35, 511.
    [10] J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic porous
    
    material for enantioselective separation and catalysis, Nature, 2000, 404, 982.
    [11] 杨士姚,钴、镍、铜、锌离子与芳香羧酸配位聚合物的组装、结构和性质,厦门大学博士学位论文,2002。
    [12] L.G. Zhu, S. Kitagawa, A 2-D polymer constructed through bridging acetate, hydroxo, aqua and bipyridine ligands: crystal structure of {Cu_2(μ-CH_3COO)(μ-OH)(μ-H_2O)(4,4'-bipy)}(2H_2O)(SiF_6)}n, Inorg. Chem. Commun., 2002, 5, 358.
    [13] S.D. Huang, R.G. Xiong, P.H. Sotero, A novel coordination polymer with an interwoven double-layer structure: synthesis and characterization of [Zn(4,4'-bipy)(H_2O)(SO_4)].0.5H_2O, J. Solid State Chem., 1998, 138,361.
    [14] K.N. Power, T.L. Hennigar, M.J. Zaworotko, Crystal structure of the coordination polymer [Co(bipy)_(1.5)(NO_3)_2].CS_2 (bipy = 4,4'-bipyridine), a new motif for a network sustained by 'T-shape' building blocks, New J. Chem., 1998, 177.
    [15] N. Hao, E.H. Shen, Y.G. Li, E.B. Wang, C.W. Hu, L.Xu, Hydrothermal synthesis and crystal structure of a layered coordination polymer: [Zn_3(C_2O_4)_3(4,4'-bipy)_4]_n (4,4'-bipy =4,4'-bipyridine), J. Mol. Struct., 2004, 691,273.
    [16] H.W. Hou, Y.T. Fan, L.P. Zhang, C.X. Du, Y. Zhu, Self-assembly of a new "4,4'-bipyridyl-based" building block with Cd(Ⅱ) and Co(Ⅱ) cations: synthesis and crystal structures of 1- and 2-D coordination polymers, Inorg. Chem. Commun., 2001, 4, 168.
    [17] B.L. Li, G. Yin, H.Q. Cao, Y.J. Liu, Z. Xu, Synthesis and structure of a novel infinite triplet helices coordination polymer {[Mn(bipy)(azpy)_2(NCS)_2](H_2O)_2}_n (bipy=4,4'-bipyridine,azpy=4,4'-azobispyridine), lnorg. Chem. Commun., 2001, 4, 451.
    [18] M.L. Tong, S.L. Zheng, X.M. Chen, Synthesis and structures of two-dimensional coordination polymers constructed by metal salts and 4,4'-bipyridine, Polyhedron, 2000, 19, 1809.
    [19] H.W. Hou, Y.L. Wei, Y.T. Fan, C.X. Du, Y. Zhu, Y.L. Song, Y.Y. Niu, X.Q. Xin, Third-order nonlinear optical properties of three Mn(Ⅱ)-4,4'-bpy coordination polymers and crystal structure of three-dimensional network [Mn(SO_4)(4,4'-bpy)(H_2O)_2]_n, Inorg.Chim. Acta, 2001, 319, 212.
    [20] 韦永莉,宋连卿,侯红卫,樊耀亭,三维笼状聚合物的合成,晶体结构及磁性,中国科学(B辑),2002,32(4),330.
    [21] 刘刚,新型配位聚合物的合成与结构分析,河北工业大学硕士学位论文,2003.
    [22] O.M. Yaghi, G.M. Li, H.L. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 1995, 378, 703.
    [23] O.M. Yaghi, H.L. Li, T.L. Groy, Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid, J. Am. Chem. Soc., 1996, 118, 9096.
    [24] S.S.Y. Chui, S.M.F. Lo, J.P.H. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material [Cu_3(TMA)_2(H_2O)_3]_n, Science, 1999, 283, 1148.
    [25] 任鹏,新型无机及无机.有机杂化二阶非线性光学材料的设计、合成和性能,武汉大学博士学位论文,2003.
    [26] 施而畏,夏长泰,王步国,仲维卓,水热法的应用与发展,无机材料学报,1996,11(2),193.
    [27] 林君,庞茂林,韩银花,于敏,张洪杰,溶胶-凝胶工艺制备法光薄膜研究进展,无机化学学报,2001,17(2),153.
    [28] Q.G, Meng, H.J. Zhang, S.B. Wang, L.S. Fu, Y.X. Zheng, K.Y, Yang, Preparation and characterization of luminescent thin films doped with rare earth (Tb~(3+), Eu~(3+)) complexes derived from a sol-gel process,
    
    Mater Lett., 2000, 45, 213.
