宁夏南部新生代盆地沉积演化及其对青藏高原东北角构造变形的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印度板块与欧亚板块在60-50 Ma的碰撞不仅造成了喜马拉雅造山带的形成,还导致了自印度与欧亚板块缝合带以北2000 km宽的广大地区逐步隆升,形成号称“世界屋脊”的青藏高原。青藏高原的形成对欧亚大陆的构造格局、中亚地区乃至全球的气候变化产生了深远的影响。除此之外,高原的隆升及其构造变形过程也是研究陆-陆板块碰撞的动力学机制、大陆内部构造变形样式以及气候变化的天然实验室。介于东昆仑断裂、阿尔金断裂和祁连山—海原断裂之间的青藏高原东北缘地区是青藏块体向北东方向挤压扩展的最前缘部位,是正在形成的高原。新生代以来该区经历了强烈的构造变形、地壳缩短,并且伴随着垂直隆升作用,致使这一区域发育众多的近东西向山脉,同时还形成了大量的新生代沉积盆地。这些新生代沉积盆地与周围狭长的山脉间隔分布,构成了青藏高原东北缘地区独特盆—岭地貌。青藏高原东北缘广泛分布的新生代沉积盆地是在变形过程中形成,与此同时,地壳因逆冲-褶皱变形而强烈缩短形成山脉,山脉的隆升总是伴随着风化、剥蚀作用,河流将造山带内的侵蚀产物搬运到山脉周边的盆地中沉积下来,于是,沉积盆地记录了其在接受沉积物充填过程中的动力学性质和周围造山带的构造活动特征与气候变化信息。因此,以青藏高原东北缘新生代盆地为研究对象,以盆地中沉积物为纽带,建立盆地与周围山脉的耦合关系,是了解高原隆升和高原向内陆扩的重要途径。
     宁夏南部地区因广泛出露第三系沉积物,而被命名为宁夏南部新生代盆地。该盆地位于现今青藏高原东北缘的边界断裂,祁连山—海原断裂的东端(东经105°00′~106°40′,北纬35°~37°30′),向南收敛于六盘山,向西北撒开,构成“扫帚”状;面积约1万平方公里;地貌上,东南高,西北低,属于青藏高原与鄂尔多斯地块的过渡区域。宁夏南部盆地处于青藏高原的最前缘,西南方向以海原-六盘山弧形断裂带以及黄家洼山-西华山-南华山-六盘山为界,分割于陇中盆地;向东北方向香山-天景山活动断裂带、烟筒山活动断裂带、罗山-牛首山活动断裂带呈弧形切割宁夏南部盆地,形成了一个局部的弧形盆-山构造体系。宁夏南部盆地,在上述断裂带的活动过程中形成、发育、消亡和改造,在此过程中,盆地沉积了巨厚的陆相地层,保存了大量的海原-六盘山断裂带、香山-天景山断裂带、烟筒山断裂带、罗山-牛首山断裂带的几何学、运动学信息以及与断裂带相关的造山过程和构造变形信息。通过研究宁夏南部盆地的几何形态、构造属性和演化历史,我们可以揭示上述这些断裂带或者断裂的性质,活动期次、运动方式,进而,重塑青藏高原东北缘的变形和隆升历史,探讨青藏高原在向北东扩展的运动学和动力学机制。
     本次研究我们选择了宁夏南部盆地作为重点研究区,通过对盆地内新生代沉积物,以及盆地内的断裂带进行沉积演化与构造变形的研究,明确盆地与断裂之间的相互关系。根据我们所获得的相关资料,结合青藏高原东北缘地区已有的构造变形、新生代沉积地层年代等方面的资料,本文取得的主要结论如下:
     宁夏南部盆地西南隅,寺口子剖面新生代地层出露连续并且齐全,本文在张广良博士年代研究的基础上,对寺口子剖面进行了详细的沉积序列研究,并在中国科学院地质与地球物理研究所朱日祥院士的亲自指导下重新系统地测试了张广良博士采集的古地磁样品,用以建立精确的地层时间序列。在古生物(Plesiaceratherium sp.)的控制下,寺口子剖面由下向上依次划分为:寺口子组,其时代划归为晚渐新世(E3S),~29-25 Myr;上覆清水营组属于早中新世(N11),清水营组与寺口子组之间存在约1.5 Myr的沉积间断,其底界年龄大约为23.8 Myr,顶界年龄为16.7 Myr;清水营组之上的红柳沟组被划归为中中新世(N12),16.8-5.4 Myr之间;干河沟组为上新世沉积(N2),时代5.4-2.5 Myr之间;干河沟组之上的沉积物划为第四系(Q)沉积时代为2.5-0.5 Myr。
     宁夏南部盆地内寺口子组岩性变化明显,盆地南部靠近六盘山,马东山地区主要为厚层紫红色含砾长石石英粗砂岩、厚层—巨厚层紫红色长石石英中砂岩夹细砂岩薄层,盆地北部主要为紫红色厚层砾岩夹紫红色泥岩,粉砂岩以及砂岩薄层。尽管寺口子组岩相由南向北剧烈变化,但是寺口子组顶部发育一套厚约3-10 m以钙质结核、生物钙质铸模、钙质胶结的砾岩等为特征的古风化壳,代表了寺口子组与清水营组之间经历较长时间的沉积间断。清水营组在研究区分布最为广泛,岩性主要由薄层—中厚层暗紫红色粉砂岩、粉砂质泥岩、泥岩,薄层-厚层绿色-灰白色石膏以及中厚层灰白色的砂岩组成,由南向北石膏层厚逐渐增厚。红柳沟组岩性主要为桔红色厚层—中厚层泥岩、粉砂质泥岩、泥质粉砂岩,夹有薄层灰色中细砂岩、粉砂岩等。干河沟组以土黄色、浅黄绿色砾岩为主,夹薄层或透镜状砂岩、粉砂岩以及泥岩,第四纪松散砾石堆积。2007-2009年,我们在宁夏南部盆地内固原寺口子剖面红柳沟组底部处采集到大量的Plesiaceratherium sp.,海原天子埫剖面红柳沟组底部采集到Kubanochoerus sp.,中宁红柳沟剖面红柳沟组中部采集到Platybelodon sp.等化石。在上述化石与已发现的同心丁家二沟动物群,海原袁家窝窝动物群,寺口子组顶部的古风化壳(古土壤)、区域可供对比的厚层石膏等标志层的基础上,以寺口子剖面磁性地层学年代为约束,我们通过盆地内新生代沉积物的颜色、岩相对比,将整个盆地内寺口子组厘定为晚渐新世(E3S);清水营组为晚渐新世-早中新世(N11);红柳沟组厘定为中中新世沉积(N12);干河沟组为上新世(N2)。
     寺口子组作为宁夏南部盆地内的第一套新生代沉积物,代表了盆地的开始。晚白垩纪以来,宁夏南部地区一直处于剥蚀状态,直至晚渐新世寺口子组的沉积,这是否意味着构造事件的发生?这一事件与青藏高原的隆升及其向北东的扩展是否存在着内在的联系呢?钻井剖面、野外实测剖面揭示寺口子组由南向北沉积相变化非常剧烈,呈现出南部粒度细,北部粒度粗的特点。同时穿过寺口子盆地的反射地震剖面,揭示宁夏南部盆地的寺口子组受控于盆地北部的天景山断裂和烟筒山断裂。厚度超过800 m厚的寺口子组位于紧邻天景山断裂的南西一侧,向西南方向寺口子组厚度迅速减薄,盆地的构造属性表现为典型的半地堑。寺口子组沉积时期,位于烟筒山断裂上盘的沉积中心也显示出类似的特征,证明宁夏南部地区在晚渐新世可能处于局部伸展的构造背景之下,这与鄂尔多斯盆地西缘一系列的地堑,半地堑(河套盆地、银川盆地、渭河盆地)构造背景相似,却与以挤压为特征的青藏高原变形样式存在显著的区别。因此,寺口子组沉积时期宁夏南部盆地的成因可能与鄂尔多斯块体的南西向运动紧密相关,而与印度-欧亚板块的碰撞并无直接关系。
     平面上,宁夏南部盆地内的寺口子组以冲积扇相和辨状河相沉积为主,盆地北部(同心以北)主要为冲积扇相,物源主要来自天景山断裂,烟筒山断裂的北东盘(断层的下盘)以及鄂尔多斯西缘的隆起地区;盆地南部(海原以南)主要为辨状河相沉积;向北,北东的古水流,显示其物质可能来自六盘山以西以及西秦岭地区;中部(同心-海原之间)则表现为冲积扇相向辨状河相的转变。垂向上,寺口子组表现为典型的由下向上粒度逐渐变细的正粒序。寺口子组等厚线显示盆地有多个沉积中心,位于宁夏南部盆地北部,靠近天景山断裂与烟筒山断裂。寺口子组的沉积环境、古水流、物源分析、地层等厚线等证据均支持天景山断裂,烟筒山断裂早第三纪可能为正断层的结论。
     清水营组(23.8-16.7 Myr)分布较为广泛,以石膏和细颗粒碎屑沉积物为代表。向南清水营组越过西华山-南华山与陇中盆地相连通,向北清水营组超覆于天景山断裂与烟筒山断裂之上,可能与宁夏北部的银川地堑相连通。清水营组地层厚度在宁夏南部盆地内较为稳定,沉积环境以北部的干盐湖沉积和南部的正常湖相沉积为主。干旱时期,盆地沉积范围迅速萎缩在宁夏南部盆地的中部和北部地区形成若干个干盐湖沉积环境;湿润时期湖平面上升,盆地沉积范围扩大,形成统一的泛盆地。这一时期(23.8-16.7 Myr)青藏高原东北角的构造活动较弱,气候变化可能是控制盆地沉积环境,湖平面升级的主要因素。
     红柳沟组中下段(16.7-10.5 Myr)是青藏高原东北缘分布最广的地层,以细颗粒的泥岩、粉砂岩、砂岩等为特征。红柳沟组中下段与清水营组相似,主要以河湖相为主。沉积相的显著变化发生在红柳沟组中段与上段之间(~10.5 Myr)。沉积环境由浅湖-滨湖相逐渐转变为扇三角洲-辨状河相,证明盆地周围开始抬升,盆地范围逐渐缩小。与此同时寺口子剖面(盆地南缘)的沉积速率由之前的~9cm/yr增加至~13 cm/yr。红柳沟组沉积相的显著变化、沉积速率的持续增加可能代表了盆地西南海原断裂、六盘山断裂此时开始向北东逆冲推覆,造成六盘山-南华山-西华山于~10.5 Myr开始快速隆升。
     红柳沟组地层厚度分布与清水营组地层等厚线之间存在巨大的差别,清水营组地层由南向北厚度相近,红柳沟组靠近海原-六盘山断裂带,地层厚度> 800 m,向北东方向厚度迅速减薄,至烟筒山断裂带(同心地区)厚度<200 m,显示出压陷型挠曲盆地的特征。盆地性质由清水营组时期的整体凹陷向红柳沟组晚期的挠曲盆地转变,表明盆地在晚中新世受到北东方向的挤压,这无疑与青藏高原向北东方向的推挤、扩展、隆升直接相关。因此,海原-六盘山断裂~10.5 Myr的活动以及六盘山-南华山-西华山的快速隆升,表明与印度-欧亚板块碰撞相关的,以地壳缩短为特征的构造变形样式才扩展到宁夏南部地区,使这一地区成为青藏高原的最新组成部分。
     干河组分布范围迅速缩小,主要沿海原-六盘山断裂带北东一侧呈带状分布,地层厚度南厚北薄,天景山弧形断裂带与烟筒山弧形断裂带地区缺失干河沟组,更北牛首山西麓一带出露干河组地层。在南西-北东向,干河沟组地层厚度变化趋势与前陆盆地前渊-前隆-隆后凹陷的几何形态极为相似。干河沟组发育典型的磨拉石建造,沉积环境主要由河流相和冲积扇相为主,显示盆地逐渐消亡。
     第四系与新世干河沟组靠近六盘山-马东山,天景山等地区呈角度不整合接触,向盆地方向两者表现为平行不整合及其整合接触关系。第四系以辨状河相和冲积扇相沉积环境为主,显示宁夏南部盆地在第四纪初物源区快速隆升、盆地遭受强烈构造变形,形成现今被六盘山-海原断裂、天景山断裂、烟筒山断裂以及罗山-牛首山断裂切割的小型压陷盆地。通过对宁夏南部盆地的沉积演化与构造变形研究,宁夏南部盆地在晚渐新世表现为局部伸展的断陷盆地,早、中中新世为整体的凹陷盆地,晚中新世以来才表现为压陷性质的前陆盆地。晚中新世压陷盆地的形成与海原-六盘山逆冲褶皱带北东向的挤压紧密相关,上新世-第四纪海原-六盘山断裂带以北的天景山断裂与烟筒山断裂相继开始活动,致使上新世干河组与第四系不整合接触,甚至干河组逆冲至第四系之上,宁夏南部盆地经受改造、裂解形成现今褶皱变形带与压陷盆地间隔分布的盆-山构造系统。宁夏南部盆地演化过程和模式表明,青藏高原东北缘的扩展可能是向北东方向的逐渐增生过程。
     生长地层是指在前陆盆地与褶皱构造变形同期沉积的地层,是识别盆地相邻造山带构造活动的重要标志。在寺口子剖面中我门识别出一套生长地层,这套生长地层开始于~5.4 Myr,一直持续至1.8 Myr.大比例尺构造填图显示寺口子剖面由寺口子背斜和一对次级的向斜和背斜组成,是构成马东山北部的主要构造。毫无疑问,寺口子剖面的生长地层反映了马东山构造变形以及寺口子背斜的形成。鉴于马东山位于海原断裂的最东端,其变形样式与六盘山截然不同,本文分析马东山可能由于吸收了海原断裂的左旋走滑量而褶皱构变形。因此,寺口子剖面生长地层较好的限定了海原断裂左旋走滑的开始时间。
     根据沉积盆地对区域构造的活动的响应关系,揭示青藏高原东北缘的边界断裂海原断裂晚中新世以来经历了两阶段构造演化:~10.5 Myr开始北东向的逆冲推覆,5.4 Myr北东向的逆冲逐渐转变为左旋走滑兼逆冲。同时,野外填图也表明该区域的天景山断裂、烟筒山断裂、牛首山-罗山断裂也具有上新世以来的北东向逆冲与之后的左旋走滑兼逆冲推覆。这些断裂活动的时间以及方式显示青藏高原东北角以薄皮构造的方式逐渐向北东方向扩展,新生的逆冲断裂裂解了之前广泛分布的沉积盆地,使断裂前缘挠曲下沉形成新生的类前陆盆地,断裂后缘隆升变形产生背驼盆地。
The collision of the India-Eurasian not only created the Himalayan orogenic belt, but also caused a ~2000 km wide intra-continental deformation north of the collision zone that has subsequently uplifted to form the Tibetan Plateau referred as to“the roof of the world”. The uplift of the Tibetan Plateau posed significantly impacts on the tectonic framework of Eurasian continent, environments of the central Asia and global climate change. In addition, the Tibetan Plateau also provides a natural laboratory for studying the dynamics of collision between continent and continent, intra-continental deformation, and interaction between tectonics and climate change. The northeastern margin of the Tibetan Plateau is defined by the Kunlun fault in the south, the Altyn Tagh fault to the west and the Qilianshan Haiyuan faults to the north. This region is the frontier of the northeastward expanding Tibetan Plateau characterized by left-lateral strike slip faulting and northeastward crustal shortening. As the newest portion of the plateau, the region has been undergone wide-spread Cenozoic tectonic deformation. As a result, a number of arcuate basin and range pairs are formed with west northwest trending in the west and gradually becoming north-sjouth orientation eastward. The arcuate ranges are tectonically controlled by high-angle reverse faults with various amounts of left-lateral strike-slip components. The materials eroded off the arcuate mountains are deposited within the adjacent basins. Thus sediments preserved in the basin documented valuable information of the tectonic deformation, mountain uplift and environmental changes during the process of basin formation. Therefore, according to the basin and range coupling relationship, the studies of sedimentary evolution and tectonic deformation in the basins adjacent to the ranges are important approaches to understand processes of uplifting and outward growing of the Tibetan Plateau .
