稻瘟菌激活蛋白基因pemG1在水稻和烟草中的表达及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白激发子是诱导植物抗病性的重要信号分子,其与植物的受体蛋白识别后能诱发植物的防御反应。研究表明,来源于稻瘟菌(Magnaporthe grisea)的激活蛋白PemG1能促进种子萌发和幼苗生长,提高水稻对稻瘟病的抗性。为探讨PemG1蛋白在植物中诱导抗病性和促进生长的功能,本研究将稻瘟菌激活蛋白基因pemG1转化水稻和烟草,检测该基因在受体植物内的整合,转录和表达,分析转基因植株的抗病性和农艺性状。
     本研究获得的主要结果如下:
     (1)构建了稻瘟菌激活蛋白基因pemG1的植物表达载体,载体含有控制pemG1基因表达的玉米泛素启动子和章鱼碱合成酶基因终止子以及卡那霉素抗性基因nptⅡ(neomycin phosphotransfersⅡ)。对载体进行了酶切和测序检测,通过冻融法将载体转化了根癌农杆菌(Agrobactrium tumefaciens)菌株AGL-1。
     (2)比较了B6、MS和NB三种培养基的培养效果,结果表明,NB培养基最适合于日本晴(Nipponbare)成熟胚的组织培养。通过根癌农杆菌介导转化,将pemG1基因转化日本晴和烟草(Nicotiana tabacum),获得了转基因水稻和烟草植株,并将其繁育到T2代。
     (3)通过PCR检测确认了阳性转化株,用Southern杂交进一步证实了pemG1基因已整合到受体植物基因组,用RT-PCR和Northern杂交验证了pemG1基因在植物细胞中的转录,用Western杂交证实了pemG1基因在植物细胞中的表达。遗传分析表明,pemG1基因在转基因后代中的分离符合3∶1的理论比例。
     (4)比较了T0代转基因水稻植株和非转基因对照的农艺性状。转基因植株的平均株高为60.0 cm,非转基因对照的平均株高为43.6 cm。转基因植株平均收获到63.8颗饱满的种子,非转基因对照平均收获到42.6颗饱满的种子。
     (5)鉴定了T0代和T2代转基因水稻植株对稻瘟病的抗性。离体叶片接种试验,稻瘟菌孢子悬浮液喷雾接种试验和台盼兰染色的结果表明,和非转基因对照相比,转基因水稻植株对稻瘟病的抗性提高了36~56%。
     (6)鉴定了T2代转基因三生烟(Nicotiana tobacum cv. Samsun NN)对烟草花叶病毒(Tobacco Mosaic Virus)的抗性,转基因植株对枯斑的抑制率为35~47%。Northern杂交结果表明,pemG1基因的转录水平与枯斑抑制率存在相关性。
Protein elicitors are important signal molecules that trigger plants disease resistance. Defence responses will be induced once the elicitors were recognized by acceptors in plants. Research shows that PemG1 activator protein from Magnaporthe grisea is able to promote seeds germination and seedlings growth, and also induce rice resistance against rice blast fungus. To study PemG1’s functions in plants, pemG1 gene was transferred into rice and tobacco. The transgene’s integration, transcription and expression were identified. Disease resistance and agronomic traits of transgenic plants were also studied. Key results are as follows:
     (1) Plant expression vectors were constructed. The maize ubiquitin promoter/octopine synthase terminator system and kanamycin-resistant gene nptⅡ(neomycin phosphotransfersⅡ) were used for constitutive expression of the pemG1 gene. DNA constructs were verified by restriction enzyme digestion and sequencing and then introduced into Agrobacterium tumefaciens strain AGL-1 by freeze-thaw method.
     (2) Performances of N6 medium, MS medium and NB medium in tissue culture were evaluated. Results revealed that NB medium was the best for culture of Nipponbare scutellum tissue. Then, pemG1 gene was transferred into Nipponbare and tobacco (Nicotiana tabacum) by Agrobacterium-mediated transformation. Primary rice and tobacco transformants were obtained. So far T2 progenies have been harvested.
     (3) Transgenic plants were confirmed to be electropositive by polymerase chain reaction (PCR). The pemG1 gene integration was further confirmed by Southern blot. The transgene transcription was verified by reverse transcription polymerase chain reaction (RT-PCR) and Northern blot. PemG1 protein expression was detected by Western blot. Genetic analysis showed that the transgenes were segregated normally in the progenies.
     (4) Differences of agronomic traits between primary transgenic rice plants and non-transformed Nipponbare control were compared. The average height of transgenic plants was 60.0 cm and that of control plants was 43.6 cm. Transgenic plants harvested 63.8 full seeds on average; control plants harvested an average of 42.6.
     (5) Transgenic rice plants of T0 and T2 generation were tested for resistance against rice blast disease by detached leaves assay, spores spray inoculation and lacto phenol blue staining. Results indicated that the transgenic plants increased resistance to rice blast fungus by 36~56%.
     (6) Transgenic tobacco plants (Nicotiana tobacum cv. Samsun NN) of T2 generation were challenged with TMV (Tobacco Mosaic Virus). In comparison with TMV-infected wild-type SNN control, transgenic plants reduced hypersensitive response lesions by 35~47%. Northern blot results revealed that accumulation level of pemG1 steady-state transcripts corresponds to the inhibition rate of local lesions.
引文
1. 安德荣.植物病毒分类和鉴定的原理及方法.西安:陕西科技出版社,1995:18~35.
    2. 程在全,黄兴奇,字映生等.提高农杆菌介导法将(PinⅡ)抗虫基因导入滇型水稻的转化率.分子植物育种,2004,2(1):19~24.