    [29] 林君,苏锵,溶胶-凝胶法及其在稀土发光材料合成中的应用,稀土,1994,1 5(1),42.
    [30] T. Jin, S. Tsutsumi, Y. Deguchi, K. Machida, G. Adachi, Luminescent property of the terbium bipyridyl complex incorporated in silica matrix by a sol-gel method, J. Electrochem. Soc., 1995, 142(10), L195.
    [31] G. Qian, M.J. Wang, Preparation and fluorescence properties of nanocomposites of armorphous silica glasses doped with lanthanide(Ⅲ) benzoates, J. Phys. Chem. Solid, 1997, 58(3), 375.
    [32] 王金龙,用流变相反应制备芳族羧酸盐单晶和镍酸盐正极材料,武汉大学硕士学位论文,2003.
    [33] 袁良杰,流变相合成法及其应用研究,武汉大学博士学位论文,2003.
    [34] D.T. Vodak, M.E. Braun, J. Kim, M. Eddaoudi, O.M. Yaghi, Metal-organic frameworks constructed from pentagonal antiprismatic and cubotahedral secondary building units, Chem. Commun., 2001, 2534.
    [35] H.L. Li, C.E. Davis, T.L. Groy, D.G. Kelley, O.M. Yaghi, Coordinatively unsaturated metal centers in the extended porous framework of Zn_3(BDC)_3.6CH_3OH (BDC=1,4-benzenedicarboxylate), J. Am. Chem. Soc., 1998, 120, 2186.
    [36] M. Wang, J. Xia, L. Jin, G. Cai, S. Lu, Crystal structure and luminescence property of novel three-dimensional network of {Eu_2(p-BDC)_3(Phen)_2(H_2O)}_n, J. Mol. Struct., 2003, 655, 443.
    [37] A.W.H. Lam, W.T. Wong, S. Gao, G.H. Wen, X.X. Zhang, Synthesis, crystal structure, and photophysical and magnetic properties of dimeric and polymeric lanthanide complexes with benzoic acid and its derivatives, Eur. J. Inorg. Chem., 2003, 149.
    [38] C. Seward, N.X. Hu, S. Wang, 1-D chain and 3-D grid green luminescence terbium(Ⅲ) coordination polymers: {Tb(O_2CPh)_3(CH_3OH)_2(H_2O)}_n and {Tb_2(O_2CPh)_6(4,4'-bipy)}_n, J. Chem. Soc., Dalton Trans., 2001, 134.
    [39] X. Li, X. Zheng, L. Jin, S. Lu, W. Qin, Crystal structure and luminescence of a europium coordination polymer {[Eu(m-MOBA)_3. 2H_2O] 1/2(4,4'-bpy)}_∞, J. Mol. Struct., 2000, 519, 85.
    [40] X. Li, L. Jin, S. Lu, J. Zhang, Synthesis, structure and luminescence property of the ternary and quaternary europium complexes with furoic acid, J. Mol. Struct., 2002, 604, 65.
    [41] X. Li, L. Jin, X. Zhang, S. Lu, J. Zhang, Synthesis, structure and luminescence property of the ternary and quaternary europium complexes, J. Mol. Struct., 2002, 607, 59.
    [42] R. Wang, S. Wang, J. Zhang, Crystal structure and properties of complex [Eu(m-BrBA)_3(H_2O)(phen)]_2, J. Mol. Struct., 2003, 648, 151.
    [43] X. Li, X. Zheng, L. Jin, S. Lu, J. Zhang, Crystal structure and luminescence of a new europium coordination polymer {[Eu(α-FURA)_3.2H_2O].NO_3(4,4'-Hbpy)}_∞, J. Mol. Struct., 2001, 559, 341.
    [44] 杨宗璐,陈长林,郁开北,2-呋喃甲酸锶的晶体结构,高等学校化学学报,1996,17(9),1408.
    [45] S.R.J. John, Copper as possible active forms of the antiarthritic agents, J. Med. Chem., 1976, 19(1), 135.
    [46] W. Clegg, J.T. Cressey, A. Mccamley, The polymeric structure of aquacadmium bisnicotinate, Acta Cryst., 1995, C51(2), 234.
    [47] W. kenji, T. Masato, F. Nobuhiro, Structure of pyridine carboxylate complexes of cobalt(Ⅱ) and copper(Ⅱ), J. Coord. Chem., 1998, 44(3-4), 269.
    [48] L. Shen, J.G. Liu, Synthesis and crystal structure of zinc(Ⅱ) complex with isonicotinate containing a three-dimensional hydrogen-bond network, Chinese J. Struct. Chem., 2001, 20(4), 253.