     The Cenozoic sediments well crop out in the south part of Ningxia Hui Autonomous Region which is referred as to southern Ningxia basin, which is located in easternmost part of the Qilian Shan-Haiyuan fault, the present-day boundary fault of northeastern margin of Tibetan Plateau. The southern Ningxia basin is a triangular basin with an area of ~10,000 km2 situated in the transition zone between a region of the northeastern margin of the Tibetan Plateau characterized by Cenozoic shortening and a region of Cenozoic extension surrounding the Ordos plateau. The elevation of the southern Ningxia basin drops irregularly from the 2400 m in the southwest near the Liupan Shan to 1600 m along the Huang He (Yellow river) in the north. As the southwest boundary fault, the Haiyuan-Liupan Shan arcuate fault separated the southern Ningxia basin from the Longzhong basin in the south. Within the basin, a series of the arcuate fault zones (Tianjing Shan fault zone, Yanton Shan fault zone and Luo Shan-Niushou Shan fault zone) cut the southern Ningxia basin from the basement to the surface and consist of, together with the Haiyuan-Liupan Shan fault zone, the arcuate basin and range system in the northeastern margin of the Tibetan Plateau. In the process of the activation of these fault zones during the Cenozoic time, thick sedimentary sequence was accumulated to record information related to the geometry and kinematics of the faults in the southern Ningxia basin. Though analysis of the geometry, tectonic setting and sedimentary evolution of the basin, we would be able to reveal the characters, processes and kinematics of the above mentioned fault zones, and to reconstruct the tectonic deformation and uplift history of the northeastern margin of Tibetan Plateau.
     This study focuses on the southern Ningxia basin. Based on the previous works, including field works from 2007 to 2010 and measurements in the laboratory, we analyzed the paleomagnetostratigraphy, depositional characteristics, sedimentary facies distribution, sedimentary basin evolution, and tectonic deformation. We summarized the primary conclusions and drew them as follows:
     Along the best exposed Cenozoic section (Sikouzi section in the southern basin margin) paleo-magnetic samples are collected and analyzed to build the temporal series of the Cenozoic sediments in the basin. Constrained by newly mammalian fossils directly collected in the Sikouzi section at a depth of 2010 m, the age of the section is estimated from ~29 Myr to 0.5 Myr. From the base to the top, the section is subdivided into five lithostratigraphic units: the lowest Sikouzi Formation is dated from ~29 to 25.3 Myr, and Qingshuiying Formation is estimated at 23.8-16.7 Myr. Almost a 1.5 Myr hiatus existed between Sikouzi Formation and Qingshuiying Formation. The Honliugou Formation is deposited between 16.7 Myr and 5.4 Myr and the Ganhegou Formation is estimated at 5.4-2.58 Myr. The upper-most Quaternary deposits maybe continue to 0.5 Ma or even younger.
     The south Ningxia basin initiated as an extensional subsidence which controlled by the arcuate Tianjin Shan fault and Yanton Shan fault in the early Tertiary. The isopach pattern of early Tertiary E3s is restored based on the measured stratigraphic sections, boreholes, and seismic-reflection profiles suggesting that the thickest Sikouzi Formation is more than 800 m near the TJSF and gradually thins southwestward. Another similar southwestward thinning depocenter is bounded by the Yantonshan fault (YTSF) in the north basin margin. Considering the southwest-dipping of TJSF and YTSF (Zhang et al., 1990; 1991), the southwestward thinning Sikouzi Formation in the hanging wall of Tianjing Shan fault and Yanton Shan fault indicate that they are probably the extensional faults when they reactivated in Oligocene time. The data that suggest initiation of basin subsidence and early basin filling was linked to extensional slip on basin-bounding faults directly contradict models for early Tertiary contractional deformation in the region. Thus, the kinematics of this period of deformation may closely relate to the motivation of Ordos block and suggest no link to deformation driven by the Indo-Asian collision. This reference is also supported by the changes of grain-size, sedimentary facies and paleocurrents from clast imbrication and cross-stratification in the Sikouzi Formation.
     The southern Ningxia basin expanded coeval with the deposition of Qingshuiying Formation. The basin’s depositional area extended southwestward across the Haiyun-Liupan Shan fault connecting with Longzhong basin and northeastward overlying Tianjin shan fault and Yantong Shan fault to joint with Yinchuan graben at this stage (23.8-16.7 Myr). Fine-grained deposits comprise the late Oligocene-early Miocene Qingshuiying Formation and no basin-marginal facies association, such as alluvial fan system, exposed in the present-day basin margins. Depositional environments are dominated by playa lake and shallow lacustrine from the northern to the southern basin margins suggesting a broad basin appearance in the Liupan Shan area and its adjacent region. Considering the sedimentary facies distribution and inactivation of border faults coeval with the Qingshuiying formation, we propose that the main reason caused expansion of Sikouiz basin in the late Oligocene-Miocene is climate change, which maybe also trigger the pseudo-unconformity contact between the Sikouzi Formation and Qingshuiying Formation.
     In a manner similar to the Qingshuiying Formation, the lower and middle subunits of Honliugou Formation (16.7-10.5 Myr) also are dominated by fine-grained sediments. The obvious change of sedimentary environment occurred at about 10.5 Myr. The sedimentary facies evolved from earlier shallow lacustrine into delta-fan and braid river environments suggesting that ranges around the basin initiated to uplift and the depositional area of the southern Ningxia basin gradually reduced after 10.5 Myr. At the same time, accumulation rates pulsed at ~10.5 Myr from ~9 cm/kyr to ~13 cm/kyr. Collectively, the sedimentary environment change and increase in accumulation rate at ~10.5 Myr probably respond to northeastward thrust of the Haiyuan fault and Liupan Shan fault.
     The isopach pattern of the Honliugou Formation show that more than 800 m thick Honliugou Formaiton is preserved adjacent to the Haiyuan-Liupan Shan fault, and the thickness of the Honliugou Formation gradually thins to the northeastward with less than 200 m near the Tongxi county. This phenomenon implies a possible textural subsidence due to thrusting of Haiyuan-Liupan Shan fault driven by the outward growth of the Tibetan Plateau. Therefore, the reactivation of northeastward thrusting of Haiyuan fault and Liupan Shan fault and associated uplift of Liupan Shan, Nanhua Shan and Xihua Shan probably suggest that the deformation related to the collision of Indo-Eurasia has reached the northeast corner of Tibetan Plateau at about 10.5 Myr. And this region started to became the newest component of the Tibetan Plateau in late Miocene.
     Depositional area of the southern Ningxia basin distinctly shrank in Pliocene time, when the Ganhegou formation was deposited in a narrow area paralleling the Haiyuan fault and the Liupan Shan fault. The maximum observable thickness of the Ganhegou Formation is > 600 m in the southwest part of the Haiyuan-Liupan Shan fault. To the north, the Ganhegou Formation is absent in the region near the Tianjin Shan fault and Yanton Shan fault. Further to the north, the Ganhegou Formation corps out in the west flank of Niushou Shan. This isopach pattern suggests that the southern Ningxia basin is a typical foreland basin with foredeep, forebulge and back-bulge. The Ganhegou Formation is characterized by molasse deposits indicating that the Ningxia basin was gradually dying out coeval with the deposition of Ganhegou Formation.
     Based on the studies of the basin evolution and tectonic deformation, the southern Ningxia basin initiated as extensional subsidence in the late Oligocene and became a widespread depression from early to late Miocene. Flexural subsidence associated with northeastward thrusting of Haiyuan-Liupan Shan fault has been developed since about ~10.5 Myr. Tectonic studies show that Tianjin Shan fault displaces the pre-Tertiary sediments over the Quaternary conglomerate suggesting that the reactivation of Tianjing Shan fault started in Quaternary. Although the onset of northeastward thrust along the Yanton Shan fault is unknown, it is clear that the reactivation of Yantong Shan is later than that on the Tianjin Shan fault. All of the data imply that the deformation progressively propagated from the southwest to the northern in the northeastern corner of the Tibetan Plateau.
     Growth strata are syntectonic sediments which are closely linked to folding and faulting in the foreland basin, and, thus, they can provide precise information on tectonic and depositional interaction. In the Sikouzi section, the age of inception of growth strata is at ~5.4 Ma, deformation apparently continued into the Pleistocene. The implication of this set of growth strata is that the sediments exposed along the Sikouzi section were subjected to syn-sedimentary deformation, which is closely related with the emergence of Madong Shan folds at ~5.4 Ma. Considering that the Madong Shan is located at the east tip of Haiyuan fault, we propose that the deformation in the Madong Shan is caused by the transfer of the left-slip displacement along the Haiyuan fault to shortening in the Madong Shan area. Thus, the left-slip along the Haiyuan fault may initiate at ~5.4 Ma and continue to the present-day.