    3. 丁国华.烟草转基因研究的动态和展望.黑龙江农垦师专学报,2000,2:81~83.
    4. 董文琦,屈冬玉,王海波.消除转基因植物中选择标记的研究进展.中国生态农业学报,2004,12(3):29~34.
    5. 段晓岚,陈善葆.外源 DNA 导入水稻引起性状变异.中国农业科学,1985,3:6~9.
    6. 冯道荣,许新萍,卫剑文等.使用双抗真菌蛋白基因提高水稻抗病性的研究.植物学报,1999,41(11):1187~1191.
    7. 傅向东,李德葆.雪莲凝集素(GNA)基因载体构建及在水稻中的整合表达.浙江农业大学学报,1997,23(6):730.
    8. 高洁,肖军,刘光伟.植物转基因技术与生物安全.泰山乡镇职工大学学报,2004,11(2):45~46.
    9. 巩振辉,何玉科,宋献军等.转化 CAMV 基因 VI 芸薹属蔬菜植株抗病性鉴定及其遗传分析.园艺学报,2001,28(5):466~468.
    10. 郭岩,张莉,肖岗等.甜菜 3 碱醛脱氢酶基因在水稻中的表达及转基因植株的耐盐性研究.中国科学,1997,27(2):151~155.
    11. 侯爱菊,朱延明,张晶等.转基因植物中筛选标记基因的利用及消除.遗传,2003,25(4):466~470.
    12. 华志华,汪晓玲,薛锐等.Cecropin B 转基因水稻及其后代抗白叶枯病研究初报.中国水稻科学,1999,12(3):114~116.
    13. 华志华,朱雪峰,吴明国等.水稻转基因整合模式中外源基因的遗传规律.作物学报,2003,
    29(1):44~48.
    14. 黄大年,高振宇,华志华等.基因枪法在水稻工程育种中的应用植物学通报,2001,18(3):283~287.
    15. 黄大年,朱冰,杨炜等.抗菌肽 B 基因导入水稻及转基因植株的鉴定.中国科学,1997,27(1):55~62.
    16. 黄健秋,卫志明.农杆菌转化获得转 Bt 基因水稻及其生物学鉴定.植物生理学报,2000,26(6):519~524.
    17. 简玉瑜,吴新荣,莫豪葵等.基因枪法将 Cecropin 基因转入水稻以及转基因后代对白叶枯病的抗性.华南农业大学学报,1997,18(4):1~7.
    18. 孔维文,邓仲香,王倩等.利用农杆菌介导法将抗虫基因和高赖氨酸蛋白基因导入超级杂交稻亲本材料 1826 中.分子植物育种,2004,2(4):495~500.
    19. 李国庆,倪丕冲.水稻遗传转化进展.水稻文摘,1993,12(1):1~6.
    20. 李金军,徐美玲,富昊伟,张国兴.Bt 转基因水稻在回交一代的抗虫性表现.浙江农业科学,2000,6:267~268.
    21. 李双成,王世全,尹福强等.籼稻成熟胚愈伤组织培养影响因素研究.四川农业大学学报,2004,22(4):296~300.
    22. 李茜.转基因植物的安全性评价.农业生物技术,2008,1:62~63.
    23. 李永春,张宪银,薛庆中等.农杆菌介导法获得大量转双价抗虫基因水稻植株.农业生物技术学报,2002,10(1):60~63.
    24. 刘传光,林青山,江奕君等.转基因植物的生物安全问题探讨关.中国生态农业学报,2003,11(3):175~177.
    25. 刘芳,袁英,高树仁,孔祥梅,李晓辉.花粉管通道导入技术在农作物分子育种中的应用. 农业与技术,2007,27(4):41~43.
    26. 刘谦,朱鑫全.生物安全.北京,科学出版社,2001.
    27. 刘彦锋,刘瑛.植物基因工程的应用与研究进展及潜在风险性分析.生物技术通讯,2005,16(3):340~342.
    28. 卢宝荣.稻种遗传资源多样性的开发利用及保护.生物多样性,1998,6:63.
    29. 孟凡宏,宋从凤,纪兆林等.表达全长与截短 HarpinXoo 对转基因烟草抗病性的影响.南京农业大学学报,2007,30(3):47~52.
    30. 倪斌.植物无选择标记转基因技术的研究进展.安徽农学通报,2007,13(16):35~37.
    31. 牛颜冰,青玲,周雪平.RNA 沉默机制及其抗病毒应用.中国生物工程杂志,2004,24(2):76~79.
    32. 牛颜冰,于翠,张凯等.瞬时表达黄瓜花叶病毒部分复制酶基因和番茄花叶病毒移动蛋白基因的 dsRNA 能阻止相关病毒的侵染.农业生物技术学报,2004,12(4):484~485.
    33. 吕典秋,李学湛,何云霞.烟草花叶病毒(TMV)和马铃薯 X 病毒(PVX)的提纯及抗血清的制备.中国马铃薯,2000,14(4):212~214.
    34. 吕山花,邱丽娟,陶波.转基因植物食品检测技术研究进展.生物技术通报,2002,(4):34~38.
    35. 邱德文.微生物蛋白农药研究进展.中国生物防治,2004,20(2):91~94.
    36. 邱德文,肖友伦,姚庆等.植物激活蛋白对黄瓜的促生诱抗相关酶的影响.中国生物防治,2005,21(1):41~44.
    37. 瞿其曙,何友昭,淦五二等.一种电色谱整体柱的制备及其分离性能.分析化学,2003,31(6):698~701.
    38. 邵碧英,陈文炳,李寿菘等.转基因产品检测方法建立的基础及应用.检验检疫科学, 2002,12(3):14~19.