    [49] L. Ma, O.R. Evans, B.M. Foxman, W.B. Lin, Luminescent lanthanide coordination polymers, Inorg. Chem., 1999, 38, 5837.
    
    
    [50] B.Rather, B. Moulton, R.D.B. Walsh, M.J. Zaworotko, A new supramolecular isomer of [Zn(nicotinate)_2]_n: a novel 4~2·8~4 network that is the result of self-assembly of 4-connected nodes, Chem. Commun., 2002, 694.
    [51] R.G. Xiong, S.R. Wilson, W.B. Lin, Bis(isonicotinato)iron(Ⅱ): a rare, neutral three-dimensional iron coordination polymer, J. Chem. Soc., Dalton Trans., 1998, 4089.
    [52] H.B. Jia, J.H. Yu, J.Q. Xu, L. Ye, H. Ding, W.J. Jing, T.G. Wang, J.N. Xu, Z.C. Li, Hydrothermai synthesis and characterization of a novel supramolecular network compound of Co(NIA)_2(H_2O)_4 with molecular ladder hydrogen bond chains (NIA=nicotinate), J. Mol. Struct., 2002, 641, 23.
    [53] E. Suresh, K. Boopalan, E.V. Jasra, M.M. Bhadbhade, Synthesis and single crystal investigation of two-dimensional rectangular network [M(4,4'-bpy)(phth)(H_2O)]_n·2H_2O with small neutral cavities Inorg. Chem., 2001, 4078.
    [54] Y.H. Wan, L.P. Jin, K.Z. Wang, L.P. Zhang, X.J. Zheng, S.Z. Lu, Hydrothermal synthesis and structural studies of novel 2-D lanthanide coordination polymers with phthalate acid, New J. Chem., 2002, 26, 1590.
    [55] C.B. Ma, W.G. Wang, H.E Zhu, C.N. Chen, Q.T. Liu, Phenanthroline-manganese inclusion complexes of dicarboxylic acid containing extensive hydrogen-bonding interactions, Inorg. Chem. Commun., 2001, 4, 730.
    [56] H. Ding, W. Chen, Q. Yue, J.S. Chen, S.N. Wang, Synthesis, structure and photoluminescence of two zinc carboxylate polymers with different coordination architectures, Chinese J. Chem., 2003, 21, 1305.
    [57] C.G. Zheng, J. Zhang, Z.E Chen, Z.J. Guo, R.G. Xiong, X.Z. You, A novel three-dimensional network isophthalato-bridged lanthanide complex: {[Ln(C_6H_4COO~-)_2-1,3][CH_3COO](H_2O)_2}·H_2O, J. Coord. Chem., 2002, 55(7), 835.
    [58] J. Tao, X.M. Chert, R.B. Huang, L.S. Zheng, Hydrothermal synthesis and crystal structures of two rectangular grid coordination polymers based on unique prismatic [M_8(ip)_8(4,4'-bipy)_8] building blocks [M=Ni(Ⅱ) or Cd(Ⅱ), ip=isophthalate, bipy=bipyridine], J. Solid State Chem., 2003, 170,130.
    [59] L.P. Zhang, Y.H. Wan, L.P. Jin, Hydrothermal synthesis and crystal structure of neodymium(Ⅲ) coordination polymers with isophthalic acid and 1,10-phenanthroline, Polyhedron, 2003, 22, 981.
    [60] R.H. Groeneman, J.L. Atwood, Terephthlate bridged coordination polymers based upon group two metals, Cryst. Eng., 1999, 2(4), 241.
    [61] T.M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley, O.M. Yaghi, From condensed lanthanide coordination solids to microporous frameworks having accessible metal sites, J. Am. Chem. Soc., 1999, 121, 1651.
    [62] L. Pan, N.W. Zheng, Y.G. Wu, S. Han, R.Y. Yang, X.Y. Huang, J. Li, Synthesis, characterization and structural transformation of a condensed rare earth metal coordination polymer, Inorg. Chem., 2001, 40, 828.
    [63] R.X. Yuan, R.G. Xiong, Z.F. Chen, X.Z. You, S.M. Peng, G.H. Lee, Preparation, characterization and X-ray crystal structure of a one-dimensional calcium-based coordination polymer with strong blue emission, Inorg. Chem. Commun., 2001, 4, 430.
    [64] L.N. Zhu, L.Z. Zhang, W.Z. Wang, D.Z. Liao, E Cheng, Z.H. Jiang, S.E Yah, [Zn(BDC)(H_2O)_2]_n: a novel blue luminescent coordination polymer constructed from BDC-bridged 1-D chains via interchain hydrogen bonds (BDC=1,4-benzenedicarboxylate), Inorg. Chem. Commun., 2002, 5, 1017.