     Following the respond of sediments to tectonic activation in the southern Ningxia basin, all of fault zones within the basin have been undergone two major deformational phases since late Miocene. The northeastward thrusting seems to be the first phase of the deformation, which is followed by left-lateral strike-slip on the east-west parts of the arcuate fault zones and the displacement on the left-lateral strike-slip fault zones were transferred to crustal shortening in the north-south trending parts of fault zones. According to the kinematics and ages of fault activations, a northeastward propagated model is propose to describe the deformational style in the northeastern corner of the Tibetan Plateau.
引文
Avouac, J.P., Tapponnier, P., Bai, M., You, H., Wang, G., 1993. Active?thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys.?Res. 98(B4), 6755-6804.
    Burchfiel, B.C., Zhang, P., Wang, Y., Zhang, W., Song, F., Deng, Q., Molnar, P., Royden, L., 1991. Geology of the Haiyuan fault zone, Ningxia Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics 10(6), 1091-1110.
    Cerling, T.E., Wang Y, Quade, J., 1993. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature, 361, 344-345.
    Cerling T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisenmann, V., Ehleringer, J.R., 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature, 389,153-158.
    Chen, W.P., and Molnar, P., 1981, Constraints on the seismic wave velocity structure beneath the Tibetan plateau and their tectonic implications. Journal of Geophys Research, 86, 5937-5962.
    Clark, M.K., Farley, K.A., Zheng, D., Wang, Z.C., Duvall, A., 2010. Early Cenozoic faulting on the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth Planet. Sci. Lett. 296, (1-2), 78-88.
    Coleman, M., and Hodges, K., 1995, Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age of east-west extension. Nature, 374, 49-52.
    Dai, S., Fang, X.M., Dupont-Nivet, G., Song, C.H., Gao, J.P., Krijgsman, W., Langereis, C., Zhang, W.L., 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J. Geophys. Res. 111, B11102, doi:10.1029/2005JB004187.
    Dayem, K.E., Molnar P, Clark M.K., Houseman G.A., 2009. Far-field lithospheric deformation in Tibet during continental collision. Tectonics, 28, TC6005, doi:1029/2008TC002344.
    Deng, Q.D., Ran, Y.K., Yang, X.P., Min, W., Chu, Q.Z., 2007. Active tectonic map of China. Seismic Publish house press, Beijing, China.
    Deway, J.F., and Burke, K.C.A., 1973. Tibetan, variscan and Precambrian basement reactivation: products of a continent collision. J. Geol., 81, 683-692.
    Duvall A. R., Clark, M. K., 2010. Dissipation of fast strike-slip faulting within and beyond northeastern Tibet. Geology 38, 223-226, doi: 10.1130/G30711.1;
    Duvall A. R., Clark, M. K., Ben A van der P, Li, C.Y., 2011. Eocene onset of reverse faulting in northeastern Tibet consstrained by Ar-dating of fault clays and low-temperature thermochronometry. Submit to Earth Planet. Sci. Lett. England, P., and McKenzie, D., 1982. A thin and viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc., 70(2), 295–321.
    England, P., and Houseman, G., 1986. Finite strain calculations of continental deformation: 2. Comparison With the India-Asia collision zone. J. Geophys. Res., 91(B3), 3664–3676.
    England, P., and Houseman, G., 1989. Extension during continental convergence, with application to the Tibetan plateau. J. Geophys.Res., 94, 17561-17569.
    Enkelmann, E., Ratschbacher, L., Jonckheere, R., Nestler, Fleischer, M., Gloaguen, R.,
    Hacker, B. R., Zhang, Y.Q., Ma, Y.S., 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin. Geol. Soc. Amer. Bull. 118, 651-671, doi: 10.1130/B25805.1
    Fang, X., Garzione, C., Van der Voo, R., Li, J., Fan, M., 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett. 210(3-4), 545-560.
    Fang, X., Yan, M., Van derVoo, R., Rea, D.K., Song, C., Par¨|s, J.M., Gao, J., Nie, J., Dai, S., 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geol. Soc. Amer. Bull. 117(9-10), 1208-1225.
    Fang, X., Zhang, W., Meng, Q., Gao, J., Wang, X., King, J., Song, C., Dai, S., Miao, Y., 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 258(1-2), 293-306.
    Gan,W.J., Zhang, P.Z., Shen, Z.K., Niu Z.J, Wang, M, Wan,Y.G., Zhou, D.M., Cheng J., 2007. Present-day cruatal motion within the Tibetan Plateau inferred from GPS measurements. Journal of geophysical research, 112, B08416, doi:10.1029/2005JB004120.
    Garzanti, E., and Van Haver, T., 1988. The Indus clastics: forearc basin sedimentation in the Ladakh Himalaya (India). Sed. Geol. 59, 237-249.
    Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., Peng, S.Z., Wei, J.J., Yuan, B.Y., Liu, T.S., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–163.
    Guo, Z.T., Sun B., Zhang Z.S., Peng, S.Z., Xiao, G.Q., Ge, J.Y., Hao, Q.Z., Qiao, Y.S., Liang, M.Y., Liu, J.F., Yin, Q.Z., Wei , J.J., 2008. A major reorganization of Asian climate by the early Miocene. Clim. Past, 4,153-174.
    Harrison, T.M., Copeland, P., Kidd, W.S.F., and Yin, A., 1992. Raising Tibet. Science, 255, 1663–1670.
    Houseman, G., and England, P., 1996. A lithospheric-thickening model for the Indo-Asian collision, in World and Regional Geology Series, edited by A. Yin and T. M. Harrison. Cambridge Univ. Press, New York.
    Kirby, E., Reiners, P.W., Krol, M.A., Whipple, K.X., Hodges, K.V., Farley, K.A., Tang, W., Chen, Z., 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from Ar/Ar and (U-Th)/He thermochronology. Tectonics 21(1), 1001, doi:10.1029/2000TC001246.
    Lease, R.O., Burbank, D.W., Gehrels, G.E., Wang, Z., Yuan, D., 2007. Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet. Geology 35(3), 239-242.
    Lease, R.O., Burbank, D.W., Hough, B.G., Wang, Z.C., Yuan, D.Y., in press. Oligocene-Miocene sedimentary records of pulsed range growth in northeastern Tibet: Xunhua basin deposition in the shadow of the growing Laji Shan and Jishi Shan. Submit to Geol. Soc. Amer. Bull.
    Li, J., Wen, S.X., Zhang Q.S., 1979. Discuss the time, amplitude and form of the uplift of the Tibetan plateau. Science of China, 22, 608-616.
    Li, J., 1995. Uplift of Qinghai-Xizang (Tibet) Plateau and Global Change, pp. 210, Lanzhou Univ. Press, Lanzhou, China.
    Li, J., Fang X.M., 1998. Uplift of the Tibetan plateau and environment change study. Science bulletin, 43, 1569-1574.
    Métivier, F., Gaudemer, Y., Tapponnier, P., Meyer, B., 1998. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi Corridor basins, China. Tectonics 17, 823–842.
    Meyer, B., Tapponnier, P., Bourjot, L., Métivier, F., Gaudemer, Y., Peltzer, G., Guo, S., Chen, Z., 1998. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibetan plateau. Geophys. J. Int., 135, 1-47.
    Molnar, P. and Tapponnier, P., 1975. Cenozoic tectonics of Asia: Effects of a continental collision. science 189, 419-426, doi: 10.1126/science.189.4201.419.
    Molnar, P., Burchfiel, B. C., Zhao, Z.Y., Liang K., Wang, S., Huang, M., 1987.
    Geological evolution of northern Tibet: Results of an expedition to Ulugh Muztagh. Science, 235, 299-304.
    Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys. 31, 357-396.
    Molnar, P., and Stock, J., 2009. Slowing of India’s Convergence with Eurasia since 20 Ma and its Implications for Tibetan Mantle Dynamics. Tectonics 28, TC3001, doi:10.1029/2008TC002271.
    Peltzer, G., Saucier, F., 1996. Present-day kinematics of Asia derived from geologic fault rates. J. Geophys. Res., 101(B12), 27943-27956.
    Quade, J., Cerling, T.E., Bowman, J.R., 1989. Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature, 342, 163-166.
    Quade, J., Cater, J., Ojha, T., 1995. Miocene environmental change in Nepal and the northern Indian subcontinent: stable isotopic evidence from paleosols. Geol. Soci. Amer. Bull. 107, 1381-1397.
    Quade, J., Roe, L., Decelles, P.G., Ojha, T.P., 1997. The late Neogene 87Sr/86Sr record of lowland Himalayan rivers. Science 276, 1828-1831.
    Rea, D.K., Snoeckx, H., Joseph, L.H., 1998. Late Cenozoic eolian deposition in the north Pacific: Asian drying, Tibetan uplift, and cooling of the northern hemisphere. Paleoceanography 13 (3), 215-224.
    Rowley, D.B, 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet. Sci. Lett. 145 (1-4), 1-13.
    Rowley, D.B., 1998. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. J. Geol. 106, 229-235.
    Royden, L.H., Burchfiel, B.C., King, R.W., Wang, E., Chen, Z., Shen, F., Liu,Y., 1997. Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788-790.
    Shi, Y.F., Liu, D.S., 1964. Preliminary Scientific investigation in the Shisha Pangma region. Chinese Science Bulletin 10, 928-938.
    Sun, J.M., Li, Y., Zhang, Z.Q., Fu, B.H., 2009. Magnetostratigraphic data on Neogene growth folding in the foreland basin of the southern Tianshan Mountains.Geology 37(11), 1051-1054, doi: 10.1130/G30278A.1.
    Tapponnier P, Peltzer, G., Le-Dain, G., Armijo, R., Cobbold, P.R., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10, 611-616.
    Tapponnier P, Peltzer, G., Armijo, R., 1986. On the mechanics of the collision between India and Asia. The Geological society. 19, 113-157.
    Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., Yang, J., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science 294(5547), 1671-1677.
    Thatcher, W., 2007. Microplate model for the present-day deformation of Tibet. J. Geophysical Res., 112, B01401, doi:10.1029/2005JB004244.
    Xu, R., Tao, J.R., Sun, X.J., 1973. On the discovery of a Quercus semicarpifolia Bed in mount Shisha Pangma and its significance in Botany and Geology. Acta Botanica Sinica 15 (1), 103-113.
    Yin, A., Dang, Y.Q., Zhang M., Chen, X.H., McRivette, M.W., 2008. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geol. Soci. Amer. Bull. 120(7-8), 847-876: doi:10.1130/B26232.1.
    Zhang, P., Shen, Z., Wang, M., Gan, W., Burgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Sun, H. You, X., 2004. Continuous deformation of the Tibetan Plateau from Global Positioning System data. Geology 32, 809–812.
    Zhang, P., Molnar, P., Xu, X., 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics 26, TC5010, doi:10.1029/2006TC002014.
    Zheng, D., Zhang, P., Wan, J., Yuan, D., Li, C., Yin, G., Zhang, G., Wang, Z., Min, W., Chen, J., 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet. Sci. Lett. 248(1-2), 198-208.
    Zheng, D., Clark, M.K., Zhang, P., Zheng, W., Farley, K.A., 2010. Fault initiation, topographic growth and erosion rates of the northern Tibetan Plateau (Qilian Shan). Geosphere, 6(6), 937-941. doi: 10.1130/GES00523.1
    Zhong, D., and Ding, L., 1996. Processes and mechanism of the uplift of the Tibetan plateau. Science in Chinese (Series D), 26(4), 289-295.
    Andersson, J.G., 1923. Essays on the Cenozoic of Northern China (Addendum). Mem. Geol. Surv China. Ser. A (3), 143-152.
    Antoine, P. O., Bulot, C., Ginsburg, L., 2000. Une faune rare de rhinocérotidés (Mammalia Perissodactyla) dan le Miocéne inférieur de Pellecahus, Geobios 33(2), 249-255.
    Avouac, J.P., Tapponnier, P., Bai, M., You, H., Wang, G., 1993. Active?thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan, J. Geophys.?Res. 98(B4), 6755-6804.
    Beaumont, C., Jamieson, R.A., Nguyen, M.H., Lee, B., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738-742, doi:10.1038/414738a
    Besse, J., Courtillot, V., 2002. Apparent and true polar wander and the geometry of the geomagnetic field in the last 200 million years, J. Geophys. Res. 107(B11), no. 2300, doi: 10.1029/2000JB000050.
    Burbank, D.W., 1992. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin. Nature 357, 680–683.
    Burchfiel, B.C., Deng, Q., Molnar, P., Royden, L., Wang, Y., Zhang, P., Zhang, W., 1989. Intracrustal detachment within zones of continental deformation. Geology 17(8), 448-452.
    Burchfiel, B.C., Zhang, P., Wang, Y., Zhang, W., Song, F., Deng, Q., Molnar, P., Royden, L., 1991. Geology of the Haiyuan fault zone, Ningxia Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics 10(6), 1091-1110.
