类人胶原蛋白Ⅱ/纳米羟基磷灰石/壳聚糖复合骨修复材料制备关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:依据结构仿生和过程仿生的思路,采用静电自组装技术制备重组类人胶原蛋白Ⅱ(RHLCⅡ)/纳米羟基磷灰石(nHA)/壳聚糖(CS)复合骨修复材料,解决动物源胶原基骨修复材料存在的病毒隐患等安全问题以及纳米羟基磷灰石陶瓷材料无成骨诱导活性的问题。提高材料的生物相容性、赋予材料成骨活性,探讨材料的优化机制,研究兔源骨髓间充质干细胞种植于材料的诱导成骨情况。为研究新型骨修复和细胞载体材料提供实验数据,获得具有广阔市场前景的骨修复替代材料。
     方法:1.纳米羟基磷灰石的制备:依据仿生的思路,实验采用贝壳和无机金属盐,以水热合成法和沉淀法制备羟基磷灰石,通过XRD、SEM以及ZETASIZER粒径测试仪对其结构、晶相、粒径进行分析比较,首先筛选出纳米低结晶羟基磷灰石的制备方法。
     2.类人胶原蛋白Ⅱ(RHLCⅡ)/纳米羟基磷灰石(nHA)/壳聚糖(CS)复合骨修复材料的制备:为使材料无机界面与有机界面牢固结合,抗压强度达到骨修复材料标准,本实验采用共混法和原位滴定法制备类人胶原蛋白Ⅱ(RHLCⅡ)/纳米羟基磷灰石(nHA)/壳聚糖(CS)复合骨修复材料。通过机械强度和均匀性的比较,最终筛选出适合材料组分复合的方法。并首次选择天然交联剂京尼平交联复合材料,在增强组分间结合能力的同时避免了使用化学合成交联剂戊二醛等对细胞产生毒性危害的缺陷,制备了新一代RHLCⅡ)/nHA/CS复合骨修复材料。
     3.建立模型对制备工艺进行优化:本实验依据单因素实验结果,借助MINITAB统计学软件,采用Plackett-Burman设计和响应面优化法对复合材料成型工艺进行了优化。通过X射线衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)、MTT比色法等对材料的微观结构、力学性能和生物相容性进行了表征,同时通过Unico UV对交联反应做了跟踪测定,初步了解了天然化合物京尼平对骨复合材料的交联程度,最终获得制备复合材料的优选方案。
     4.成骨诱导性能评价:本实验将骨髓间充质干细胞(BMSCs)种植于骨修复材料上,对BMSCs在复合材料上的成活率、贴附率、ALP活性以及钙结节现象进行了观察分析,评价材料与BMSCs复合的诱导成骨性能。
     结果:1.新一代RHLCⅡ/nHA/CS复合骨修复材料的优选制备方案为:(1)原位滴定法按组分配比为nHA/RHLCⅡ=1.53在弱碱性环境下反应制备nHA/RHLCⅡ粉末;(2)加入壳聚糖浓度为2%±1%的粘稠溶液,充分混匀后加入京尼平,使京尼平终浓度达0.61%,倾入不锈钢模具,在4℃下冷藏24h;(3)置于-80℃超低温冰箱预冷冻3 h后真空冷冻干燥48 h。PBS(pH=7.3)缓冲液反复浸洗,二次冻干后置于干燥器中保存。(4)移植前,支架材料经灭菌后与BMSCs细胞在体外共培养,材料具有成骨活性后可直接移入受损部位。
     2.制备的骨修复复合材料具有以下特征:无机相为平均大小为30nm的弱结晶纳米羟基磷灰石;材料为三维多孔材料,孔径在75~100μm之间,孔隙率在90%以上;无机相与有机相比为26:74,且相面结合紧密,机械强度可达80.46MPa;细胞毒性评为1级,在诱导培养基条件下,BMSCs细胞能够紧密贴附在材料表面及内部,经14天共培养后无死细胞出现,贴附率接近100%,ALP值是对照空白样的10倍,且7天后就有钙结节产生。
     结论:本文首次对RHLCⅡ/nHA/CS骨修复材料的制备关键技术进行了系统研究,通过优化机制制备的RHLCⅡ/nHA/CS多孔支架材料从组成和结构上与自然骨相似,抗压强度可达80.46MPa,与BMSCs细胞复合后表现出良好的成骨活性,是一种功能、结构与自然骨相似且安全性能高的优选骨修复材料。通过控制材料组分的配比可获得不同机械强度需求的骨修复材料,因此有望应用于商品化生产,满足社会对不同机械强度骨修复材料的要求,解决社会骨修复材料供应量不足的问题。
Objective: To prepare the composite of the recombined human-like collagen II (RHLC II)/ nano-hydroxyapatite (nHA)/ chitosan (CS) with a biomimetic method by the electrostatic self-assembly technique, which avoid virus-danger of animal-sourced collagen and osteogenesis-lack of nano-hydroxyapatite based-ceramic materials. Further, study the optimization mechanism of the scaffold molding technology and obtain a novel bone repair material which has a promising broad market. Farther, improve the biocompatibility and inducibility of the scaffold, and study the inducible effect of rabbit sourced BMSCs seeding on scaffold. These were to give preliminary experimental evidence of a novel bone repair materials or cell vehicle materials, and obtain an ideal bone substitution for clinic.