    [65] J.Y. Baeg, S.W. Lee, A porous, two-dimensional copper coordination-polymer containing guest molecules: hydrothermal synthesis, structure, and thermal property of [Cu(BDC)(bipy)](BDCH_2)
    
    (BDC=1,4-benzenedicarboxylate; bipy=4,4'-bipyridine), Inorg. Chem. Commun.,2003, 6, 313.
    [66] X.M. Zhang, M.L. Tong, M.L. Gong, X.M. Chen, Supramolecular organisation of polymeric coordination chains into a three-dimensional network with nanosized channels that clathrate large organic molecules, Eur. J. Inorg. Chem., 2003, 138.
    [67] C.B. Ma, C.N. Chen, Q.T. Liu, D.Z. Liao, L.C. Li, L.C. Sun, Structural transformation mediated by o-, m-, p-phthalates from two to three dimensions for manganese/phthalate/4,4'-bpy complexes (4,4'-bpy=4,4'-bipyridine), New J. Chem., 2003, 27, 890.
    [68] L.J. Zhang, X.L. Zhao, P. Cheng, J.Q. Xu, X. Tang, X.B. Cui, W. Xu, T.G. Wang, A unique two-dimensional terephthalate-bridged structure with alternate tetra- and pentra-coordinate cobalt(Ⅱ) sites. Synthesis, crystal structure and magnetic properties of [{Co_3(tp)_2(OH)_2(phen)_2}_n], Bull. Chem. Soc. Jpn., 2003, 76, 1179.
    [69] M.E. Braun, C.D. Steffek, J. Kim, P.G. Rasmussen, and O.M. Yaghi, 1,4-benzenedicarboxylate derivatives as links in the design of paddle-wheel units and metal-organic frameworks, Chem. Commun., 2001, 2532.
    [70] 阎冰,张洪杰,王淑彬,倪嘉缵,铽苯二酸同多核和异多核配合物的发光性能,应用化学,1997, 14(6),84.
    [71] X. Shi, G.S. Zhu, Q.R. Fang, G. Wu, G. Tian, R.W. Wang, D.L. Zhang, M. Xue, S.L. Qiu, Novel supramolecular frameworks self-assembled from one-dimensional polymeric coordination chains, Eur. J Inorg. Chem., 2004, 185.
    [72] Y.F. Zhou, F.L. Jiang, Y. Xu, R. Cao, M.C. Hong, Two-dimensional lanthanide-isophthalate coordination polymers containing right-and left-handed helical chains, J. Mol. Struct., 2004, 691, 191.
    [73] B.O. Patrick, C.L. Stevens, A. Storr, R.C. Thompson, Structural and magnetic properties of three copper(Ⅱ) pyridine-2,3-dicarboxylate coordination polymer incorporating the same chain motif, Polyhedron, 2003, 22, 3025.
    [74] H.T, Xu, N.W. Zheng, H.H. Xu, Y.G. Yang, R.Y. Yang, E.Y. Ye, X.L. Jin, Synthesis and studied on single crystal structure of [Ni(3,5-pdc).H_2O] (3,5-pdc=3,5-pyridinedicarboxylic acid), J. Mol. Struct., 2002, 606, 117.
    [75] Z.Q. Qin, M. Jennings, R.J. Puddephatt, Self-assembly and sheet structures in palladium(Ⅱ) complexes containing carboxylic acid substituents, Inorg. Chem., 2002, 41 (20), 5174.
    [76] W. Starosta, H. Ptasiewiccz-bak, J. Leciiejewicz, The crystal structure of an ionic calcium complex with pyridine-3,5-dicarboxylate and water ligands J. Coord. Chem., 2003, 56(1), 33.
    [77] R.L. Chapman, F.S. Stephens, R.S. Vagg, Transition metal complexes of pyrazine-2,3-dicarboxylic acid, Inorg. Chim. Acta, 1977, 26, 247.
    [78] S.B. Brown, M.J.S. Dewar, Thermal and electronic properties of transition metal complexes and coordination polymers of pyrazine-2,5-dicarboxylic acid, Inorg. Chim. Acta, 1979, 34, 221.
    [79] F. Cariati, L. Naldini, A. Panzanelli, Bis(triphenylphosphine) pyridine-and pyrazine-carboxylate copper(Ⅰ) complexes, Inorg. Chim. Acta, 1983, 69, 117.