    39. 邵敏,王金生.转 hrfAXoo 基因水稻对白叶枯病的抗性.南京农业大学学报,2004,27(4):36~40.
    40. 舒庆尧,崔海瑞,崔海瑞等.转基因水稻“克螟稻”选育.浙江农业大学学报,1998,24(6):579~580.
    41. 唐丁,郭龙彪,钱前.水稻转基因技术与转基因水稻.中国稻米,2005,5:5~7.
    42. 王爱菊,姚方印,温孚江等.利用 BT 基因和 Xa21 基因转化获得抗螟虫和白叶枯病的转基因水稻.作物学报,2002,28(6):857~860.
    43. 王彩芬,安永平,韩国敏等.水稻转基因育种研究进展.宁夏农林科技,2005,6:55~57.
    44. 王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998.
    45. 王慧中,黄大年,鲁瑞芳等.转MTL D/GUT D双价水稻的耐盐性.科学通报,2000,45( 7):724~729.
    46. 吴刚,崔海瑞,舒庆尧等.Cry1Ab 基因在转基因克螟稻后代中的遗传稳定性及表达.农业生物技术学报,2000,8(3):253~256.
    47. 吴庆知,黄开勋,徐辉碧.双向凝胶电泳技术进展.生物技术通讯,2002,13(2):90~93.
    48. 吴艳兵,谢荔岩,谢联辉等.毛头鬼伞多糖抗烟草花叶病毒(TMV)活性研究初报.中国农业科学,2007,23(5):338~341.
    49. 吴英,郭安平,孔华等.药用植物基因工程研究进展.热带农业科学,2005,25(2):46~53.
    50. 奚亚军,候文胜,张启发等.卡那霉素在转基因小麦后代筛选中的应用研究.西北农业学报,2002,11(3):17~20.
    51. 夏兰琴,郭三堆.杀虫基因在转基因双价抗虫棉中的整合和遗传稳定性.科学通报,2001,46(7):565~568.
    52. 项友斌,梁竹青,高明尉等.农杆菌介导的苏云金杆菌抗虫基因 cryIA(b)和 cryIA(c)在水稻中的遗传转化及蛋白表达.生物工程学报,1999(4):494~500.
    53. 谢道听,范云六,倪工冲等.苏云金芽抱杆菌基因导入中国栽培品种中花 11 号得到转基因植株.中国科学,1991,8:830~834.
    54. 谢为龙,陈其文,喻国泉等.转基因植物快速检测方法的研究.生物技术通报,2002 (4):39~46.
    55. 徐锋,杨勇,谢馥交等.稻瘟菌激活蛋白对植物生长及其生理活性的影响.华北农学报,2006,21(5):1~5.
    56. 杨虹,李家新,郭三堆等.苏云金杆菌-内毒素基因导入水稻原生质体后获得转基因植株.中国农业科学,1989,22(5):1~5.
    57. 杨剑波,许智宏,卫志明.几种禾谷类作物中诱导农杆菌 Vir 区基因活化的酚类物质分析.植物生理学报,1992,18(2):179~184.
    58. 曾晓珊,戴良英,刘雄伦等.籼稻成熟胚遗传转化体系影响因素的优化.江西农业学报,2007,19(8):1~3.
    59. 张宏明,蔡以滢,陈珈.Phytophthora palmi 分泌的 10.6 kD 蛋白激发烟草的过敏反应.植物学报,1999,41(11):1183~1186.
    60. 张红宇,吴先军,唐克轩等.半夏凝集素基因(pta)导入水稻及其表达的初步研究.遗传学报,2003,30(11):1013~1019.
    61. 张祥喜.国内外水稻抗病转基因研究进展.江西科学,2000,18(4):248~252.
    62. 张莹,张永军,吴孔明等.转基因植物的检测策略和检测技术.植物保护,2007,33(1):11~14.
    63. 张正光,王源超,郑小波.棉疫病菌 90 kD 胞外蛋白激发子生物活性与稳定性研究.植物病理学报,2001,31(3):213~218.
    64. 赵明敏,安德荣,黄广华等.瞬时表达靶向 TMV 外壳蛋白基因的 siRNA 能干扰病毒侵染.生物化学与生物物理学报,2005,37(4):248~253.
    65. 钟珍梅,黄勤楼,王建武等.导入外源 Bt 基因与受体作物次生代谢物质的交互关系研究. 中国生态农业学报,2007,15(6):200~203.
    66. 朱常香,刘红梅,宋云枝等. RNA 介导的病毒抗性在转基因烟草中的遗传分析.遗传学报,2005,32(1):94~103.
    67. 朱守一.生物安全与防治污染.北京,化学工业出版社,1992.
    68. Amero S A, James T C, Elgin S C R. Production of antibodies using proteins in gel bands, in: J. Walker M. The Protein Protocols Handbook, Humana Press, 2nd ed, Part VII, Totowa, New Jersey, 2002, pp. 941~944.
    69. Azhakanandam K, McCabe M S, Power J B, Lowe K C, Cocking E C, Davey M R. T-DNA transfer, integration, expression and inheritance in rice: effects of plant genotype and Agrobacterium, super-virulence. Journal of Plant Physiology, 2000, 157(4): 429~439.
    70. Baillieul F, Genetat I, Kopp M, et al. A new elicitor of the hypersensitive response in tobacco: A fungal glycoprotein elicits cell death, expression of defense genes, production of salicylic acid, and induction of systemic acquired resistance. The Plant Journal, 1995, 8 (4): 551~560.
    71. Beclin C, Boutet S, Waterhouse P, et al. A branched pathway for transgene-induced RNA silencing in plants. Current Biology, 2002, 12: 684~688.