     Method:1.The preparation of nano-hydroxyapatite: HA were prepared from oyster shell or inorganic metallic salt by hydrothermal synthesis or coprecipitation method. The structure of HA was evaluated by the X-ray diffraction (XRD), scanning electron microscope (SEM) and ZETASIZER; Finally some useful strategies were chosed to prepare nature bone-like hydroxyapatite.
     2.The preparation of RHLC II/ nHA/ CS composites: In order to meet the needs of repair bone materials with high compressive strength, i.e. the binding between inorganic and organic phase is tight or compact, in this research, RHLC II/ nHA/ CS composites were prepared by mixing method and in situ synthesis at moderate temperature. After analyzing their mechanic properties and homogeneity, a better way was selected to prepare them. Moreover, to avoid the toxic danger of chemical crosslink agent such as glutaraldehyde and strengthen the composite, the natural crosslink agent-genipin was firstly chosed to fabricate the scaffold and a novel RHLC II/ nHA/ CS composite with good compatibility was obtained.
     3. Establishing a model for optimizing the preparation: It is a wise way to reduce the process cost and tailor the needs of board market. In this step, an optimized modeling technique of composite was obtained with response surface methodology (RSM) by Minitab soft. The micro-structure, mechanical properties and the biocompatible of the composite were studied by the X-ray diffraction (XRD), flourier transformation infrared spectra (FTIR), scanning electron microscope (SEM) and MTT colorimetric assay. At the same time, the degree of the cross-linking of the genipin and the biomimetic bone composite was determined by the Unico UV. In addition, we acquire stiffer scaffold by new crosslink method.
     4. The Evaluation of bone induction activity: Seeded the rabbit bone marrow stem cells on scaffold, then observed the percent of live cells、cell attachment、ALP activity and the appearance of mineralized nodules, we finally acquired a materials with bone induction activity.
     Result: 1. A novel preparation of RHLC II/nHA/CS bone repair materials was:
     (1)n-HA/ RHLC II powder was prepared with nHA/ RHLC II =1.53 by in situ synthesis at alkalescency environment;
     (2)2wt% chitosan was uniform mixed with n-HA/ RHLC II powder, then added genipin at 0.61% final concentration and in poured the stainless steel tooting .Cold preservation at 4℃for 24 h;
     (3)Precooled the scaffold in the -80℃ultra low temperature freezer for 3h and formed the shaping in vacuum freeze-drying for 48h.The scaffold was preserve at desiccator after soaking in PBS (pH=7.3) for many times.
     (4)The scaffold and BMSCs was cultured in vitro for several days until the scaffold showing the induction bone activity .Then this material could be a substitution for bone repair.