    [80] M. Postel, F. Casablanca, Y. Gauffreteau, The structure and reactivity towards oxygen transfer of pyrazinedicarboxylato peroxo titanium derivatives. Molecular and crystal structure of peroxo(pyrazine-2-carboxylato-3-carboxyl)(acetylacetonato)(hexamethylphosphortriamide), Inorg. Chim. Acta, 1986, 113, 173.
    [81] A. Neves, W. Herrmann, K. Wieghhardt, Adiabatic intrramolecular electron transfer in pyrazine-2,6-dicarboxylato-bridged complexes of cobalt(Ⅲ)-ruthenium(Ⅱ) and of cobalt(Ⅲ)-iron(Ⅱ):
    
    comparison of inner-sphere vs. outer-sphere activated complexes, Inorg. Chem., 1984, 23, 3435.
    [82] M. Wenkin, M. Devillers, B. Tinant, J.P. Declercq, Diaminine (pyrazine-2,3-dicarboxylato-N,O) palladium(Ⅱ): synthesis, crystal structure, spectroscopic and thermal properties, Inorg. Chim. Acta, 1997, 258, 113.
    [83] Y. Suenaga, T.K. Sowa, M. Munakata, M. Maekawa, Two-dimensional silver(Ⅰ) compound with square mesh structure, [Ag(dcpz)](ClO_4) (dcpz=pyrazine-2,3-dicarbonitrile), Polyhedron, 1998, 18, 191.
    [84] M. Kondo, T. Okubo, A. Asami, S. Noro, T. Yoshitomi, H. Matsuzaka, K. Seki, Rational synthesis and stable channel-like cavities with methane gas adsorption properties: [(Cu_2(pzdc)_2(L)_n,] (pzdc=pyrazine-2,3-dicarboxylate; L=a pillar ligand), Angew. Chem. Int. Ed., 1999, 38, 140.
    [85] X.J. Zheng, L.P. Jin, S.Zo Lu, Molecular geometry-sensitive filling in semi-rectangular micropores of organic-inorganic hybrid crystals, Eur. J. Inorg. Chem., 2002, 3356.
    [86] M.J. Plater, A.J. Roberts, R.A. Howie, Hydrothermal Synthesis of Co(pdc).2H_2O (pdc=3,5-pyridinedicarboxylate), a two-dimensional coordination Polymer, J. Chem. Res., 1998, 240.
    [87] 梁玉仓,洪茂椿,曹荣,翁家宝,孙道峰,苏伟平,含吡啶-2,5-二羧酸稀土.锌配位聚合物的合成结构和性能,无机化学学报,2002,18(1),99.
    [88] Y.C. Liang, R. Cao, W.P. Su, M.C. Hong, W.J. Zhang, Synthesis, structures and magnetic properties of two gadolinium-copper coordination polymers by a hydrothermal reaction, Angew. Chem. Int. Ed., 2000, 39, 3304.
    [89] Y.C. Liang, R. Cao, M.C. Hong, A Gd-Ag coordination polymer with porous structure via hydrothermal synthesis: [Gd_2Ag_2(pydc)_4(H_2O)_4]n, Chem. Lett., 2000, 868.
    [90] Y.C. Liang, M.C. Hong, R. Cao, J.B. Weng, W.P. Su, R.G. Xiong, Preparations, structures and magnetic properties of a series of novel copper-lanthanide coordination polymers via hydrothermal reaction, Inorg. Chem., 2001, 40, 4574.
    [91] Y.C. Liang, R. Cao, M.C. Hong, D.F. Sun, Y.J. Zhao, J.B. Weng, R.H. Wang, Syntheses and characterizations of two novel Ln(Ⅲ)-Cu(Ⅱ) coordination polymers constructed by pyridine-2,4-dicarboxylate ligand, Inorg. Chem. Commun., 2002, 5, 366.
    [92] L.Y. Wang, Y. Zhu, C.X. Du, H.B. Ma, Novel supramolecular compounds with three-dimensional hydrogen-bonded network [M(H_2O)_6][H_2L] (H_4L=1,2,4,5-benzenetetracarboxylic acid, M=Mn~Ⅱ and Co~Ⅱ): syntheses, characterization and crystal structures, J Mol. Struct., 2002, 601, 191.
    [93] T.J. Prior, M.J. Rosseinsky, Crystal engineering of a 3-D coordination polymer from 2-D building blocks, Chem. Commun., 2001, 495.
    [94] F.A.A. Paz, A.D. Bond, Y.Z. Khimyak, J. Klinowski, Synthesis and characterization of a new layered compound of trimesic acid, New J. Chem., 2002, 26, 381.