    Burchfiel, B. C., Chen, Z., Hodges, K. V., Liu, Y., Royden, L. H., Deng, C., Xu, J., 1992. The South Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Spec. Pap. Geol. Soc. Am. 269, 1-41.
    Cande, S.C., Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100, 6093–6096.
    Clark, M.K., Farley, K.A., Zheng, D., Wang, Z.C., Duvall, A., 2010. Early Cenozoic faulting on the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth Planet. Sci. Lett. 296, (1-2), 78-88.
    Clift P.D., Lee J.I., Clark M.K., Blusztajn J.S., 2002. Erosional response of South China to arc rifting and monsoonal strengthening: a record from the South China Sea. Mar. Geol. 184, 206–26.
    Dai, S., Fang, X.M., Dupont-Nivet, G., Song, C.H., Gao, J.P., Krijgsman, W., Langereis, C., Zhang, W.L., 2006. Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J. Geophys. Res. 111, B11102, doi:10.1029/2005JB004187.
    Dayem, K.E., Molnar P, Clark M.K., Houseman G.A., 2009. Far-field lithospheric deformation in Tibet during continental collision, Tectonics, 28, TC6005,doi:10.1029/2008TC002344.
    DeCelles, P.G., Kapp, P., Ding, L., Gehrels, G.E., 2003. Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridifi cation, and regional elevation gain. Geol. Soc. Am. Bull. 119(3/4), 654-680, doi: 10.1130/B26074.1.
    Delong B.S., Pelletier, D.J., Arnold, J.L, 2007, Climate change triggered sedimentation and progressive tectonic uplift in a coupled piedmontaxial system: Cuyama valley, California, USA. Earth surface processes and landforms 33(7), 1033-1046, doi:10.1002/esp.1600
    Deng, Q., Song, F., Zhu, S. Li, M., Wang, T., Zhang, W., Burchfiel, B. C., Molnar, P., Zhang P., 1984. Active faulting and tectonics of the Ningxia Hui Autonomous Region, China. J. Geophys. Res. 89, 4427– 4445, doi:10.1029/JB089iB06p04427.
    Deng, T., 2002. Limb bones of Chilotherium wimani (Perissodactyla, Rhinocerotidae) from the late Miocene of the Linxia basin in Gansu, China. Vertebrata Palasiatica 40 (4), 305-316 (in Chinese with English abstract).
    Deng, T., Wang X.M., Ni, X.J., Liu, L.P., Liang, Z., 2004. Ceonozic stratigraphic sequence of the Linxia basin in Gansu, China and its evidence from mammal fossils. Vertebrata Palasiatica 42(1), 59-66.
    Dupont-Nivet, G., Bulter, R.F., Yin, A., Chen, X., 2002. Paleomagnetism indicates no Neogene rotation of the Qaidam Basin in North Tibet during Indo-Asian collision. Geology 30, 263?266.
    Dupont-Nivet, G., Horton, B.K., Zhou, J., Waanders, G.L., Butler, R.F., Wang, J., 2004. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region,northeastern Tibetan Plateau. J. Geophys. Res. 109, B04401, doi: 40610.1029/2003JB002620.
    England, P., and Houseman, G.1985. Role of lithospheric strength heterogeneities in the Tectonics of Tibet and neighbouring regions. Nature 315, 297-301.
    Enkelmann, E., Ratschbacher, L., Jonckheere, R., Nestler, R., Fleischer, M., Gloaguen, R., Kacker, B.R., Zhang, Y.Q., Ma, Y.S., 2006. Cenozoic exhumation and deformation of northeastern Tibet and the Qinling: Is Tibetan lower crustal flow diverging around the Sichuan Basin? Geol. Soc. Am. Bull. 118 (5-6), 651-671, doi: 10.1130/B25805.1
    Fang, X., Garzione, C., Van der Voo, R., Li, J., Fan, M., 2003. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett. 210(3-4), 545-560.
    Fang, X., Yan, M., Van derVoo, R., Rea, D.K., Song, C., Par¨|s, J.M., Gao, J., Nie, J., Dai, S., 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China. Geol. Soc. Amer. Bull. 117(9-10), 1208-1225.
    Fang, X., Zhang, W., Meng, Q., Gao, J., Wang, X., King, J., Song, C., Dai, S., Miao, Y., 2007. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 258(1-2), 293-306.
    Flynn, L.J., Wu,W., Downs, W.R., 1997. Dating vertebrate microfaunas in the Late Neogene record of northern China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 133, 227–242.
    Gansu Bureau of Geology and Mineral Resources (GBGMR), 1989. Regional Geology of Gansu Province: Beijing, Geological Publishing House, 311-320 p. (in Chinese with English brief introduce).
    Garzanti, E., and Van Haver, T., 1988. The Indus clastics: forearc basin sedimentation in the Ladakh Himalaya (India), Sed. Geol. 59, 237-249.
    Gaudemer, Y., Tapponnier, P., Meyer, B., Peltzer, G., Guo, S., Chen, Z., Dai, H., Cifuentes I., 1995. Partitioning of crustal slip between linked active faults in the eastern Qilian Shan, and evidence for a major seismic gap, the‘Tianzhu gap’, on the western Haiyuan fault, Gansu (China), Geophys. J. Int., 120, 599– 645, doi :10.1111/ j .1365-246X.1995.tb01842.x.
    Guo, Z., Ruddiman, W.F., Hao, Q., Wu, H., Qiao, Y., Zhu, R., Peng, S., Wei, J., Yuan, B., Liu, T., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature 416, 159–163.
    Guo, Z., Sun B., Zhang Z., Peng, S., Xiao, G., Ge, J., Hao, Q., Qiao, Y., Liang, M., Liu, J., Yin, Q., Wei, J., 2008. A major reorganization of Asian climate by the early Miocene. Clim. Past 4,153-174.
    Heermance, R.V., Chen, J., Burbank, D.W., Wang, C., 2007. Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Res. 19, 599–632.
    Holt, W.E., Ni, J.F., Wallace, T.C., Haines, A.J., 1991. The active tectonics of the eastern Himalayan Syntaxis and surrounding regions. J. Geophys. Res. 96,14595-14632.
    Hoorn C, Guerrero J, Sarmiento G.A, Lorente M.A., 1995. Andean tectonics as a cause for changing drainage patterns in Miocene northern South America.
    Geology 23, 237–240. Horton, B.K., Dupont-Nivet, G., Zhou, J., Waanders, G.L., Butler, R.F., Wang, J., 2004. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results. J. Geophys. Res. 109, B04402, doi:10.1029/2003JB002913.
    Houseman, G., and England, P., 1986. A dynamical model of lithosphere extension and sedimentary basin formation. J. Geophys. Res. 91, 719-729
    Jiang, H.C., Ding, Z.L., Xiong, S.F., 2007. Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology 243, 223-234, doi:10.1016/j.palaeo.2006.07.016.
    Kapp, P., Yin A., Harrison, T.M., and Ding, L., 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibetan. Geol. Soc. Amer. Bull. 117 (7-8), 865-878, doi:10.1130/B25595.1.
    Kirby, E., Reiners, P.W., Krol, M.A., Whipple, K.X., Hodges, K.V., Farley, K.A., Tang, W., Chen, Z., 2002. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau: Inferences from 40Ar/39Ar and (U-Th)/He thermochronology. Tectonics 21(1), 1001, doi:10.1029/2000TC001246.
    Kirschvink, J.L., 1980. The least-squares method line and plane and analysis of paleomagnetic data. Geophys. J. Int. 62 (3), 699-718.
    Lease, R.O., Burbank, D.W., Gehrels, G.E., Wang, Z., Yuan, D., 2007. Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet. Geology 35(3), 239-242.
    Lease, R.O., Burbank, D.W., Hough, B., Wang Z., Yuan, D., in press. Oligocene-Miocene sedimentary records of pulsed range growth in northeastern Tibet: Xunhua basin deposition in the shadow of the growing Laji Shan and Jishi Shan, Geol. Soc. Amer. Bull. (in press).
    Li, C.K., Qiu, Z.D., Wu, W.Y., 1984. Chinese Neogene: Subdivision and Correlation. Vertebr. Palasiat. 22(3), 163-178 (in Chinese).
    Li, C.Y., Zhang, P.Z., Yin, J.H., Min, W., 2008. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics 28, TC5010, doi:10.1029/2008TC002302.
    Lin, X.B., Chen, H.L., Wyrwoll, K.H., Cheng, X.G., 2009. Commencing uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences 37, 350-360, doi:10.1016/j.jseaes.2009.09.005.
    Lu, H.J., and Xiong, S.F., 2009. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth Planet. Sci. Lett. 288, 539-550, doi:10.1016/j.epsl.2009.10.016
    McFadden, P.L., and McElhinny, M.W., 1990. Classification of the reversal test in paleomagnetism. Geophys. J. Int. 103(3), 725-729.
    Molnar, P. and Tapponnier, P., 1975. Cenozoic tectonics of Asia: Effects of a continental collision, science 189, 419-426, doi: 10.1126/science.189.4201.419.
    Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys. 31, 357–396.
    Molnar, P., 2004. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci. 32, 67-89.
    Molnar, P., and Stock, J., 2009. Slowing of India’s Convergence with Eurasia since 20 Ma and its Implications for Tibetan Mantle Dynamics. Tectonics 28, TC3001, doi:10.1029/2008TC002271.
    Murphy, M. A., Yin, A., Harrison, T. M., Dürr, S. B., Chen, Z., Ryerson, F. J., Kidd, W. S. F., Wang, X., Zhou, X., 1997. Did the Indo-Asian collision alone create the Tibetan plateau? Geology 25(8), 719-722, doi: 10.1130/0091-7613(1997)025<0719.
    Najman, Y., Appel, E., Boudagher-Fadel, M., Bown, P., Carter, A., Garzanti, E., Godin, L., Han, J., Liebke, U., Oliver, G., Parrish R., Vezzoli, G., 2010. The age of India-Asia collision: Biostratigraphic, sedimentological and Paleomagnetic constraints, in Leech, M.L., and others, eds., Proceedings for the 25th Himalaya-Karakoram-Tibetan Workshop:U.S. Geological Survey, Open-File Report 2010-1099, 1.p.
    Nelson, K. D., Zhao, W., Brown, L.D., Kuo, J., Che, J., Liu, X., Klemperer, S. L., Makovsky, Y., Meissner, R., Mechie, J., Kind, R., Wenzel, F., Ni, J., Nabelek, J., Leshou, C., Tan, H., Wei, W., Jones, A. G., Booker, J., Unsworth, M., Kidd, W. S. F., Hauck, M., Alsdorf, D., Ross, A., Cogan, M., Wu, C., Sandvol, E., Edwards,M.., 1996. Partially Molten Middle Crust Beneath Southern Tibet: Synthesis of Project INDEPTH Results. Science 274, no. 5293, 1684-1688, doi:
    10.1126/science.274.5293.1684 Ningxia Bureau of Geology and Mineral Resources (NBGMR)., 1989. Regional Geology of Ningxia Hui Autonomous Region: Beijing, Geological Publishing House, 320 p. (in Chinese with English brief introduce).
    Qiu, Z.X., Yeh, J. and Jiang, Y.J., 1987. Several species of Bahe Stage mammals from Wuzhong, Ningxia Autonomous Region. Vertebr. Palasiat. 25(1), 46-56 (in Chinese).
    Qiu, Z.X. and Qiu, Z.D., 1995. Chronological sequence and subdivision of Chinese Neogene mammalian faunas, Palaeogeography, Palaeoclimatology, Palaeoecology 116, 41-71.
    Qiu, Z. X., Wu, W. Y., Qiu, Z. D., 1999. Miocene mammal faunal sequence of China: Palaeozoogeography and Eurasian Relationships. In the Miocene Land Mammals of Europe, edited by. R?ssner, G. E., and Heissig, K., Verlag Pfeil, Munchen, p. 443-455.
    Ratschbacher, L., Hacker, B.R., Calvert, A., Webb, L.E., Grimmer, J.C., McWilliams, M.O., Ireland, T., Dong, S., Hu., J., 2003. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics 366, 1-53, doi:10.1016/S0040-1951(03)00053-2.
    Ritts, D.B., Yue, Y., Graham, A.S., 2004. Oligocene-Miocene Tectonics and Sedimentation along the Alty Tagh Fault, Northern Tibetan Plateau: Analysis of the Xorkol, Subei, and Aksay Basins. The Journal of Geology 112, 207-229.
    Rowley, D.B, 1996. Age of initiation of collision between India and Asia: A review of stratigraphic data. Earth Planet. Sci. Lett. 145 (1-4), 1-13.