     2. The composite bone repair material of RHLC II/nHA/CS had much similarity in the compositions and the structure of the nature bone, which was prepared from the weak crystalline nHA deposited in the recombined human-like collagen and the polysaccharides. Three dimensional porous scaffolds was formed by the interaction among the aforementioned three and the strongly combination of the organic and inorganic surfaces(26∶74). Finally a composite with 75~100μm of pore diameter, above 90% of the porosity, 80.46 MPa of maximum compressive strength, 1 degree of the cytotoxicity and with strong bone induction activity (100% of attachment, higher ALP activity and the appearance of mineralized nodules et al. in induced media) was successfully synthesized, which was an excellent biomimetic bone scaffold in composition, structure, function and close to the nature bone in mechanical strength.
     Conclusion: We first time systematic study on the key technology of Preparation of recombined human-like collagen II/nano-hydroxyapatite/chitosan composite used for bone repair. After optimize the preparation, we acquired a novel composite, whose structure and function are close to the nature bone. Finally we obtained an ideal bone repair material with bone induction activity, which was seeded BMSCs in induced media. The compressive strength of these porous scaffolds could be up to 80.46 MPa and by adjusting the ratio of the compositions, scaffolds with different compressive strength could be composed. Thus, this kind of composite could satisfy the needs for the bone tissue repairing or substitute and be the promising material applied in clinic. It will tailor the mechanic properties to different social needs and solve shortage of bone repair materials.
引文
[1] Andrea B., Mariella D., Maria S. De V., et.al. Scaffolds Based on Biopolymeric Foams[J]. ADVANCED FUNCTIONAL MATERIALS, 2005, 15(1): 118-124
    [2] Aoki H. Science and medical application of hydroxyapatite[M]. Tokyo: Takayama Press system center Co. Inc, 1991
    [3] Barth A. Infrared spectroscopy of proteins [J]. Biophysia Acta(BBA)-Bioenergetics,2007, 1767(9): 1073-1101
    [4] Bigi A., Cojazzi G., Panzavolta, et al. Stabilization of gelatin films by crosslinking with genipin[J]. Biomaterials, 2002, 23(24): 4827-4832
    [5] Brendan A.H., Janet H.L., Emilio C.C.M.S., et al. Mechanical characterization of collagen-glycosaminoglycan scaffolds[J]. Acta BIOMATERIALIA, 2007, 3: 463-473
    [6] Brendan A.C.H., Lorna J.G. In vivo and in vitro applications of collagen-GAG scaffolds[J]. Chemical Engineering Journal, 2008, 137(1): 102-121
    [7] Chen Y., Mak A. F.T., Wang M., et al. PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity[J]. SURFACE AND COATINGS TECHNOLOGY, 2005,201:575-580
    [8] Dawson E., Mapili G, Erickson K., et al. Biomaterials for stem cell differentiation[J].Advanced DRUG DELIVERY Reviews, 2007, 60: 215-228
    [9] Dong H.Y., Meng B., Zhu N., et al. Biomineralization of five polymers in human bile[J]. Materials Science and Engineering, 2006, 26: 670-674
    [10] Drosse I., Volkmer E., Capanna R., et al. Tissue engineering for bone defect healing:An update on a multi-component approach[J]. Injury, 2008, 3952: S9-S20.