    72. Beynon R J, Pratt J M. Metabolic labeling of proteins for proteomics. Molecular & Cellular Proteomics, 2005, 4(7): 857~872.
    73. Boissy G, Fprtelle D L, Kahn R, et al. Crytal structure of a fungal elicitor secreted by Phytophthora cryptogea, a member of a novel class of plant necrotic protein. Structure, 1996, 4: 1429~1432.
    74. Bonnet P. Reactions differentielles du tabac a 9 especes de phyophthora. Agronomie, 1985, 5: 54~60.
    75. Bruce W B, Christen A H, Klein T, et al. Photoregulation of a phytochrome gene promoter from oat transferred into rice by particle bombardment. Proceedings of the National Academy of Sciences USA, 1989, 86: 9692~9696.
    76. Budar F, Thia-Toong L, van Montagu M, Hernalsteens J P. Agrobacterium-mediated gene transfer results mainly in transgenic plants transmitting T-DNA as a single mendelian factor. Genetics, 1986, 114: 303~313.
    77. Chan M T, Chang H H, Ho S L, et al. Agrobacterium-mediated production of transgenic rice plants expressing α-amylase promoter/β-glucuronidase gene. Plant Molecular Bio1ogy, 1993, 22: 491~506.
    78. Chang M T. Transformation of rice (Oryza sativa L.) mediated by Agrobacterium tumefaciens. Plant Cell Physiology, 1992, 33(5): 577~583.
    79. Chevalier M, Santoni V, Poinas A. New zwitterionic detergents improve the analysis of membrane proteins by two-dimensional electrophoresis. Electrophoresis, 1998, 19 (11): 1901~1909.
    80. Christensen A H, Quail P H, Ubiquitin promoter based vectors for high level expression of selectable and/or screenable marker genes in monocotyledoneus plants, Transgenic Research. 1996, 5: 216~218.
    81. Christou P. Tameria. The impact of selection parameters on the phenotype and genotype of transgenic rice callus and plants. Transgenic Research, 1995, 4: 44~51.
    82. Christou P, Tameria L F, Matt K. Production of transgenic rice (Oryza SativaL.) plant from agronomicaly important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Research, 1991, 9: 957~962.
    83. Coca M, Bortolotti C, Rufat M, et al. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea. Plant Molecular Biology, 2004, 54: 245~259.
    84. Coca M, Pe?as G, Gómez J, et al. Enhanced resistance to the rice blast fungus Magnaporthe grisea conferred by expression of a cecropin gene in transgenic rice. Planta, 2006, 223: 392~406.
    85. Cooley J, Ford T, Christou P. Molecular and genetic characterization of elite transgenic rice plants produced by electric-discharge particle acceleration. Theoretical & Applied Genetics, 1995, 90: 97~104.
    86. Cooper B, Lapldot M, Heick J A, et al. A defective movement protein of TMV in transgenic plants confers resistance to multiple viruses whereas the function analog increases susceptibility. Virology, 1995, 206: 307~313.
    87. Coppoolse E R, de Vroomen M J, Roelofs D, et al. Cre recombinase expression can result in phenotypic aberrations in plants. Plant Molecular Biology, 2003, 51:263~279.
    88. Dale E, Ow D. Gene transfer with subsequent removal of the selection gene from the host genome. Proceedings of the National Academy of Sciences USA, 1991, 88: 10558~10562.
    89. Daley M, Knauf V C, Summerfelt K R, et al. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Reports, 1998, 17: 489~496.
    90. Daniel B, Golemboski, George P, et al. Plants transformed with a tobacco mosaic virus nonstructural gene sequence are resistant to the virus. PNAS, 1990, 87: 6 311~6 315.
    91. Datta K, Vasquez A, Tu J, et al. Constitutive and tissue-specific differential expression of the cryIA (b) gene in transgenic rice plants conferring resistance to rice insect pest. Theoretical & Applied Genetics, 1998, 97: 20~30.
    92. Datta S K, Datta K, Soltanifar N, et al. Herbicide-resistant indica rice plants from IRRI breeding line IR72 after PEG-mediated transformaion of protoplasts. Plant Molecular Biology, 1992, 20: 619~629.
    93. Darvill A G, Albersheim P. Phytoalexins and their elicitors-a defense against microbial infection in plants. Annual Review of Plant Physiology, 1984, 35: 243~293.
    94. Dekeyser R, Claes B, Marichal M, et al. Evalution of selectable markers for rice transformation. Plant Physiology, 1989, 90: 217~233.
    95. Del Pozo O, Lam E. Expression of the baculovirus p35 protein in tobacco affects cell death progression and compromises N gene-mediated disease resistance response to Tobacco mosaic virus. Molecular Plant-Microbe Interaction, 2003, 16: 485~494.
    96. Depicker A, Herman L, JacobsA, et al. Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium plant cell interaction. Molecular and General Genetics, 1985, 20: 477~484.
    97. De Vetten N, Wolters A M, Raemakers K, et al. Atransformation method for obtaining marker-free plants of a crosspollinating and vegetatively propagated crop. Nature Biotechnology, 2003, 21: 439~442.
    98. Duan X L, Li X G. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nature Biotechnology, 1996, 14: 494~498.
    99. Feng L L, Wang K, Li Y, et al. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Reports, 2007, 26: 1635~1646.
    100. Ebel J. Oligoglucoside elicitor-mediated activation of plant defense, BioEssays, 1998, 20 (7): 569~576.
    101. Ebinuma H, Sugita K, Matsunaga E, et al. Selection of marker-free transgenic plants using isopentenyl transferase gene. Proceedings of the National Academy of Sciences USA, 1997, 94: 2 117~2121.