    Rowley, D.B., 1998. Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. J. Geol. 106, 229-235.
    Rowley, D.B., and Currie, B.S., 2006. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677-681, doi:10.1038/nature04506. Royden, L.H., Burchfiel, B.C., King, R.W., Wang, E., Chen, Z., Shen, F., Liu,Y., 1997. Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788-790.
    Royden, L.H., Burchfiel, B.C., Van der Hilst, R.D., 2008. The Geological evolution of the Tibetan Plateau. Science 321, 1054-1058, doi: 10.1126/science.1155371.
    Searle, M. P., 1996. Cooling history, erosion, exhumation and kinematics of the Himalaya-Karakoram-Tibet Orogenic belt. In The Tectonic Evolution of Asia, edited by A. Yin, and T. M. Harrison, Cambridge Univ. Press: New York, p. 110-137.
    Shanxi Bureau of Geology and Mineral Resources (SBGMR)., 1989. Regional Geology of Shanxi Province: Beijing, Geological Publishing House, 231-235. p. (in Chinese with English brief introduce).
    Sun, J.M., Zhu, R.X., Bowler, J., 2004. Timing of the Tian Shan Mountains uplift constrained by magnetostratigraphic analysis of molasses deposits. Earth Planet. Sci.Lett. 219, 239-253.
    Sun, J.M., Li, Y., Zhang, Z.Q., Fu, B.H., 2009. Magnetostratigraphic data on Neogenegrowth folding in the foreland basin of the southern Tianshan Mountains, Geology 37(11), 1051-1054, doi: 10.1130/G30278A.1.
    Tapponnier P, Peltzer, G., Dain, G.L., Armijo, R., Cobbold, P.R., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10, 611-616.
    Tapponnier, P., Xu, Z., Roger, F., Meyer, B., Arnaud, N., Wittlinger, G., Yang, J., 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671-1677.
    Tauxe L., Gallet, Y., A jackknife for magnetostratigraphy. Geophys. Res. Lett., 18 (1991), 1783-1786.
    Wang, B.Y., Yan, Z.Q., Lu, Y.J., Chen G.X., 1994. Discovery of two Mid-Tertiary Mammalian faunas from Haiyuan, Ningxia, China, Vertebr. Palasiat. 32(4), 285-296 (in Chinese with English summary).
    Yan, M., Van der Voo, R., Fang, X.M., Pares, J.M., and Rea, D.K., 2006. Paleomagnetic evidence for a mid-Miocene clockwise rotation of about 25°of the Guide Basin area in NE Tibet. Earth Planet. Sci. Lett. 241, 234-247, doi: 10.1016/j.epsl.2005.10.013.
    Yin, A, Dang, Y.Q., Wang, L.C., Jiang, W.M., Zhou, S.P., Chen, X.H., Gehrels, G.E., McRivette, M.W., 2008a. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. Geol. Soci. Amer. Bull. 120(7-8), 813-846.
    Yin, A., Dang, Y.Q., Zhang M., Chen, X.H., McRivette, M.W., 2008b. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction. Geol. Soci. Amer. Bull. 120(7-8), 847-876: doi:10.1130/B26232.1.
    Young, C.C., 1937. On a Miocene mammalian fauna from Shantung. Bull. Geol. Soc. China, 17(2), 210-238.
    Yue, L.P., Heller, F., Qui, Z.X., Zhang, L., Xie, G.P., Qiu, Z.D., Zhang, Y.X., 2001. Magnetostratigraphy and paleoenvironmental record of Tertiary deposits of Lanzhou Basin. Chin. Sci. Bull. 46, 770-774.
    Zhang, P., Molnar, P., Burchfiel, B. C., Royden, L., Wang, Y., Deng, Q., Song, F., Zhang, W., Jiao, D., 1988. Bounds on the Holocene slip rate along the Haiyuan fault, north-central China, Quat. Res. 30,151-164, doi:10.1016/0033-5894(88)90020-8.
    Zhang, P., Burchfiel, B.C., Molnar, P., Zhang, W., Jiao, D., Deng, Q., Wang, Y., Royden, L., Song, F., 1991. Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous Region, China. Tectonics 10, 1111-1129.
    Zhang, P., Molnar, P., Downs. W.R., 2001. Increased sedimentation rates and grain sizes 2-4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891-897.
    Zhang, P., Shen, Z., Wang, M., Gan, W., Burgmann, R., Molnar, P., Wang, Q., Niu, Z., Sun, J., Wu, J., Sun, H. You, X., 2004. Continuous deformation of the Tibetan Plateau from Global Positioning System data, Geology 32, 809-812.
    Zhang, H., Lease, R., Wang, W., Molnar, P., Zheng, D., Zheng, W., in press.
    Magnetostratigraphic architecture of the Neogene Chaka basin and its implications for mountain building processes in the northeastern Tibetan plateau. Basin Research.
    Zheng, D.W., Zhang, P.Z., Wan, J.L., Li, C.Y., 2003. Late Cenozoic deformation subsequence in northeastern margin of Tibet. Science in China Series: D 46(2), 266-275, doi:10.1360/03dz0021.
    Zheng, D., Zhang, P., Wan, J., Yuan, D., Li, C., Yin, G., Zhang, G., Wang, Z., Min, W., Chen, J., 2006. Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin. Earth Planet. Sci. Lett. 248(1-2), 198-208.
    Zheng, D., Clark, M.K., Zhang, P., Zheng, W., Farley, K.A., 2010. Erosion, fault initiation and topographic growth of the north Qilian Shan (northern Tibetan Plateau). Geosphere 6 (6), 937-941, doi: 10.1130/GES00523.1.
    Zheng, H., Powell, C.M., An, Z., Zhou, J., Dong, G., 2000. Pliocene uplift of the northern Tibetan Plateau. Geology 28(8), 715-718.
    Burchfiel, B.C., P. Zhang, Y. Wang, W. Zhang, F. Song, Q. Deng, P. Molnar, and L. Royden (1991), Geology of the Haiyuan fault zone, Ningxia Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau, Tectonics, 10(6), 1091-1110.
    Chen, J., and T. Wu (1997), regional stratigraphy of north China, China University of Geosciences Press, Beijing, 199 pp.
    Clark, M. K., K. A. Farley, D. W. Zheng, Z. C. Wang, and A. R. Duvall (2010), Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U-Th)/He ages, Earth Planet Sc Lett, 296(1-2), 78-88.
    Dai, S., X.M. Fang, G. Dupont-Nivet, C.H. Song, J.P. Gao, W. Krijgsman, C. Langereis, W.L. Zhang (2006), Magnetostratigraphy of Cenozoic sediments from the Xining Basin: Tectonic implications for the northeastern Tibetan Plateau. J. Geophys. Res. 111, B11102, doi:10.1029/2005JB004187.
    Davis, G. A., Y. Zheng, C. Wang, B. J. Darby, C. Zhang, and G. Gehrels (2001), Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China, Mem. Geol. Soc. Am., 194, 171– 197.
    Davis, G. A., B. J. Darby, Y. D. Zheng, and T. L. Spell (2002), Geometric and temporal evolution of an extensional detachment fault, Hohhot metamorphic core complex, Inner Mongolia, China, Geology, 30,1003– 1006.
    DeCelles, P.G., P. Kapp, L. Ding, and G.E. Gehrels (2007), Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridifi cation, and regional elevation gain, Geological Society of America Bulletin, v. 119, p. 654–680, doi: 10.1130/B26074.1
    Deng, Q.D, Y.K. Ran, X.P. Yang, W. Min, Q.Z. Chu (2007), Active tectonic map of China, Seismic Publish house press, Beijing, China.
    Dupont-Nivet, G., B.K. Horton, J. Zhou, G.L. Waanders, R.F. Butler, J. Wang (2004), Paleogene clockwise tectonic rotation of the Xining-Lanzhou region,northeastern Tibetan Plateau. J. Geophys. Res. 109, B04401, doi: 40610.1029/2003JB002620. Fan J.X., J. Man, and W.J. Gan (2003), Movement of Ordos block and alternation of activity along its boundaries, Science in China (Series D), v. 46 supp., p. 168–180, doi: 10.1360/03dz0013.
    Fang, X.M., C. Garzione, R. Van der Voo, J.J. Li, and M.J. Fan (2003), Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China, Earth Planet. Sci. Lett., v. 210, p. 545–560, doi: 10.1016/S0012-821X(03)00142-0.
    Fang X., M. Yan, R. Van der Voo, D.K. Rea, C. Song, J.M. Parés, J. Gao, J. Nie, and S. Dai, (2005a), Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China, Geological Society of America Bulletin, v. 117, p. 1208–1225, doi: 10.1130/B25727.1
    Fang X., Z. Zhao, J. Li, M. Yan, B. Pan, C. Song, and S. Dai, (2005b), Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift, Science in China (Ser. D), v.48(7), p. 1040—1051.
    Fang, X., W. Zhang, Q. Meng, J. Gao, X. Wang, J. King, C. Song, S. Dai, and Y. Miao (2007), High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau, Earth Planet. Sci. Lett., 258(1-2), 293-306, doi:10.1016/j.epsl.2007.03.042
    Graham, S. A., M. S. Hendrix, C. L. Johnson, D. Badamagarav, G. Badarch, J. Amory, M. Porter, R. Barsbold, L. E. Webb, and B. R. Hacker (2001), Sedimentary record and tectonic implications of Mesozoic rifting in southeast Mongolia, Geological Society of America Bulletin, 113, 1560– 1579. Grimmer, J. C., R. Jonckheere, E. Enkelmann, L. Ratschbacher, B. R. Hacker, A. E.
    Blythe, G. A. Wagner, Q. Wu, S. Liu, and S. Dong (2002), Cretaceous-Cenozoic history of the southern Tan-Lu fault zone: Apatite fission-track and structural constraints from the Dabie Shan (eastern China), Tectonophysics, 359, 225–253.
    Guo, Z.T., W.F. Ruddiman, Q.Z. Hao, H.B. Wu, Y.S. Qiao, R.X. Zhu, S.Z. Peng, J.J. Wei, B.Y. Yuan, and T.S. Liu (2002), Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature, 416, 159–163.
    Horton, B.K., G. Dupont-Nivet, J. Zhou, G.L. Waanders, R.F .Butler, and J. Wang, (2004), Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results, J. Geophys. Res., v. 109, B04402, doi: 10.1029/2003JB002913.
    Howard, J. P., W. D. Cunningham, S. J. Davies, A. H. Dijkstra, and G. Badarch (2003), The stratigraphic and structural evolution of the Dzereg Basin, western Mongolia: Clastic sedimentation, transpressional faulting and basin destruction in an intraplate, intracontinental setting, Basin Research, 15, 45– 72.
    Huo, Y. L., and S. D. Tan (1995), Exploration Case History and Petroleum Geology in Jiuquan Continental Basin, Petrol Industry Press, Beijing, China. 211 pp.
    Jiang, H.C., J.L. Ji, L. Gao, Z.H. Tang, and Z.L. Ding (2008), Cooling-driven climate change at 12–11 Ma: Multiproxy records from a long fl uviolacustrine sequence at Guyuan, Ningxia, China: Palaeogeography, Palaeoclimatology,
    Palaeoecology, v. 265, p. 148–158, doi: 10.1016/j.palaeo.2008.05.006. Johnson, C. L., L. E. Webb, S. A. Graham, M. S. Hendrix, and G. Badarch (2001), Sedimentary and structural records of late Mesozoic high-strain extension and strain partitioning, East Gobi basin, southern Mongolia, Mem. Geol. Soc. Am., 194, 413– 433.
    Kapp, P., A. Yin, T.M. Harrison, and L. Ding (2005), Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet: Geological Society of America Bulletin, v. 117, p. 865–878, doi: 10.1130/B25595.1.
    Li, C., P.Z. Zhang, J. Yin, and W. Min (2009), Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau, Tectonics, 28, TC5010, doi: 10.1029/2008TC002302.Meyer, B., P. Tapponnier, L. Bourjot, F. Métivier, Y. Gaudemer, G. Peltzer, G. Shunmin, and C. Zhitai (1998), Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau, Geophysical Journal International, v. 135, p. 1–47, doi: 10.1046/j.1365-246X.1998.00567.x.
    Molnar, P., P. England, J. Martinod (1993), Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Rev. Geophys. 31, 357–396.
    Molnar, P. (2005), Mio-pliocene growth of the Tibetan Plateau and evolution of East Asian climate. Palaeontologia Electronica, 8, 8.1.2A, 23p
    Molnar, P., W. R. Boos, D. S. Battisti (2010), Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau, Annual Reviews of Earth & Planetary Science, 38, 77-102.