    [11] DuC, Cui F.Z., Feng Q.L., et al. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity, J. Biomed, Mater. Res., 1998, 42:540-548
    [12] Ducheyne P., Hsating W. Metal and Ceranmic Materials[M]. CRC press, 1984
    [13] Fan D.D. A prepared method of Human Like Collagen[P]. China: ZL011067578,2005-3-14
    [14] Green D., Walsh D., Mann S., et al. The Potential of Biomimesis in Bone Tissue Engineering: Lessons From the Design and Synthesis of Invertebrate Skeletons[J].ORIGINAL ARTICLES, 2002, 30(6): 810-815
    [15] George M., Whitesides B.G. Self-Assembly at All Scales[J]. Science, 2002,295(5564): 2418-2421
    [16] Hancox N.M. Biology of Bone[M]. London: Cambridge University Press, 1972
    [17] Harkness R.D. Biological functions of collagen[J]. Biol.Rev., 1961, 36: 399-463
    [18] Hedberg E.L., Shih C.K., Lemoinea J.J.,et al. In vitro degradation of porous poly(propylene fumarate)/poly(DL-lactic-co-glycolic acid) composite scaffolds[J].Biomaterials, 2005, 26: 3215-3225
    [19] Hsu Y.Y., Gresser J.D., Trantlo D.J., et al. Effect of polymer foam morphology and density on kinetics of in vitro controlled release of isoniazid from compressed foammatrices [J].Biomed Mater Res., 1997, 35(1): 107-116
    [20] Huang T., Lv G Application of bone marrow cartilage tissue engineering[J]. China tissue engineering and clinic research, 2008, 12(25): 4987-4990
    [21] Jinawath S., Polchai D., Yoshimura M. Low-temperature,hydrothermal transformation of aragonite to hydroxyapatite[J].Materials Science and Engineering,2002,22: 35-39
    [22] Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J].Biomaterials, 2005, 26: 5474-5491
    [23] Kevor S.T., Roger I.M., Maria K. Formation and properties of a synthetic bone composite[J]. Journal of Biomedical Materials Research, 1995, 29: 803-810
    [24] Kikuchi M., Ikoma T., Itoh S., et al. Biomimetic Synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen[J]. Composites Science and Technology, 2004, 64: 819-825
    [25] Kong X. Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate[J]. Materials Science and Engineering, 2006, 26: 635-638
    [26] Kong X.D., Sun X.D., Cui F.Z.,et.al. Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate[J]. Materials Science and Engineering 2006, 26: 639-643
    [27] Kusmanto F., Gan.G., Walsh P., et al. Development of composite tissue scaffolds containing naturally sourced mircoporous hydroxyapatite[J]. Chemical Engineering Journal, 2008, 139: 398-407
    [28] Levenberg S., Langer R. Advances in tissue engineering current topics in developmental biology[M]. New York: Academic Press., 2004, 61: 113-134
    [29] Lee C.H., Singla A., Lee Y. Biomedical applications of collagen[J]. International Journal of Pharmaceutics, 2001, 201: 1-22
    [30] Li H.Y., Du R.L., Chang J. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass[J]. Biomater Appl, 2005, 20: 137-155
    [31] Li Q.L., Chen Z.Q., Darvell B.W., et al. Biomimetic synthesis of the composites of hydroxyapatite and chitosan-phosphorylated chitosan polyelectrolyte complex[J].Materials letters, 2006, 60: 3533-3536
    [32] Li Z.H., Liao W., Zhang Y.F. Examination of dynamic changes of different-type collagens in bone fracture healing with a polarized light microscopy[J]. Chinese Journal of Clinical Rehabilitation, 2005, 9(42): 169-171
    [33] Liang H.Z., Liang Y.J. Application of polarized microscope in observing Collagen type[J]. Modern Medical Equipment and Application, 2000, 12(3): 19-20