    102. Fischer U, Droge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus. Molecular Plant-Microbe Interaction, 2004, 17:1162–1171.
    103. Fu X D, Duraialagaraja S, Peng J R, et al. Expression of arabidopsis GAI in transgenic rice represses multiple gibberellin responses. The Plant Cell, 2001, 13: 1791~1802.
    104. Fujimoto H, Itoh K, Yamamoto M, et al. Insect resistana rice generated by introduction of a modified delta-endotoxin gene of Bacillus thuringiensis. Bio/Thechnology, 1993, 11: 1151~1155.
    105. Goldsbrough A P, Lastrella C N, Yoder J I. Transposition mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology, 1993, 11: 1286~1292.
    106. Gandikota M, Kochko A, Chen L, et al. Development of transgenic rice plants expressing maize anthocyanin genes and increased blast resistance. Molecular Breeding, 2001, 7: 73~83.
    107. Guo Y D, Hong L, Berns M W. Laser-mediated gene transfer in rice. Physiologia Plantarum, 1995, 93:19~24.
    108. Haldrup A, Petersen S G, Okkels F T. The xylose isomerase gene from thermoanaerobacteriumthermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Molecular Biology, 1998, 37: 287~296.
    109. Hayakawat, Zhuy, Itoh K, et al. Genetically engineered rice resistant to rice stripe virus, an insect transmitted virus. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89 (20): 9865~9869.
    110. Hayashimoto A, Li Z, Murai N A. PEG-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiology, 1990, 93: 857~863.
    111. Haymes K M, Davis T M. Agrobacterium-mediated transformation of ‘Alpine’ Fragaria vesca, and transmission of transgenes to R1 progeny. Plant Cell Reports, 1998, 17: 279~283.
    112. Hiei Y, Komari T, Kubo T. Transformation of rice mediated by Agrobacterium tumefaciens. Plant Molecular Biology, 1997, 35: 205~218.
    113. Hiei Y, Ohta S, Komari T, et a1. Efficient transformation of rice (Orrya sativa L.) mediated by Agrobaclerium and sequence analysis of the boundaries of the T-DNA. PIant Journal, 1994, 6: 271~282.
    114. Hoff T, Schnorr K M, Mundy J A. Recombinase-mediated transcriptional induction system in transgenic plants. Plant Molecular Biology, 2001, 45: 41~49.
    115. Hohn B, Levy A, Puchta H. Elimination of selection markers from transgenic plants. Current Opinion in Biotechnology, 2001, 12 (2): 139~143.
    116. Horsch R B, Fry J E, Fraley R T. A simple and general method for transferring genes into plants. Science, 1985, 227: 1229~1231.
    117. Huang S, Gilbertson L A, Adams T H, et al. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Research, 2004, 13: 451~461.
    118. Huet J C, Nespoulous C, Pernollet J C. Structure of elicitin isoforms secreted by Phytophthora dreschleri. Phyto-chemistry, 1992, 31: 1471~1476.
    119. Huntley C C, Hall T C. Interference with brome mosaic virus replication in transgenic rice. Molecular Plant Microbe Interactions, 1996, 9 (3): 164~170.
    120. Ivanov A R, Horvath C, Karger B L. High-efficiency peptide analysis on monolithic multimode capillary columns: Pressure-assisted capillary electrochromatography/capillary electrophoresis coupled to UV and electrospray ionization-mass spectrometry. Electrophoresis, 2003, 24 (21): 3663~3673.
    121. Jain, S J, Wang B Y, Wu R. Optimization of biolistic method for transient gene expression and production of agronomically useful transgenic Basmati rice plants. Plant Cell Reports, 1996, 15: 963~968.
    122. Jia H, Pang Y, Chen X, et al. Removal of the selectable marker gene from transgenic tobacco plants by expression of Cre recombinase from a tobacco mosaic virus vector through agroinfection. Transgenic Research, 2006, 15 (3): 375~384.
    123. Joersbo M, Donaldson I, Kreiberg J, et al. Analysis of mannose selection used fortransformation of sugar beet. Molecular Breeding, 1998, 4: 111~117.
    124. Julka S, Regnier F. Quantification in proteomics through stable isotope coding: a Review. Journal of Proteome Research, 2004, 3 (3): 350~363.
    125. Kobayashi K, Cabral S, Calamante G, et al. Transgenic tobacco plants expressing the Potato virus X open reading frame 3 gene develop specific resistance and necrotic ring symptoms after infection with the homologous virus. Molecular Plant-Microbe Interaction, 2001, 14 (11): 1274~1285.
    126. Kohli A, Gahalwa D. Transgene expression in rice engineered through particle bombardment: molecular factors controlling stable expression and transgene silencing. Planta, 1999, 208: 88~97.
    127. Komari T, Hiei Y, Ishida Y, et al. Advances in cereal gene transfer. Plant Biology, 1998, 1: 161~165.
    128. Komari T, Hiei Y, Saito Y, et al. Vectors carrying two separate T-DNAs for co-transformation for higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant Journal, 1996,10: 165~174.
    129. Kopertekh L, Jüttner G, Schiemann J. PVX-Cre-mediated marker gene elimination from transgenic plants. Plant Molecular Biology, 2004, 55: 491~500.
    130. Kouassi N, Brugidou C, Chen L, et al. Transgenic rice plants expressing rice yellowmottle virus coat protein gene. International Rice Research Notes, 1997, 22 (1): 14~15.
    131. Lee S I , Lee S H , Koo J K. et al. Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to brown planthopper in transgenic rice. Molecular Breeding, 1999, 5: 1~9.
    132. Hellward K H, Palukaitis P. Viral RNA as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell, 1995, 86 (6): 937~946.