    Murphy, M. A., A. Yin, T. M. Harrison, S. B. Dürr, Z. Chen, F. J. Ryerson, W. S. F. Kidd, X. Wang, X. Zhou (1997), Did the Indo-Asian collision alone create the Tibetan plateau? Geology, 25(8), 719-722.
    Ningxia Bureau of Geology and Mineral Resources (1959), Geological map of the Haiyuan area, Scale 1:200,000, Geological Publishing House, Beijing. Ningxia Bureau of Geology and Mineral Resources (1989), Regional Geology of Ningxia Hui Autonomous Region, Geological Publishing House, Beijing (in Chinese with English brief introduce).
    Ratschbacher, L., B. R. Hacker, L. E. Webb, M. McWilliams, T. Ireland, S. Dong, A. Calvert, D. Chateigner, and H. R. Wenk (2000), Exhumation of the ultrahigh-pressure continental crust in east central China: Cretaceous and Cenozoic unroofing and the Tan-Lu fault, J. Geophys. Res., 105, 13,303–13,338.
    Ratschbacher, L., B.R. Hacker, A. Calvert, L.E. Webb, J.C. Grimmer, M.O. McWilliams, T. Ireland, S. Dong, J. Hu. (2003), Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics 366, 1-53, doi:10.1016/S0040-1951(03)00053-2.
    Ren, J., K. Tamaki, S. Li, and J. Zhang (2002), Late Mesozoic and Cenozoic rifting and its dynamic setting in eastern China and adjacent areas, Tectonophysics, 344, 175– 205.
    Ritts, B. D., B. J. Darby, and T. Cope (2001), Early Jurassic extensional basin formation in the Daqing Shan segment of the Yinshan belt, northern North China block, Inner Mongolia, Tectonophysics, v.339, p. 239– 258.
    Royden, L.H., B.C. Burchfiel, R.W. King, E. Wang, Z. Chen, F. Shen, Y. Liu (1997), Surface deformation and lower crustal flow in eastern Tibet. Science 276, 788-790.
    Rowley, D.B. and B.S. Currie (2006), Paleo-Altimetry of Late Eocene to Miocene Sediments from the Lunpola Basin, Central Tibet: Implications for Growth of the Tibetan Plateau, Nature, 439, 677-681.Suppe, J. (1983), Geometry and kinematics of fault-bend folding, American Journal of Science, v. 283, p. 684–721.
    Suppe, J., and D.A. Medwedeff (1990), Geometry and kinematics of fault-propagation folding, Ecologae Geologicae Helvetiae, v. 83, p. 409–454.
    Traynor, J. J., and C. Sladen (1995), Tectonic and stratigraphic evolution of the Mongolian People’s Republic and its influence on hydrocarbon geology and potential, Mar. Pet. Geol., 12, 246–249.
    Tapponnier, P., Z. Xu, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, J. Yang (2001), Oblique stepwise rise and growth of the Tibet Plateau, Science, 294(5547), 1671-1677.
    Webb, L. E., S. A. Graham, C. L. Johnson, G. Badarch, and M. S. Hendrix (1999), Occurrence, age, and implications of the Yagan Onch Hayrhan metamorphic core complex, southern Mongolia, Geology, 27, 143– 146.
    Wang Q., P.Z. Zhang, J.T. Freymueller, R. Bilham, K.M. Larson, X.A. Lai, X.Z. You, Z.J. Niu, J.C. Wu, Y.X. Li, J.N. Liu, Z.Q. Yang, and Q.Z. Chen (2001), Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements, Science, v. 294, p. 574―577.
    Wang, W.T., P.Z. Zhang, E. Kirby, L.H. Wang, G.L. Zhang, D.W. Zheng, Z.Z. Chai (2011), A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau. Submit to Tectonophysics.
    Xu, W., Y. He, and Y. Yan (1989), Tectonic characteristics and hydrocarbons of the Hexi corridor, in Chinese Sedimentary Basins, edited by X. Zhu, Elsevier Sci., New York. pp. 53– 62,
    Yin, A., P.E. Rumelhart, E. Cowgill, R. Butler, T.M. Harrison, R.V. Ingersoll, K. Cooper, Q. Zhang, and X.F. Wang (2002), Tectonic history of the Altyn Tagh fault in northern Tibet inferred from Cenozoic sedimentation, Geological Society of America Bulletin, v. 114, p. 1257–1295, doi: 10.1130/0016-7606(2002)114<1257:THOTAT>2.0.CO;2.
    Yin, A., M.W. McRivette, W.P. Burgess, M. Zhang, and X. Chen (2007), Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range, in Sears, J.W., Harms, T.A., and Evenchick, C.A., eds., Whence the mountains? Inquiries into the evolution of orogenic systems: A volume in honor of Raymond. Price, Geological Society of America Special Paper, v. 433, p. 369–390, doi: 10.1130/2007.2433(18).
    Yin, A., X. Chen, M.W. McRivette, L. Wang, and W. Jiang (2008a), Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The North Qaidam thrust system, Geological Society of America Bulletin, v.120, p. 813–846, doi:10.1130/B26180.1.
    Yin, A., Y. Dang., X. Chen and M.W. McRivette (2008b), Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction, Geological Society of America Bulletin, v.120, p. 847–876, doi: 10.1130/B26232.1
    Zhang P., B.C. Burchfiel, P. Molnar, W. Zhang, D. Jiao, Q. Deng Y. Wang, L. Royden, and F. Song (1990), Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous Region, China, Geological Society of America Bulletin, v. 102, p. 1484–1496.
    Zhang, P., B.C. Burchfiel, P. Molnar, W. Zhang, D. Jiao, Q. Deng, Y. Wang, L. Royden, and F. Song (1991), Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous Region, China, Tectonics, 10, 1111-1129.
    Zhang, Y., S. Dong, and W. Shi (2003), Cretaceous deformation history of the middle Tan-Lu fault zone in Shandong province, eastern China, Tectonophysics, 363, 243– 258.
    Zhai, G., W. Gao, Z. An, J. Li, S. Wu, F. Yin, J. Song, K. Cheng, Y. Qiu (1997), Petroleum Geology of China, Petroleum Industry Press, Beijing, China, 650 pp.
    Zheng, D., P. Zhang, J. Wan, D. Yuan, C. Li, G. Yin, G. Zhang, Z. Wang, W. Min, J. Chen (2006), Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin, Earth Planet. Sci. Lett., 248(1-2), 198-208.
    Andersson, J.G.(1923), Essays on the Cenozoic of Northern China (Addendum). Mem. Geol. Surv China. Ser. A (3), 143―152.
    Guan J. (1988), The Miocene strata and mammals from Tongxin, Ningxia and Guanghe, Gansu, Mem Beijing Nat Hist Mus,42, 1–21 (in Chinese).
    Ma, F.Z. (1980), A new Genus of Lycopteridae from Ningxia, China, Vertebr. Palasiat., 18 (4), 286― 295 (in Chinese with English summary).
    Ma, F.Z. (1986), On the generic status of Lycoptera Tungi, Vertebr. Palasiat., 24 (4), 261― 286 (in Chinese with English summary).
    Ningxia Bureau of Geology and Mineral Resources (1989), Regional Geology of Ningxia Hui Autonomous Region, Geological Publishing House, Beijing (in Chinese with English brief introduce).
    Qiu, Z.X., J. Ye, and Y.J. Jiang (1987) Several species of Bahe Stage mammals from Wuzhong, Ningxia Autonomous Region. Vertebr. Palasiat., 25 (1), (in Chinese with English abstract).
    Qiu, Z.X., J. Ye, and F.C. Huo (1988), Description of a Kubanochoerus skull from Tongxin, Ningxia, Vertebr. Palasiat., 26 (1), 1–19 (in Chinese).
    Qiu, Z.X., and Z.D. Qiu (1995), Chronological sequence and subdivision of Chinese Neogene mammalian faunas, Palaeogeography, Palaeoclimatology, Palaeoecology, 116, 41-71.
    Qiu, Z.X., W.Y. Wu, and Z.D. Qiu (1999), Miocene mammal faunal sequence of China: Palaeozoogeography and Eurasian Relationships (eds. Rossner, G.E., Heissig, K.), The Miocene Land Mammals of Europe, Verlag Pfeil, Munchen, 443―455.
    Wang, B.Y., Z.Q. Yan, Y.J. Lu, G.X. Chen (1994), Discovery of two Mid-Tertiary Mammalian faunas from Haiyuan, Ningxia, China, Vertebr. Palasiat., 32(4), 285―296 (in Chinese with English summary).
    Wu, W.Y., J. Ye, and B.C. Zhu (1991), Description of Alloptox from the Middle Miocene of Tongxin, Ningxia, Vertebr. Palasiat., 29 (3), 204–229 (in Chinese ). Ye, J. and H. Jia (1986), Platybelodon (Proboscidea, Mammalia) from the Middle Miocene of Tongxin, Ningxia, Vertebr. Palasiat., v. 24 (2), p. 139–151 (in Chinese with English summary).
    Andersson, J.G.(1923), Essays on the Cenozoic of Northern China (Addendum). Mem. Geol. Surv China. Ser. A (3), 143―152.
    Bally, A.W., I.M. Chou, R. Clayton, H.P. Eugster, S. Kidwell, L.D. Meckel, R.T. Ryder, A.B. Watts, and A.A. Wilson (1986), Notes on sedimentary basins in China—Report of the American Sedimentary Basins delegation to the People’s Republic of China, U.S. Geological Survey Open-File Report 86–327, 108 p.
    Blair, T.C. and J.C. Mcpherson (1992), The alluvial fan and facies models revisied. Geol. Sol. Am. Bull., 104, 762-769.
    Blair, T.C. and J.C. Mcpherson (1994), Historical adjustments by Walker river to lake-level fall over a tectonically titled half-graben floor, Walker lake basin, Nevada. Sedim. Geol., 92, 7-16.
    Bullen M.E., D.W. Burbank, J.I. Garver, and K.Y. Abdrakhmatov (2001), Late Cenozoic tectonic evolution of the northwestern Tien Shan: New age estimates for the initiation of mountain building, Geological Society of America Bulletin, v. 113; no. 12; p. 1544–1559.
    Burchfiel, B.C., Q. Deng, P. Molnar, L. Royden, Y. Wang, P. Zhang, and W. Zhang (1989), Intracrustal detachment within zones of continental deformation, Geology, v. 17(8), p. 748-752. Burchfiel, B.C., P. Zhang, Y. Wang, W. Zhang, F. Song, Q. Deng, P. Molnar, and L. Royden (1991), Geology of the Haiyuan fault zone, Ningxia Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau, Tectonics, 10(6), 1091-1110.
    Clark, M.K., K.A. Farley, D. Zheng, Z.C. Wang, A. Duvall (2010), Early Cenozoic faulting on the northern Tibetan Plateau margin from apatite (U-Th)/He ages. Earth Planet. Sci. Lett. 296, (1-2), 78-88.
    Collinson, J.D. (1996), Alluvial sediments. In: Sedimentary Environments: Processes, Facies and stratigraphy (Ed. By H.G. Reading), p.37-82. Blackwell Scientific Publications, Oxford.
    Darby, B. J. and G. Gehrels (2006), Detrital zircon reference for the North China block. J. Asian earth Sciences, 26, 637-648.
    DeCelles, P. G., and B. K. Horton (2003), Early to middle Tertiary foreland basin development and the history of Andean crustal shortening in Bolivia, Geol Soc Am Bull., 115(1), 58-77.
    DeCelles, P. G. (2004), Late Jurassic to eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA, Am. J. Sci., 304(2), 105-168.
    DeCelles, P.G., P. Kapp, L. Ding, and G.E. Gehrels (2007), Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridifi cation, and regional elevation gain, Geol.Soci. Am. Bull., 119, 654–680, doi: 10.1130/B26074.1
    Deng, Q., F. Song, S. Zhu, M. Li, T. Wang, W. Zhang, B. C. Burchfiel, P. Molnar, and P. Zhang (1984), Active faulting and tectonics of the Ningxia Hui Autonomous Region, China, J. Geophys. Res., v. 89, p. 4427– 4445, doi:10.1029/JB089iB06p04427.
    Deng, Q.D., and H.C., You (1985). The structural activity and formation mechanism of the down-faulted basins around the Ordos block. In: Research on Recent Crustal Movement, 1, Continental Rifts and Deep Internal Processes. Seismological Press, Beijing, pp. 58-78 (in Chinese).
    Deng Q.D., S.P. Cheng and W. Min (1999), Discussion on Cenozoic tectonics and dynamics of Ordos block. Journal of Geomechanics 5(3),13-21 (in Chinese). Deng, Q.D, Y.K. Ran, X.P. Yang, W. Min, Q.Z. Chu (2007) Active tectonic map of China, Seismic Publish house press, Beijing, China.