    [34] Lien S.M., Li W.T., Huang T.J. Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method[J]. Materials Science and Engineering, 2008, 28: 36-43
    [35] Manoli F., Dalas E. Calcium carbonate crystallization on xiphoid of the cuttlefish[J].Journal of Crystal Growth, 2000, 217: 422-428
    [36] Meinel L., Kareourgiou V., Fajardo R, et al. Bone tissue engineering using human mesenchymal stem cells: effects of scaffold material and medium flow[J]. AMBE,2004,32: 112-122
    [37] Mohamed K.R., Mostafa A.A. Preparation and bioactivity evaluation of hydroxyapatite-titania/chitosangelatin polymeric biocomposites[J]. Materials Science and Engineering, 2007, (Cxx): 1-13
    [38] Moreau J.L., Hockin H.K. Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-Chitosan composite scaffold[J]. Biomaterials, 2009,30: 2675-2683
    [39] Mikos A.G, Temenoff J.S. Formation of highly porous biodegradable scaffolds for tissue engineering[J]. Electron J Biotechnology, 2000, 3(2): 114-119
    [40] Mistry A.S., Mikos A.G., Jansen J.A., et al. Degradation and biocompatibility of a poly(propylene fumarate)-based/alumoxane nanocomposite for bone tissue engineering[J]. InterScience, 2007: 940-953
    [41] Minagawa T., Okamura Y., Shigemasa Y., et al. Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing[J]. Carbohydrate Polymers,2007, 67: 640-644
    [42] Murugan R., Ramakrishna S., Rao K.P. Nanoporous hydroxy-carbonate apatite scaffold made of natural bone[J]. Materials letters, 2006, 60: 2844-2847
    [43] Naka K. Biomineralization I[M]. New York: Springer, 2007
    [44] Nazarov R.,Jin H.J., Kaplan D.L. Porous 3-D scaffolds from regenerated silk fibroin.Biomacromolecules, 2004,5: 718-726
    [45] Peters T. Biomineralizationa I: Crystallization and self-Organization Process[M].German: Springer, 2007
    [46] Petite H., Viateau V., Bensaid W., et al.Tissue-engineered bone regeneration[J].Nature Biotechonology, 2000, 18: 959-963
    [47] Rezwan K., Chen Q.Z., Blaker J.J., et al. Biodegradable and bioactive porous polymer/inorganic comosite scaffolds for bone tissue engineering[J]. Biomaterials,2006,27:3413-3431
    [48] Richert L., Engler A., Discher D.E. Elasticity of native and cross-linked polyelectrolyte multilayer films[J]. 2004, 1908-1916
    [49] Robert J.D., Bruijn J.D., Stigter M., et al. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs [J].Biomaterials, 2005, 26: 5231-5239
    [50] USP XX, Bilolgical Tests/Bilolgical Reactivity Tests In-vivo[S]. U.S.:U.S.P.Convention, 1993
    [51] Roen V.B., Hobbs L.W., Spector M, et al.The ultrastructure of anorganic bovine bone and selected synthetic hydroxyapatite used as bone graft substitute materials[J].Biomaterals,2002,23(2): 921-928.
    [52] Samia L., Borhane H.F., Ahmed F., et al. The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering[J]. Biomaterials,2009, 30(8):1568-1577
    [53] Sionkowska A., Wisniewski M., Skopinska J.,et al.Molecular interactions in collagen and chatoyant blends[J].Biomaterials , 2004, 25: 795-801
    [54] Simske S.J., Ayers R.A., Bateman T.A.,et al. Porous materials for bone engineering.Mater Sci Forum 1997, 250:151-182
    [55] Sopyan I., Mel M., Ramesh S., et al. Porous hydroxyapatite for artificial bone applications[J]. Science and Technology of Advanced Materials, 2007, 8: 116-123
    [56] Tampieri A., Sandri M., Landi E., et al. HA/alginate Hybrid Composites Prepared through Bio-Inspired Nucleation[J]. Acta BIOMATERIALIA, 2005, 1: 343-351