    133. Li J, Steen H, Gygi S P. Protein profiling with cleavable isotope-coded affinity tag (cICAT) reagents: The yeast salinity stress response. Molecular & Cellular Proteomics, 2003, 2, (11): 198~204.
    134. Li X G, Chen S B, Lu Z X, et al. Impact of copy number on transgenic expression in tobacco, Atca Botanica Sinica, 2002, 44 (1): 120~123.
    135. Li X Q, Liu C N, Ritchie S W, et al. Factors influencing Agrobacterium tumefaciens-mediated transient expression of gusA in rice. Plant Molecular Biology, 1992, 20: 1037~1048.
    136. Lin W, Anuratha C S. Genetic engineering of rice for resistance to sheath blight. Bio/Technology, 1995, 13: 686~691.
    137. Lindbo J A, Silva R L, Proebsting W M, et al. Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell, 1993, 5: 1749~1759.
    138. Liu C N, Li X P, Gelvin S B. Multiple copies of virG enhance the transient transformation of celery, carrot and rice tissues by Agrobacterium tumefaciens. Plant Molecular Biology, 1992, 20: 1071~1087.
    139. Lou Z, Wu R. A simple method for the transformation of rice via the pollen-tube pathway, Plant Molecular Biology Reporter, 1988, 6: 165~174.
    140. Lucca P, Ye X, Potrykus I. Effective selection and regeneration of transgenic rice with mannose as selective agent. Molecular Breeding, 2001, 7: 43~49.
    141. Malyshenko S, Kondakova O A, Nazarova J V, et al. Reduction of tobacco mosaic virus accumulation in transgenic plants producing nonfunctional viral transpors proteins. Journal of General Virology, 1993, 74: 1149~1156.
    142. Maruthasalam S, Kalpana K, Kumar K K, et al. Pyramiding transgenic resistance in elite indica rice cultivars against the sheath blight and bacterial blight. Plant Cell Reports. 2007, 26: 791~804.
    143. Maqbool S B, HusnainT, Riazuddin S, et al. Effective control of yellow stem borer and rice leaf folder in transgenic rice indica varieties Basmati 370 and M7 using the novel delta endotoxin cry2A Bacillus thuringiensis gene. Molecular Breeding. 1998, 4 (6): 501~507.
    144. Meijer E G M, Schilperoort R A, Rueb S, et al. Transgenic rice cell lines and plants: expression of transferred chimeric genes. Plant Molecular Bio1ogy, 1991, 16: 807~820.
    145. Meyer P. Transcriptional transgene silencing and chromatin components. Plant Molecular Biology, 2000, 43: 221~234.
    146. Michael G H. Microbial elicitors and their receptors in plants. Annual Review of Phytopathology, 1996, 34: 387~412.
    147. Miller M, Tagliani L, Wang N, et al. High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumifaciens T-DNA binary system. Transgenic Research, 2002, 11: 381~396.
    148. Miki B, McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. Journal of Biotechnology, 2004, 107: 193~232.
    149. Mills J O, Holland L A. Membrane-mediated capillary electrophoresis: Interaction of cationic peptides with bicelles. Electrophoresis, 2004, 25:1237~1242.
    150. Moreno A B, Penas G, Rufat M, et al. Pathogen-induced production of the antifungal AFP protein from Aspergillus giganteus confers resistance to the blast fungus Magnaporthe grisea in transgenic Rice. Molecular Plant-Microbe Interaction, 2005, 18 (9): 960~972.
    151. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tabacco tissue culture. Plant Physiology, 1962, 15: 473~497.
    152. Nagamiya K, Motohashi T, Nakao K, et al. Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnology Reports, 2007 1(1): 49~55.
    153. Nespoulous C, Huet J C, Pernollet J C. Strcture-function relationships of α and β elicitins singal proteins involved in the plant-Phytophthora interaction. Planta, 1992, 186: 551~557.
    154. Nishizawa Y, Nishio Z, Nakazono K, et al. Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theoretical and AppliedGenetics, 1999, 99: 383~390.
    155. Oard J H, Linscombe S D, Braverman M P, et al. Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Molecular Breeding, 1996, 2: 359~368.
    156. Oard J H. Transient gene expression in maize, rice, and wheat cells using an airgun apparatus. Plant Physiology, 1990, 92: 334~339.
    157. Olmsted J B. Affinity purification of antibodies from diazotized paper blots of heterogeneous protein samples. Journal of Biological Chemistry, 1981, 256: 11955~11957.
    158. Ong S E, Blagoev B, Kratchmarova I, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 2002, 1 (5): 376~386.
    159. Ong S E, Kratchmarova I, Mann M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). Journal of Proteome Research, 2003, 2 (2): 173~181.
    160. Park S H, Pinson S R M, Smith R H. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Moleuclar Biology, 1996, 32: 1135~1148.
    161. Patkar R N, Chattoo B B. Transgenic indica rice expressing ns-LTP-like protein shows enhanced resistance to both fungal and bacterial pathogens. Molecular Breeding, 2006, 17: 159~171.
    162. Pons M J, Marfà V, Melé E, et al. Regeneration and genetic transformation of Spanish rice cultivars using mature embryos. Euphytica, 2000, 114: 117~122.
    163. Powell P A, Sanders P R, Tumer N, et al. Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology, 1990, 175 (1): 124~130.
    164. Pritilata N, Debabrata B, Sampa D, et al. Transgenic elite indica rice plants expressing CryIAc-endotoxin of Bacillus thuringiensis are resistant against yellow stem borer (Scirpophaga incertulas). Proceedings of the national academy of sciences, 1997, 94: 2111~2116.