    Dupont-Nivet, G., W. Krijgsman, C.G. Langereis, H.A. Abels, S. Dai, and X. Fang (2007), Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition, Nature, 445, 635-638, doi:10.1038/nature05516.
    Fang, S.M., C.B. Zhao, C. C. Chai, B.J. Liu, S.Y. Feng, M.J. Liu, Q.Y. Lei, H. Liu (2009), Seismic evidence of crustal structures in the Yinchuan faulted basin. Chinese J. Geophys., 52(7), 1768-1775.
    Fang, X.M., C. Garzione, R. Van der Voo, J.J. Li, and M.J. Fan (2003), Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China, Earth Planet. Sci. Lett., 210, 545–560, doi: 10.1016/S0012-821X(03)00142-0.
    Fang X., M. Yan, R. Van der Voo, D.K. Rea, C. Song, J.M. Parés, J. Gao, J. Nie, and S. Dai, (2005a), Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China, Geological Society of America Bulletin, 117, 1208–1225, doi: 10.1130/B25727.1
    Fang X., Z. Zhao, J. Li, M. Yan, B. Pan, C. Song, and S. Dai, (2005b), Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift, Science in China (Ser. D), 48(7), 1040—1051.
    Fang, X., W. Zhang, Q. Meng, J. Gao, X. Wang, J. King, C. Song, S. Dai, and Y. Miao (2007), High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau, Earth Planet. Sci. Lett., 258(1-2), 293-306, doi:10.1016/j.epsl.2007.03.042
    Gansu Bureau of Geology and Mineral Resources (1989), Regional Geology of Gansu Province: Beijing, Geological Publishing House, 311-320 p. (in Chinese with English brief introduce).
    Garzanti, E., and T. Van Haver (1988), The Indus clastics: forearc basin sedimentation in the Ladakh Himalaya (India), Sedimentary Geology, 59, 237-249.
    Garzione, C.N., P.G. DeCelles, D.G. Hodkinson, T.P. Ojha, and B.N. Upreti (2003), East-west extension and Miocene environmental change in the southern Tibetanplateau: Thakkhola graben, central Nepal: Geological Society of America Bulletin, 115, 3–20.
    Gehrels, G.E., Valencia, V., and Pullen, A., 2006, Detrital zircon geochronology by laser-ablation multicollector ICPMS at the Arizona Laserchron Center, in Olszewski, T., and Huff, W., eds., Geochronology: Emerging opportunities: Philadelphia, Paleontological Society Short Course, Oct. 21, 2006, p. 1–10.
    George, A. D., S. J. Marchallsea, K. H. Wyrwoll, J. Chen, Y. Lu (2001), Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Pla- teau, revealed by apatite fission-track and vitrinite- reflectance analysis. Geology, 29, 939-942.
    Gierlowski-Kordesch, E.H., and Rust, B.R., 1994. The Jurassic East Berlin Formation, Hartford Basin, Newark Supergroup (Connecticut and Massachusetts): a saline lake/playa/alluvial plain system, In Sedimentology and Geochemistry of Modern and Ancient Saline Lakes (Ed. By R.W. Renaut and W.M. Last), Society for Sedimentary Geology Special Pub. No. 50, p. 249-265.
    Gilder, S., Y. Chen and S. Sen (2001), Oligo-Miocene magnetostratigraphy and environmental magnetism of the Xishuigou section, Subei (Gansu Province, western China): further implication on the shallow inclination of central Asia, J. geophys. Res., 106, 30505–30521.
    Guo, Z.T., W.F. Ruddiman, Q.Z. Hao, H.B. Wu, Y.S. Qiao, R.X. Zhu, S.Z. Peng, J.J. Wei, B.Y. Yuan, and T.S. Liu (2002), Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China, Nature, 416, 159–163.
    Halim, N., J. P. Cogne, Y. Chen, R. Atasiei, J. Besse, V. Courtillot, S. Gilder, J. Marcoux, and R. L. Zhao (1998), New Cretaceous and early Tertiary paleomagnetic results from Xining-Lanzhou basin, Kunlun and Qiangtang blocks, China: Implications on the geodynamic evolution of Asia, J. Geophys. Res., 103, 21,025–21,045.
    Hardie, L.A., J.P. Smoot and H.P. Eugester (1978), Saline lakes and their deposits: a sedimentological approach. In: Modern and Ancient lake Sediments (Ed. By A. Matter and M.E. Tucker), Spec. Publ. Int. Assoc. Sedim., 2, 7-41.
    Hartley, A.J. (1993), Sedimentlological response of an alluvial system to source area teconism: the Seilao Unit of the Late Cretaceous-Eocene Purilactis Formation of northern Chile. In: Allubial Sedimentation (Ed. By M. Marzo and C.puigdefabregas), Spec. Publ. Int. Assoc. Sedim., 17, 489-500.
    Horton, B.K., A. Yin, M.S. Spurlin, J.Y. Zhou, and J.H. Wang (2002), Paleocene–Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet: Geological Society of America Bulletin, 114, 771–786.
    Horton, B.K., G. Dupont-Nivet, J. Zhou, G.L. Waanders, R.F .Butler, and J. Wang, (2004), Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results, J. Geophys. Res., 109, B04402, doi: 10.1029/2003JB002913.
    Howard, J. P., W. D. Cunningham, S. J. Davies, A. H. Dijkstra, and G. Badarch (2003), The stratigraphic and structural evolution of the Dzereg Basin, western Mongolia:Clastic sedimentation, transpressional faulting and basin destruction in an intraplate, intracontinental setting, Basin Research, 15, 45– 72.
    Jackson, S.E., N.J. Pearson, W.L. Griffin, E.A. Belousova (2004), The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U–Pb zircon geochronology. Chem. Geol., 211, 47–69.
    Jiang, H.C., J.L. Ji, L. Gao, Z.H. Tang, and Z.L. Ding (2008), Cooling-driven climate change at 12–11 Ma: Multiproxy records from a long fl uviolacustrine sequence at Guyuan, Ningxia, China: Palaeogeography, Palaeoclimatology, Palaeoecology, 265, 148–158, doi: 10.1016/j.palaeo.2008.05.006.
    Kapp, P., A. Yin, T.M. Harrison, and L. Ding (2005), Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet: Geological Society of America Bulletin, 117, 865–878, doi: 10.1130/B25595.1.
    Kelly, S.B. and H. Olsen (1993), Terminal fans- a review with reference to Devonian examples: Sedim. Geol. 85, 339-379.
    Larsen, V. and R.J. Steel (1978), The sedimentary history of a debris-fl ow–dominated Devonian alluvial fan—A study of textural inversion. Sedimentology, 25, 37–59, doi: 10.1111/j.1365-3091.1978.tb00300.x.
    Lease, R.O., D.W. Burbank, G.E. Gehrels, Z. Wang, D. Yuan (2007), Signatures of mountain building: Detrital zircon U/Pb ages from northeastern Tibet. Geology 35(3), 239-242.
    Lease, R.O., D.W. Burbank, B. Hough, Z. Wang, D. Yuan (2010), Oligocene-Miocene sedimentary records of pulsed range growth in northeastern Tibet: Xunhua basin deposition in the shadow of the growing Laji Shan and Jishi Shan, Geol. Soc. Amer. Bull. (in press).
    Li, C., P.Z. Zhang, J. Yin, and W. Min (2009), Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau, Tectonics, 28, TC5010, doi: 10.1029/2008TC002302.
    Lin, X.B., H.L. Chen, K.H. Wyrwoll, X.G. Cheng (2009), Commencing uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences, 37, 350-360, doi:10.1016/j.jseaes.2009.09.005.
    Liu, Z. and C. Wang (2001), Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet, Sedimentary Geology, 140, 251–270, doi: 10.1016/S0037-0738(00)00188-3.
    Lu, H., D.W. Burbank, Y. Li, and Y. Liu (2010), Late Cenozoic structural and stratigraphic evolution of the northern ChineseTian Shan foreland, Basin Research, 22, 249–269, doi: 10.1111/j.1365-2117.2009.00412.x
    Ludwig, K.R. (2003), User's Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center. Special publication 4, 1–71.
    Mack, G.H. and K.A. Rasmussen (1984), Alluvial-fan sedimentation of the Cutler Formation (Permo-Pennsyvanian) near Gateway, Colorado. Geol. Soc. Am. Bull., 95, 109-116.
    Meyer, B., P. Tapponnier, L. Bourjot, F. Métivier, Y. Gaudemer, G. Peltzer, G. Shunmin, and C. Zhitai (1998), Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of theTibet plateau, Geophysical Journal International, 135, 1–47, doi: 10.1046/j.1365-246X.1998.00567.x.
    Meng, Q. R., S. Y. Li, and R. W. Li (2007), Mesozoic evolution of the Hefei basin in eastern China: Sedimentary response to deformations in the adjacent Dabieshan and along the Tanlu fault, Geol Soc Am Bull, 119(7-8), 897-916.
    Métivier, F., Y. Gaudemer, P. Tapponnier, and B. Meyer (1998), Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China, Tectonics, 17, 823–842, doi: 10.1029/98TC02764.
    Miall, A. D. (1996) The Geology of Fluvial Deposits: Sedimentary facies, In: Basin Analysis, and Petrolium Geology. Springer-Verlag, Berlin, p.580-584.
    Mock, C., N.O. Arnaud and J.M. Cantagrel (1999), An early unroofi ng in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China). Earth Planet. Sci. Lett., 171, 107–122, doi: 10.1016/S0012-821X(99)00133-8.
    Nanson, G.C., B.R. Rust and G. Taylor (1986), Coexistent mud braids and anastomosing channels in an arid-zone river: Cooper Creek, central Australia. Geology 14, 175-178.
    Nemec, W. and R.J. Steel (1984), Alluvial and coastal conglomerates; their significant features and some comments on gravelly mass-flow deposits. In: sedimentology of Gravels and Conglomerates (Ed. By E.H. Koster and R.J. Steel), p.1-31.
    Nemec, W. and G. Postma (1993), Quateranry alluvial fans in southwestern Crete; sedimentation processes and geomorphic evolution. In: Alluvial sedimentation (Ed. By M. Marzo and C.Puigdefabregas). Int. Assoc. Sediment. Spec. Publ. 17, 235-276.
    Ningxia Bureau of Geology and Mineral Resources (1959), Geological map of the Haiyuan area, Scale 1:200,000, Geological Publishing House, Beijing. Ningxia Bureau of Geology and Mineral Resources (1989), Regional Geology of Ningxia Hui Autonomous Region, Geological Publishing House, Beijing (in Chinese with English brief introduce).
    Pares, J.M., R. Van der Voo, W.R. Downs, M. Yan, and X. Fang (2003), Northeastward growth and uplift of the Tibetan Plateau: Magnetostratigraphic insights from the Guide Basin, J. Geophys. Res., 108(B1), 2017, doi:10.1029/2001JB001349, 2003
    Qiu, Z.X., J. Ye, and Y.J. Jiang (1987) Several species of Bahe Stage mammals from Wuzhong, Ningxia Autonomous Region. Vertebr. Palasiat., 25 (1), (in Chinese with English abstract).
    Qiu, Z.X., J. Ye, and F.C. Huo (1988), Description of a Kubanochoerus skull from Tongxin, Ningxia, Vertebr. Palasiat., 26 (1), 1–19 (in Chinese).
    Qiu, Z.X., and Z.D. Qiu (1995), Chronological sequence and subdivision of Chinese Neogene mammalian faunas, Palaeogeography, Palaeoclimatology, Palaeoecology, 116, 41-71.
    Ritts, B.D., Y. Yue, and S.A. Graham (2004), Oligocene–Miocene tectonics and sedimentation along the Altyn Tagh fault, northern Tibetan Plateau: Analysis ofthe Xorkol, Subei, and Aksay basins, Journal of Geology, 112, 207–229, doi: 10.1086/381658.
    Robinson, D.M., G. Dupont-Nivet, G.E. Gehrels, and Y. Zhang (2003), Evidence for regional tectonism of the northern Tibetan Plateau during late Mesozoic–early Cenozoic time, Geological Society of America Bulletin, 115, 35–47, doi: 10.1130/0016-7606(2003)115<0035:TTUNCE>2.0.CO;2.
    Ritts, B. D., B. J. Darby, and T. Cope (2001), Early Jurassic extensional basin formation in the Daqing Shan segment of the Yinshan belt, northern North China block, Inner Mongolia, Tectonophysics, 339, 239– 258.