    [57] Taravel M.N., Domard A. Collagen and its interactions with chitokIII-Some biological and mechanical properties[J]. Biomaterials, 1996, 17: 451-455
    [58] Turner T.M., Urban R.M., Gitelis S., et al. Radiographic and histologic assessment of calcium sulfate in experimental animal models and clinical use as a resorbable bone-graft substitute:a bone-graft expander,and a method for local antibiotic delivery[J]. J Bone Join Surg Am., 2001, 83-A Suppl2(Ptl): 8-18
    [59] Wang R.Z., Cui F.Z., Wen H.B. Synthesis of Nanophase Hydroxyapatite Collagen Composite,Journal of Materials Science Letters, 1995.14(7): 490-492
    [60] Wang X.J.,Li Y.B.,Wei J.Development of biomimetic nano-hydroxypatite/poly(hexamethyene-adipamide)composites[J].Biomaterials,2002,23(24):4787-4791
    [61] Wang Y. , Cui F.Z., Zhai Y., et al. Investigations of the initial stage of recombinant human-like collagen mineralization[J]. Materials Science and Engineering, 2006, 26:635-638
    [62] Wu C.Y., Sassa K., Iwai K., et al. Unidirectionally oriented hydroxyapatite/collagen composite fabricated by using a high magnetic field[J]. Materials letters ,2007,61:1567-1571
    [63] Xue W.C., Hosick H.L., Bandyopadhyay A., et al. Preparation and cell-materials interaction of plasma sprayed strontium-containing hydroxapatite coating[J].SURFACE&COATINGS TECHNOLOGY, 2006, 201: 4685-4693
    [64] Yang C.R., Wang Y.J., Chen X.F., et.al. Biomimetic fabrication of BCP/COL/HCA scaffolds for bone tissue engineering[J]. Materials letters, 2005, 59: 3635-3640
    [65] Yao F.L., Li X.Q., Yu X., et al.Crosslinking Reaction of Chitosan andinGelatin With Genipin[J]. Journal of Tianjing University, 2007, 40(12): 1485-1489
    [66] Yoon B.H., Park C.S., Kim H.E., et al. In-situ fabrication of porous hydroxyapatite (HA) scaffolds with dense shells by freezing HA/camphene slurry[J]. Materials letters,2008,62: 1700-1703
    [67] Yunoki S., Ikoma T., Monkawa A., et al. Control of pore structure and mechanical property in hydroxyapatite/collagen composite using unidirectional ice growth[J].Materials letters, 2006, 60: 999-1002
    [68] Yu X.X., Chen M., Chen G.Q. Methods for the Pre-treatment of Biological Tissues for Vascular Scaffold[J]. Journal of Biomedical Engineering, 2004, 21(3): 476-481
    [69] Zaremba C.M., Morse D.E., Mann S., et al. Aragonite-hydroxyapatite conversion in gastropod (abalone) nacre[J]. Chem. Mater, 1998, 10(12): 3813-3824
    [70] Zhang L.J., Feng X.S., Liu H.G., et al. Hydroxyapatite/collagen composite materials formation in simulated body fluid environment[J]. Materials letters, 2004, 58:719-722
    [71] Zhang X.D., Yuan H.P., De Groot K. Calcium phosphate biomaterials with intrinsic osteoinductivity[R]. Hawaii: the 6th World Biomaterials Congress, May, 2000
    [72]Zhu C.H.,Fan D.D.,Duan Z.G.,et al.Initial investigation of novel human-like collagen/chitosan scaffold for vascular tissue engineering[J].Biomed Mater Res A.,2009,89A(3):829-840
    [73]Zhu H.,Ji J.,Shen J.Biomacromolecules electrostatic self-assembly on 3-dimensional tissue engineering scaffold[J].Biomacromolecules,2004,5(5):1933-1939
    [74]毕龙,李丹,刘民等.脱蛋白液对异种骨移植替代物生物学特性影响[J].中国骨肿瘤骨病,2008,7(6):357-360
    [75]崔福斋.瑞福纳米人工骨[P].中国:ZL01129644.2,2005
    [76]崔福斋,冯庆玲.生物材料学[M].北京:清华大学出版社,2004
    [77]陈希哲,杨连甲.组织工程支架材料[M].北京出版社:215-216,2003
    [78]陈建洪,唐倩,梁焕友等.新型纳米仿生骨植入材料体内降解性能的初步研究[J].Guangdong Medical Journal,2007,28(8):1218-1220
    [79]鄂征,刘流.医学组织工程技术与临床应用[M].北京:北京出版社,2003
    [80]丰强,闵思佳,张海萍.不同结构丝素蛋白对羟基磷灰石结晶的调控作用[J].蚕业科学,2008,34(4):472-476
    [81]冯卫.内江猪异种骨移植靶抗原分布及除抗原处理的研究[D].四川:四川大学,2008.