    165. Link A J. Autoradiography of 2-D gels. Methods in Molular Biology, 1999, 112: 285~290.
    166. Rabiltoud T, Adessi C, Giraudel A. Improvement of the sotubilization of proteins in two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 1997, 18 (3~4): 307~316.
    167. Raineri D M, Bottino P, Gordon M P, et al. Agrobacterium-mediated transformation of rice (Oryza sativa L.). Biotechology, 1990, 8: 33~38.
    168. Ramachandran A V, Padmanabhan C, Claude M F. Short interfering RNA-mediated interference of gene expression and viral DNA accumulation in cultured plant cells. Proceedings of the National Academy of Sciences USA, 2002, 100 (16): 9632~9636.
    169. Rashid H, Yokoi S, Toriyama K, Hinata K. Transgenic plant production mediated by Agrobacterium in indica rice. Plant Cell Reports, 1996, 15: 727~730.
    170. Ricci P , Bonnet P, Huet J C, et al. Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Europe Journal of Biochemistry, 1989, 183: 555~563.
    171. Ricci P, Trentin F, Bonnet P, et a1. Differential production of parasiticein,an elicitor of necrosis an d resistance in tobacco, by isolates of Phytophthora parasitica. Plant Pathology, 1992, 41: 298~ 307.
    172. Sivaman I E, Ping S, Natacha O, et al. Selection of large quantities of embryogenic calli from indica rice seeds for production of fertile transgenic plants using the biolistic method. Plant Cell Reports, 1996, 15: 322~327.
    173. Saha P, Majumder P, Ray I D T, et al. Transgenic rice expressing Allium sativum leaf lectin with enhanced resistance against sap-sucking insect pests, Planta, 2006, 223: 1329~1343.
    174. Sambrook J, Fritsch E F, Maniatis T, Molecular Cloning-A Laboratory Manual, 2nd ed, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, pp. 931~944.
    175. Sijen T, Wellinkj, Hendriks J, et al. Replication of cow pea mosaic virus RNA1 or RNA2 is specifically blocked in transgenic Nicotiana benthamianaplants expressing the full-length replicase or movement protein genes. Molecular Plant-Microbe Interactions, 1995, 8: 340~347.
    176. Sijen T, Welink J, Van K A. RNA-mediated virus resistance: role of repeated transgenes and delineation of targeted region. Plant Cell, 1996, 8: 2277~2294.
    177. Simon M C, Lopez M J J, Guo H S, et al. Suppressor activity of potyviral and cucumoviral infections in potyvirus-induced transgene silencing. Journal of General Virology, 2003, 84: 2877~2883.
    178. Sinisterra X H, Polston J E, Abouzid A M, et al. Tobacco plants transformed with a modified coat protein of tomato mottle begomovirus show resistance to virus infection. Phytopathology, 1999, 89: 701~706.
    179. Sivamani E, Shen P, Opalka N, et al. Selection of large quantities of embryogenic calli from Indica rice seeds for production of fertile transgenic plants using the biolistic method. Plant Cell Reports, 1996, 15: 322~327.
    180. Sohn S O, Back K. Transgenic rice tolerant to high temperature with elevated contents of dienoic fatty acids, Biologia Plantarum, 2007, 51 (2): 340-342.
    181. Song W Y, Wang G L, Chen L L, et al. A receptor kinase like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270:1804~1806.
    182. Southern E M. Detection of specific sequences among DNA fragments separated by gel electrophoresis, Journal of Molecular Biology, 1975, 98: 503.
    183. Sreekala C L, Wu K, Gu D, et al. Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Reports, 2005, 24: 86~94.
    184. Stempak J M, Sohn K J, Chiang E P, et al. Cell and stage of transformation-specific effects offolate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model. Carcinogenesis, 2005, 26 (5): 981~990.
    185. Strathmann A, Kuhlmann M, Heinekamp T, et al. BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant Journal, 2001, 28: 397~408.
    186. Sugita K, Kasahara T, Matsunaga E, et al. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant Journal, 2000, 22 (5): 461~469.
    187. Sullivann J, Lagrimini L M, et al. Transformation of Liquidambar styraciflua using Agrobacterium tumefaciens. Plant Cell Reports, 1993, 12: 303~306.
    188. Suzuki M, Msauta C, Takanami Y, et al. Resistance against cucumber mosaic virus in plants expressing the viral replicon. FEBS Letters, 1993, 379: 26~30.
    189. Toki S, Takamatsu S, Nojiri C, et al. Expression of a maize ubiquitin gene promoter bar chimeric gene in transgenic rice plants. Plant Physiology, 1992, 100: 1503~1507.
    190. Tadat, Kanzaki H, Norita E, et al. Decreased symptoms of rice blast disease on leaves of bar expressing transgenic rice plants following treatment with bialaphos. Molecular Plant Microbe Interactions, 1996, 9 (8): 762~764.
    191. Tang K X, Hu Q A, Sun X F, et al. Development of transgenic rice pure lines with enhanced resistance to rice brown planthopper, In Vitro Cellular and Developmental Biology, 2001, 37: 334~340.
    192. Tang K X , Tin J J, Xu Y A, et al. Particle-bombardment-mediated co-transformation of elite Chinese rice cultivars with genes coferring resistance to bacterial blight and sap-sucking insect pests. Planta, 1999, 208 (4): 552~563.
    193. Templeton M D, Lamb C J. Elicitors and defense gene activation. Plant, Cell & Environment, 1988, 11: 395~401.
    194. Tenllado F, Martinez G B, Vargas M, et al. Crude extracts of bacterially expressed dsRNA can be used to protect plants against virus infections. BMC Biotechnology, 2003, 3 (1): 3~14.