    [95] T.J. Prior, M.J. Rosseinsky, A dense coordination polymer bearing an extensive and highly intricate hydrogen bonding array, Chem. Commun., 2001, 1222.
    [96] T. Inoue, Y. Kumagai, M.A. Kakimoto, Y. Imai, J. Watanabe, High pressure synthesis and properties of aliphatic-aromatic polyimides via nylon-salt-type monomers derived from aliphatic diamines with pyromellitic acid and biphenyltetracarboxylic acid, Macromolecules, 1997, 30, 1921.
    [97] K. Ohta, K. Tanaka, Suppressed ion chromatography of inorganic anions and divalent metal cations with pyromellitic acid, J. Chromatogr A, 1998, 804, 87.
    [98] G.C. Wei, Z.S. Jin, Z.B. Duan, K.Y. Yang, J.Z. Ni, Structure ofpentaaquo pyromel dizinc(Ⅱ)-dihydrous [C_6H_2(COO)_4Zn_2(H_2O)_5]·2H_2O, Chinese J. Struct. Chem., 1991, 10(2), 106.
    [99] C.D. Wu, C.Z. Lu, W.B. Yang, S.F. Lu, H.H. Zhuang, J.S. Huang, The structure and photophysical
    
    properties of a novel three-dimensional zeolite-like nanoporous architecture formed by two different polymeric layers: [Eu_2(btc)(H_2btc)(H_2O)]·4H_2O, Eur J. Inorg. Chem., 2002, 797.
    [100] 张丽娟,徐吉庆,系列芳香多羧酸配位聚合物的构筑,物理无机化学研究进展,科学出版社, 2003.71.
    [101] C.W. Yah, Y.T. Li, D.Z. Liao, Synthesis, characterization and magnetism of binuclear cobalt(Ⅱ) complexes bridged by tetracarboxylato groups, Chinese J. Chem., 2000, 18(3), 351.
    [102] 李延团,焉衰蔚,陈闽子,均苯四甲酸桥联双核镍(Ⅱ)配合物的研究,曲阜师范大学学报,1998,24(1),85.
    [103] F.D. Rochon, G. Massarweh, Study of the aqueous reactions of metallic ions with benzenetetracaboxylate ions Part Ⅰ. Crystal structures of compounds of the types [M(H_2O)_6[C_6H_2(COO)_2(COOH)_2] (M=Mn, Co, Ni) and Ni(H_2O)_5(μ-C_6H_2(COO)_4Ni(H_2O)_5·6H_2O, Inorg. Chim Acta, 2000, 304, 190.
    [104] M.J. Plater, M.R.S.J. Foreman, R.A. Howie, J.M.S. Skakle, A.M.Z. Slawin, Hydrothermal synthesis of polymeric metal carboxylates from benzene-1,2,4,5-tetracarboxylic acid and benzene-1,2,4-tricarboxylic acid, Inorg. Chim. Acta, 2001, 315, 126.
    [105] S.O.H. Gutschke, D.J. Price, A.K. Powell, P.T. Wood, Rational design of open-framework coordination solids: synthesis and structure of [Co_5(OH)_2{(O_2C)_4C_6H_2}_2·(H_2O)_4]·xH_20, Eur J. Chem., 2001, 2739.
    [106] Q. Shi, R. Cao, D.F. Sun, M.C.Hong, Y.C. Liang, Solvothermal synthesis and crystal structures of two metal coordination polymers with double-chain structures, Polyhedron, 2001, 20, 3287.
    [107] D.Q. Chu, J.Q, Xu, L.M. Duan, T.G. Wang, A.Q. Tang, L. Ye, Hydrothermal synthesis of a two-dimensional coordination polymer [Fe(phen)(μ_6-bta)_(1/2)]_n (bta=1,2,4,5-benzenetetracarboxylate, phem=1,10-phenanthroline), Eur J. Inorg. Chem., 2001, 1135.
    [108] C.D. Wu, C.Z. Lu, D.M. Wu, H.H. Zhuang, J.S. Huang, Hydrothermal synthesis of two new zinc coordination polymers with mixed ligands, Inorg. Chem. Commun., 2001, 4, 561.
    [109] R. Diniz, H.A. Abreu, W.B. Almeida, M.T.C. Sansiviero, N.G. Fernandes, X-ray crystal structure of triaquacopper(Ⅱ) dihydrogen 1,2,4,5-benzenetetracarboxylate trihydrate and Romman spectra of Cu~(2+), Co~(2+), Fe~(2+) salts of 1,2,4,5-benzenetetracarboxylic (pyromellitic) acid, Eur J. Inorg. Chem., 2002, 1115.