    [82]郭连峰,台立刚,王成焘.反应温度对合成纳米羟基磷灰石粉体的粒度和相结构的影响[J].电子显微学报,2005,25(5):373-376
    [83]顾其顺.胶原蛋白与临床医学[M].上海:第二军医大学出版社2003
    [84]龚明明,谭丽丽,杨柯.骨组织工程支架材料及其力学性能[J].材料导报,2007,21(10):43-47
    [85]吉恺,林雪芬.透明质酸钠在骨关节疾病治疗中的应用进展[J].山东医药,2008,48(24):115-116
    [86]蒋柳云,李玉宝,张利等.纳米羟基磷灰石/壳聚糖/羧甲基纤维素三元复合骨修复材料的制备和性能研究[J].功能材料,2007,38(5):798-801
    [87]廖建国,李玉宝,王学江等.纳米羟基磷灰石/聚碳酸酯复合生物材料Ⅰ:制备及表征[J].复合材料学报,2008,25(3):63-67
    [88]吕彩霞,姚子华.纳米羟基磷灰石/壳聚糖硫酸软骨素复合材料的制备及其性能研究[J].复合材料学,2007,24(1):110-115
    [89]米钰,惠峻峰,范代娣等.类人胶原蛋白生物相容性实验研究[J].西北大学学报(自然科学版)2004,34(1):66-68
    [90]马红梅,吴琳,艾红军等.Adherence of human osteoblast on nHAC/PLA scaffold material[J].生物医学工程与临床,2007,(3):161-164
    [91]彭超,杨天府.纳米羟基磷灰石壳聚糖复合材料应用研究进展[J].西藏科技,2005,143:40-43
    [92]任军,王东,江朵.兔骨髓源成骨细胞与多孔支架复合的实验研究[J].基层医学论坛,2008,12:499-501
    [93]孙明学,马贵骧.医学组织工程技术与临床应用[M].北京:北京出版社,2004
    [94]唐文胜,蒋电明.羟基磷灰石及其复合材料在骨修复中的作用及研究进展[J].中华创伤骨科杂志,2003,5(4):370-373
    [95]王振林,闫玉华,万涛.羟基磷灰石/胶原类骨仿生复合材料的制备及表征[J].复合材料学报,2005,22(2):83-86
    [96]王健,张海燕,胡勇等.骨髓间充质干细胞复合羟基磷灰石/磷酸三钙植骨材料的体外研究[J].解剖学报,2008,39(4):539-542
    [97]徐清,李骏,陈光慈.2005年-2008年医疗机构碱性戊二醛有效含量监测[J].中国卫生检验杂志,2008,12:2679-2680
    [98]徐莉.重组胶原基骨材料用于兔桡骨缺损修复的研究[D].山东:山东师范大学,2008
    [99]薛伟明,于炜婷,刘袖洞等.载细胞海藻酸钠/壳聚糖微胶囊的化学破囊方法研究[J].高等学校化学学报,2004,25(7):1342-1346
    [100]许国华,李家顺,叶晓健.组织工程化人工骨的研究进展[J].脊柱外科杂志,2005,3(1):47-50
    [101]尹庆水,张余,李兆麟.复合珊瑚羟基磷灰石人工骨的研制及其成骨效应[J].中华创伤骨科杂志,2004,6(1):92-95
    [102]俞园园,范代娣,米钰等.重组类人胶原蛋白Ⅱ仿生人工骨的制备[J].西北大学学报(自然科学版),2008,38(5):751-758
    [103]姚芳莲,李学强,于潇等.京尼平对壳聚糖及明胶的交联反应[J].天津大学学报,2007,40(12):1485-1488
    [104]游永,刚唐辉,徐永清.不同骨移植材料骨诱导活性的研究现状[J].现代生物医 学进展.2008,8(7):1338-1340
    [105]叶成,史鹏.骨髓间充质干细胞与成骨[J].中国矫形外科杂志,2008,16(5):356-358
    [106]闫如中,李淑英,王君.重组合异种骨及同种异体骨移植修复良性肿瘤术后骨缺损[J].肿瘤研究与临床,2007,19(8)
    [107]张玉富,霍春月.骨髓间充质干细胞出现软骨细胞表型后与壳聚糖/胶原三维多孔支架的复合培养[J].中国组织工程研究与临床康复,2008,12(23):4406-4409
    [108]张阳德,赵梓屹,张蕾等.羟基磷灰石/聚合物复合材料的研究进展[J].中国医学工程,2005,13(6):57-62
    [109]周长忍.生物材料学[M].北京:中国医药科技出版社,2003
    [110]郑涵,瞿玉兴.骨髓基质干细胞修复骨不连与骨缺损的进展[J].基层医学论坛,2008.12:538-540
    [111]左树春,魏悦广.类骨纳米结构生物材料的细观力学分析[J].复合材料学报,2007,24(6):95-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700