    195. Tenllado F, Llave C, Diaz R J R. RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 2004, 102 (1): 85~96.
    196. Toki S, Hara N, Ono K, et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. The Plant Journal, 2006, 47: 969~976.
    197. Toki S. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Molecular Biology Reports, 1997, 15: 16~21.
    198. Toriyama A Y, Uchimiya H H K. Transgenic rice plants after direct gene tranafer into protoplasts. BioTechnology 1988, 6:1072~1074.
    199. Tu J, Ona I, Zhang Q, et al. Transgenic rice variety ‘IR72’ with Xa21 is resistant to bacterial blight. Theoretical and Applied Genetics, 1998, 97 (1~2): 31~36.
    200. Uchimiya H, Fushimi T, Hashi H, et al. Expression of a foreign gene in callus derived from DNA-treated protoplast of rice (Oryza sativa L.). Molecular & General Genetics, 1986, 204:204~207.
    201. Uchimiya H, Iwata M, Nomiri C, et al. Bialaphos treatment of transgenic rice plants expressing a bar gene prevents infection by the sheath blight pathogen (Rhizoc-tonia solani). BioTechnology, 1993, 11 (7): 835~836.
    202. Van Roekel J S C, Damm B, Melchers L S, et al. Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Reports, 1993, 12: 644~647.
    203. Vinod S, Ram C Y, Yadav K R. Studies on improved Agrobacterium-mediated transformation in two indica rice (Oryza sativa L.). African Journal of Biotechology, 2004, 3: 572~575.
    204. Wan J H, He F C. Progress in proteomics technology. Chinese Science Bulletin, l999, 44 (9): 904~9l0.
    205. Wang G L, Ruan D L, Song W Y, et al. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution. Plant Cell, 1998, 10 (5): 765~779.
    206. Wang G L, Song W Y, Ruan D L, et al. The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv.oryza eisolates in transgenic plants. Molecular Plant Microbe Interactions, 1996, 9 (9): 850~855.
    207. Wang Y, Chen B, Hu Y, et al. Inducible excision of selectable marker gene from transgenic plants by the Cre/loxsite-specific recombination system. Transgenic Research, 2005, 14: 605~614.
    208. Wang Z X, Sasaki T, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine rice, repeat class of plant disease resistance genes. The Plant Journal, 1999, 19 (1): 55~64.
    209. Washburn M, Ulaszek R, Deciu C, et al. Analysis of quantitative proteomic data generated by multi-dimensional protein identification technology. Analytical Chemistry, 2002, 74: 1650~1657.
    210. Waterhouse P M, Wang M B, Lought T. Gene silencing as an adaptive defense against viruses. Nature, 2001, 411: 834~842.
    211. Wei Y P, Yao F Y, Zhu C X, et al. Breeding of transgenic rice restorer line for multiple resistance against bacterial blight, striped stem borer and herbicide, Biologia plantarum, 2007, 51: 340~342.
    212. Wei Z M, Laby R J, Zumoff C H, et al. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science, 1992, 257: 85~88.
    213. Whithan S, Dinesh K S P, Choi D, et al. The product of the tobacco masaic virus resistance geneN: similiarity to toll and the interleukin-1 receptor. Cell, 1994, 78: 1101~1115.
    214. Xu X P, Li B J. Fertile transgenic indica rice plants obtained by electroporation of the seed embryo cells. Plant Cell Reports, 1994, 13: 237~242.
    215. Yang H, Zhang H M, Davey M R, et al. Production of kanamycin resistant rice tissues following DNA uptake into protoplasts. Plant Cell Reports, 1988, 7: 421~425.
    216. Yie Y, Zhao F, Zhao S, et al. High resistance to cucumber mosaic virus conferred by satellite RNA and coat protein in transgene commecial tobacco cultivar G-140. Molecular Plant Microbe Interactions, 1992, 5 (6): 460~465.
    217. Yokio S, Higashi S I, Kishitani S, et al. Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis of rice. Molecular breeding, 1998, 4 (3): 269~275.
    218. Yoo J, Guhung J. DNA uptake by imbibition and expression of foreign gene in rice. Physiologia Plantarum 1995, 94:453~459.
    219. Zeng D L, Qian Q, Dong G J, et al. Development of isogenic lines of morphological markers in Indica. Rice Acta Botanica Sinica, 2003, 45: 1116~1120.
    220. Zhang G, Spellman D S, Skolnik E Y, et al. Quantitative phosphotyrosine proteomics of EphB2 signaling by stable isotope labeling with amino acids in cell culture (SILAC). Journal of Proteome Research, 2006, 5: 581~588.
    221. Zhang W, McEIory D, Wu R. Analysis of rice Act1 5’ region activity in transgeneic rice plants. Plant Ce11, 1991, 3: 1155~1165.
    222. Zhang W, Wu R. Efficient regeneration of transgenic plants from correctly regulated expression of the foreign gene in the plants. Theoretical Applied Genetics, 1988, 76: 835~
    840.
    223. Zhao F Y, Zhang H, Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice, Plant Cell Tiss Organ Cult, 2006, 86: 349~358.
    224. Zheng H H, Li Y, Yuzh, et al. Recovery of transgenic rice plants expressing the rice dwarf virus outer coat protein gene (S8). Theoretical and Applied Genetics, 1997, 94 (3~4): 522~527.
    225. Zhu Q, Maher E A, Masoud S, et al. Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. BioTechnology, 1994, 12: 807~812.
    226. Ziegler G V, Guiford P J, Baulconbe D C. Tobacco rattle virus RNA-129K gene product potentates viral movement and also affects symptom induction in tobacco. Virology, 1991, 182: 145~15.
    227. Zuo J, Niu Q W, Moller S G, et al. Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotechnology, 2001, 19: 157~161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700