    [110] R. Cao, D.F. Sun, Y.C. Liang, M.C. Hong, K. Tatsumi, Q. Shi, Synthesis and characterization of three-dimensional channel-like polymeric lanthanide complexes constructed by 1,2,4,5-benzenetetracarboxylic acid, Inorg. Chem., 2002, 2087.
    [111] H. Kumagai, C.J. Kepert, M. Kurmoo, Construction of hydrogen-bonded and coordination-bonded networks of cobalt(Ⅱ) with pyromellitate: synthesis, structures and magnetic properties, Inorg. Chem., 2002, 3410.
    [112] D.P. Cheng, M.A. Khan, R.P. Houser, Nickle(Ⅱ) and manganese(Ⅱ) 1 D chain coordination polymers with 1,2,4,5-benzenetetracarboxylato anions, Polyhedron, 2003, 351,242.
    [113] Y.G. Li, H. Zhang, E.B. Wang, N. Hao, C.W. Hu, Y. Yan, D. Hall, A novel chiral coordination polymer with a two-dimensionalundulated (6,4)-network: [Co_4(2,2'-bipy)_4(H_2O)_2(btec)_2]_n (btec=1,2,4,5-benzenetetracarboxylate), New J. Chem., 2002, 26, 1619.
    [114] P. Losier, M.J. Zaworotko, A noninterpenetrated molecular ladder with hydrophobic cavities, Angew. Chem. Int. Ed., 1996, 35, 2779.
    [115] Y. Tokunaga, D.M. Rudkevich, J.J. Rebek, Solvation and the synthesis of self-assembled capsules,
    
    Angew. Chem. Int. Ed., 1997, 36, 2656.
    [116] D.M.J. Dobe, C.H. Benison, A.J. Blake, D. Fenske, M.S. Jackson, R.D. Kay, W. Li, M. Schr(?)der, Template assembly of metal aggregates by imino-carboxylate ligands, Angew. Chem. Int. Ed., 1999, 38, 1915.
    [117] M.J. Plater, M.R.S.J. Foreman, E. Coronado, C.J. G(?)mez, Garc(?)a, A.M.Z. Slawin, Crystallization of H_3BTC, H_3TPO or H_2SDA with MI~Ⅱ (M=Co, Mn or Zn) and 2,2'-bipyridyl: design and control of co-ordination architecture, and magnetic properties (H_3BTC=benzene-1,3,5-tricarboxylic acid, H_3TIO=tris(4-carboxylphenyl)phosphine oxide, H_2SDA=cis-stibene-4,4'-dicarboxylic acid), J. Chem. Soc., Dalton Trans., 1999, 4209.
    [118] 金林培,郑向军,万永红,王轶博,孙长艳,刘崇波,系列镧系配位聚合物的合成与结构,第六届全国无机化学会议论文集,2003,153.
    [119] L.P. Jin, M.Z. Wang, G.L. Cai, S.X. Liu, J.L. Huang, R.F. Wang, Crystal structure and luminescence spectra of Eu_2(p-MAB)_6(PHEN)_2 complex, Science in China (Series B), 1995, 38(1), 1.
    [120] J.Z. Zou. Z. Xu, W. Chen, K.M. Lo, X.Z. Xiao, Synthesis, structure and magnetic properties of new polymeric compounds containing manganese(Ⅱ)-Pzdc (PzdcH_2=2,3-pyrazinedicarboxylic acid), Polyhedron, 1999, 18, 1507.
    [121] 张克立,贾漫珂,汤昊,袁继兵,袁良杰,孙聚堂,二苯甲酮的绿色合成路线研究,武汉大学学报(理学版).2001,47(6).657.
    [122] 任敏,芳香羧酸盐的合成、性质与热分解反应研究,武汉大学硕士学位论文,1996.
    [123] 王东利,锌、镍、铜芳香羧酸盐热分解研究,武汉大学硕士学位论文,1997.
    [124] 阎冰,张洪杰,王淑彬,倪嘉缵,稀土N-苯基邻氨基苯甲酸-1,10-邻菲咯啉二元、三元配合物的合成、表征及其光物理性质,高等学校化学学报,1998,19(5),671.
    [125] 安保礼,稀土有机配合物发光材料的分子设计、合成及性能,中山大学博士学位论文,2002.
    [126] S.J. Tobita, M. Arakama, I. Tanaka, The paramagnetic metal effect on the ligand localized S_1→T_1 intersystem crossing in the rare-earth-metal complexes with methyl salicylate, J. Phys. Chem., 1985, 89, 5649.
    [127] N. Filipescu, W.F. Sager, F.A. Serafin, Substituent effect on intramolecular energy transfer. Ⅱ. Fluorescence spectra of europium and terbium β-ketone chelates, J. Phys. Chem., 1964, 68, 3324.
    [128] 李文连,稀土有机配合物发光研究的新进展,化学通报,1991,8,1.
    [129] 赵莹,孙波,吴瑾光,徐光宪,徐端夫,邻苯二甲酸-邻菲罗啉-铕-铽络合体系的荧光特性,第五届全国无机化学学术会议论文集.2002,1056.
    [130] F.S. Richardson, Terbium(Ⅲ) and europium(Ⅲ) ions as luminescent probes and stains for biomolecular systems, Chem. Rev., 1982, 82, 541.
    [131] 张颖,金林培,吕少哲,Eu(BA)_3Phen的晶体结构和荧光光谱,中国稀土学报,1998,16(1),5.
    [132] 孟建新,龚孟廉,苏建文,杨燕生,吴炜宁,Tb~(3+)、Eu~(3+)的N,N’,N”-1,3,5-三嗪-2,4,6-三(N-羧甲基)-氨基乙酸配合物的合成和表征,中国稀土学报,1995,13(3),205.
    [133] 尹洪宗,曲祥金,周杰,朱贵云,司志坤,铽-镧(镥、钇)-均苯四甲酸共发光体系的研究和应用,分析实验室,1998,17(4),44.
    [134] 赵学辉,彭红建,毛向辉,均苯四甲酸-三苯基氧化膦-铽-钇配合物的高效发光,光谱实验室,1999,16(2),117.
    [135] 马文光,杨景和,葛红梅,铽-钆-均苯四甲酸体系的共发光效应及其分析应用,分析化学,1995,
    
    23(2),183.
    [136] 赵学辉,毛向辉,锌对均苯四甲酸荧光的强增敏作用及其机理研究,湖南有色金属,1999,15(2),42.
    [137] 李夏,铕羧酸配合物的结构和光致发光以及稀土-羧酸-邻菲咯啉体系的光致变色,北京师范大学博士学位论文.2001.
    [138] M.J. Frisch, G.W. Trucks, H.B. Schlegel, Gaussian 94, Gaussian, Inc, Pittsburgh, PA, 1995.
    [139] L.S. Atabekyan, A. 1. Lilikin, High Energy Chemsitry, 1996, 30 (6), 409.
    [140] K. Kimura, T. Utsumi, T. Tezanishi, High La~Ⅲ affinity of a bis(spriobenzopyram)azacrown ether and photoinduced switching of its ion selectivity between multivalent and monovalent metal ions, Angew. Chem. Int Ed., 1997, 36 (22), 2452.
    [141] L.B. Gan, C.H. Huang, S.P. Peng, Y.Y. He, G.X. Xu, Progress in Nature Science, 1993, 3(5), 417.
    [142] 孙长英,段治邦,张思远,镧系稀土及钇芳香羧酸固体配合物的发光,稀土,1995,16(3),16.
    [143] A. Edwards, C. Claude, I. Sokolik, T.Y. Chu, Y. Okamoto, R. Dorsinville, Photoluminescence and electroluminescence of new lanthanide-(methyoxyehzoyl)benzoate complexes, J. Appl. Phys., 1997, 82(4), 1841.
    [144] C.X. Du, L. Ma, Y. Xu, Y.Y. Zhao, C. Jiang, Synthesis and photophysical characterization of terbium-polymer complex containing salicylate ligand, Eur. Poly. J., 1998, 34(1), 23.
    [145] 张勇,王民权,于世龙,无机-有机纳米复合材料,功能材料,1998,29(4),420.
    [146] 张洪杰,符连社,林君,李焕荣,孟庆国,揣小红,李云辉,王树彬,杨魁跃,稀土/高分子杂化材料发光性能的研究,第四届全国配位化学会议论文集,2001,21.
    [147] 陶军,童明良,郑绍良,陈小明,一些发光配位聚合物的合成、结构与性质,第四届全国配位化学会议论文集,2001,12.
    [148] L.J. Yuan, Q.Y. Wang, J.T. Sun, Luminescence properties of salicylate doped zinc benzoate, Spectro. Lett., 1998, 31(8), 1733.
    [149] K. Nakamoto, Infrared and Raman Spectra of Inorganic and coordination compounds, (Fourth Edition) Wiley & Sons, John, 1986.
    [150] G.B. Deacon, R.J. Philips, Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the types ofcarboxylate coordination, Coord. Chem. Rev., 1980, 88, 227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700