    Rowley, D.B. (1996), Age of initiation of collision between India and Asia: A review of stratigraphic data, Earth Planet. Sci. Lett., 145(1-4), 1-13. Rowley, D.B. (1998), Minimum age of initiation of collision between India and Asia north of Everest based on the subsidence history of the Zhepure Mountain section. J Geol., 106, 229-235.
    Rust, B.R. and G.C. Nanson (1989), Bedload transport of mud as pedogenic aggregates in modern and ancient rivers. Sedimentology, 36, 299-307.
    Searle, M.P., B.F. Windley, M.P. Coward, M.P. Coward, A.J. Rex, T.D. Li, X.C. Xiao, M.Q. Jan, V.C. Thakur, S. Kumar (1987), The closing of Tethys and the tectonics of the Himalaya. Geol. Soc. Am. Bull. 98, 678–701.
    Spurlin, M.S., A. Yin, B.K. Horton, J. Zhou, and J. Wang (2005), Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east central Tibet, Geological Society of America Bulletin, 117, 1293–1317, doi: 10.1130/B25572.1.
    Sun, J., J. Ye, W. Wu, X. Ni, S. Bi, Z. Zhang, W. Liu, and J. Meng (2010), Late Oligocene–Miocene mid-latitude aridifi cation and wind patterns in the Asian interior, Geology, 38; 515–518, doi: 10.1130/G30776.1.
    Sun, J., R. Zhu, and J. Bowler (2004), Timing of the Tian Shan uplift constrained by magnetostratigraphic analysis of molasses deposits, Earth Planet. Sci. Lett., 219, 239–253.
    Sun, J, Y. Li, Z. Zhang, and B. Fu (2009), Magnetostratigraphic data on Neogene growth folding in the foreland basin of the southern Tianshan Mountains, Geology, 37(11), 1051-1054, doi: 10.1130/G30278A.1.
    Suppe, J. (1983), Geometry and kinematics of fault-bend folding, American Journal of Science, 283, 684–721.
    Suppe, J., and D.A. Medwedeff (1990), Geometry and kinematics of fault-propagation folding, Ecologae Geologicae Helvetiae, 83, 409–454.
    Traynor, J. J., and C. Sladen (1995), Tectonic and stratigraphic evolution of the Mongolian People’s Republic and its influence on hydrocarbon geology and potential, Mar. Pet. Geol., 12, 246–249.
    Tapponnier, P., Z. Xu, F. Roger, B. Meyer, N. Arnaud, G. Wittlinger, J. Yang (2001), Oblique stepwise rise and growth of the Tibet Plateau, Science, 294(5547), 1671-1677.
    Talbot, M.R., K. Holm and M.A.J. Williams (1994), Sedimentation in Low-gradient desert margin systems; a comparison of the Late Triassic of northwest Somerset(England) and the late Quaternary of east-central Australia. In: Paleoclimate and basin evolution of Playa systems (Ed. By M.R. Rosen). Geol. Soc. Am. Bull. Spec. Paper, 289,97-117.
    Talbot, M. R. and P. A. Allen (1996) In Sedimentary Environments: Processes, Facies and Stratigraphy (ed. Reading, H. G.) 83–124 (Blackwell Publishing Inc., Oxford. The research group on Active Fault System Around Ordos Massif (1988), Active Fault System Around Ordos Massif, Seismological Press, Beijing, 39-71.251-285 ( in Chinese).
    Tunbridge, I.P. (1981), Sandy high-energy flood sedimentation some criteria for recognition, with an example from the Devonian of SW England. Sedim. Geol., 28,79-95.
    Wang, B.Y., Z.Q. Yan, Y.J. Lu, G.X. Chen (1994), Discovery of two Mid-Tertiary Mammalian faunas from Haiyuan, Ningxia, China, Vertebr. Palasiat., 32(4), 285―296 (in Chinese with English summary).
    Wang Q., P.Z. Zhang, J.T. Freymueller, R. Bilham, K.M. Larson, X.A. Lai, X.Z. You, Z.J. Niu, J.C. Wu, Y.X. Li, J.N. Liu, Z.Q. Yang, and Q.Z. Chen (2001), Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements, Science, 294, 574―577.
    Wang, W.T., P.Z. Zhang, E. Kirby, L.H. Wang, G.L. Zhang, D.W. Zheng, Z.Z. Chai (2011), A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau. Submit to Tectonophysics.
    Wright, V.P. (1992), Paleopedology: stratigraphic relationships and empirical models. In: Weathering Soils and paleosols (Ed. By I.P. Martini and W. Chesworth), 475-499. Elsevier, Amsterdam.
    Wiedenbeck, M., P. Alle, F. Corfu, W.L. Griffin, F. Meier, F. Oberli, A. Von Quadt, J.C. Roddick, W. Spiegel (1995), Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element, and REE analyses. Geostandards Newsletter, 19, 1–23.
    Wu, W.Y., J. Ye, and B.C. Zhu (1991), Description of Alloptox from the Middle Miocene of Tongxin, Ningxia, Vertebr. Palasiat., 29 (3), 204–229 (in Chinese ). Xie, L.W., Y.B. Zhang, H.H. Zhang, J.F. Sun, F.Y. Wu (2008), In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopes in zircon and baddeleyite. Chinese Sci. Bull. 53, 1565–1573.
    Xu, W., Y. He, and Y. Yan (1989), Tectonic characteristics and hydrocarbons of the Hexi corridor, in Chinese Sedimentary Basins, edited by X. Zhu, Elsevier Sci., New York. pp. 53– 62,
    Ye, J. and H. Jia (1986), Platybelodon (Proboscidea, Mammalia) from the Middle Miocene of Tongxin, Ningxia, Vertebr. Palasiat., 24 (2), 139–151 (in Chinese with English summary).
    Yin, A., P.E. Rumelhart, E. Cowgill, R. Butler, T.M. Harrison, R.V. Ingersoll, K. Cooper, Q. Zhang, and X.F. Wang (2002), Tectonic history of the Altyn Tagh fault in northern Tibet inferred from Cenozoic sedimentation, Geological Society of America Bulletin, 114, 1257–1295.
    Yin, A., M.W. McRivette, W.P. Burgess, M. Zhang, and X. Chen (2007), Cenozoictectonic evolution of Qaidam basin and its surrounding regions (part 2): Wedge tectonics in southern Qaidam basin and the Eastern Kunlun Range, in Sears, J.W., Harms, T.A., and Evenchick, C.A., eds., Whence the mountains? Inquiries into the evolution of orogenic systems: A volume in honor of Raymond. Price, Geological Society of America Special Paper, 433, 369–390, doi: 10.1130/2007.2433(18).
    Yin, A., X. Chen, M.W. McRivette, L. Wang, and W. Jiang (2008a), Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The North Qaidam thrust system, Geological Society of America Bulletin, 120, 813–846, doi:10.1130/B26180.1.
    Yin, A., Y. Dang., X. Chen and M.W. McRivette (2008b), Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction, Geological Society of America Bulletin, 120, 847–876, doi: 10.1130/B26232.1
    Yuan D.Y., P.Z. Zhang, X.M. Fang, Z.C. Wang, C.H. Song, D.W. Zheng (2007), Late Cenozoic tectonic deformation of the Linxia Basin, northeastern margin of the Qinghai-Tibet Plateau, Earth Science Frontiers, 14(1), 244–245(in Chinese).
    Zhang, H.F (2007), Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity Science in China (Series D), 50 (2), 184-196, doi: 10.1007/s11430-007-2015-3.
    Zhang, H.P., W. Craddock, R. Lease, W.T. Wang, D.Y. Yuan, P.Z. Zhang, P. Molnar, D.W. Zheng, W.J. Zheng (2011), Magnetostratigraphic architecture of the Neogene Chaka basin and its implications for mountain building processes in the northeastern Tibetan Plateau. Basin Res., In press.
    Zhang, J., Z.J. Ma, W.J. Ren (2004), The sedimentary characteristics of Cenozoic strata in central and southern Ningxia and their relationships with the development of the Qinghai-Tibetan plateau. Acta Geologica sinica, 79 (6), 757-773.
    Zhang, P., B.C. Burchfiel, P. Molnar, W. Zhang, D. Jiao, Q. Deng Y. Wang, L. Royden, and F. Song (1990), Late Cenozoic tectonic evolution of the Ningxia-Hui Autonomous Region, China, Geological Society of America Bulletin, 102, 1484–1496.
    Zhang, P., B.C. Burchfiel, P. Molnar, W. Zhang, D. Jiao, Q. Deng, Y. Wang, L. Royden, and F. Song (1991), Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous Region, China, Tectonics, 10, 1111-1129.
    Zhang,Y., J.L. Mercier and P. Vergély (1998), Extension in the graben systems around the Ordos (China), and its contribution to the extrusion tectonics of south China with respect to Gobi-Mongolia. Tectonophysics, 285, 41-75.
    Zhai, G., W. Gao, Z. An, J. Li, S. Wu, F. Yin, J. Song, K. Cheng, Y. Qiu (1997), Petroleum Geology of China, Petroleum Industry Press, Beijing, China, 650 pp.
    Zhao, Z., X. Fang, and J. Li (2001), Late Cenozoic magnetic polarity stratigraphy in the Jiudong Basin, northern Qilian Mountain, Science in China (Series D), v. 44 Supp. P. 243–250.
    Zheng, D., P. Zhang, J. Wan, C. Li, J. Cao (2003), Late Cenozoic deformation subsequence in northeastern margin of Tibet, detrital AFT records from Linxia Basin, Science in China (Series D), 46, 266–275.
    Zheng, D., P. Zhang, J. Wan, D. Yuan, C. Li, G. Yin, G. Zhang, Z. Wang, W. Min, J. Chen (2006), Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin, Earth Planet. Sci. Lett., 248(1-2), 198-208.
    Zhu, B., W.S.F. Kidd, D.B. Rowley, B.S. Currie, N. Shafique (2005), Age of initiation of the India-Asia collision in the east-central Himalaya, J. Geol., 113, 265-285.
    Zhu, L. M., Z. J. Ding S. Z. Yao (2009), Ore-forming event and geodynamic setting of molybdenum deposit at Wenquan in Gansu Province, Western Qinling. Chinese Sci Bull., 54,437-440, doi: 10.1007/s11434-009-0094-6
    Zuo, C., X. Zhang, P. Luo, L. Wang, Z. Zhong, L. Liu (2010), Shallow-lacustrine sand-rich deltaic depositional cycles and sequence stratigraphy of the upper Triassic Yanchang Formation, Ordos basin, China. Basin Res., 22, 108-125.
    Allen, M.B., Macdonald, D.I.M., Xun, Z., Vincent, S.J., Brouet-Menzies, C., 1997, Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China. Mar. Pet. Geol. 14, 951– 972.
    Bovet, P.M., Ritts, B.D., Gehrels, G., Abbink, A.O., Darby, B., and Hourigan, J., 2009, Evidence of Miocene crustal shortening in the northern Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China: American Journal of Science, 309, 290–329, doi: 10.2475/00.4009.02.
    Burchfiel, B.C., Deng, Q.D., Molnar, P., Royden, L., Wang, Y.P., Zhang, P.Z., and Zhang, W., 1989, Intracrustal detachment with zones of continental deformation, Geology, 17, 748–752.
    Chen, J., Lu, Y.C., 2001, Growth unconformity, growth strata and tectonic deformation in foreland basins in west China (in New tectonic and Environment, Ed. By Y.C., Lu), Seismological press, Beijing, 407-421 (in Chinese).
    Deng, T., Wang X.M., Ni, X.J., Liu, L.P., Liang, Z., 2004, Ceonozic stratigraphic sequence of the Linxia basin in Gansu, China and its evidence from mammal fossils. Vertebrata Palasiatica, 42(1), 59-66.
    Dupont-Nivet, G., Horton, B.K., Zhou, J., Waanders, G.L., Butler, R.F., Wang, J., 2004. Paleogene clockwise tectonic rotation of the Xining-Lanzhou region, northeastern Tibetan Plateau. J. Geophys. Res. 109, B04401, doi: 40610.1029/2003JB002620.
    Fang, X., Garzione, C., Van der Voo, R., Li, J., Fan, M., 2003, Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China. Earth Planet. Sci. Lett. 210 (3-4), 545-560.
    Fang, X., Zhao, Z., Li, J., Yan, M., Pan, B., Song, C., Dai, S., 2004, Paleomagnetism of the late Cenozoic stratigraphy in the Jiuxi Basin north of the Qilian Mts. and uplift the Tibetan Plateau: Science in China (D), 34, 97–106.
    Fang, X.M., Zhang, W.L., Meng, Q.Q., et al., 2007, High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 258, 293–306.
    Gansu Bureau of Geology and Mineral Resources (GBGMR), 1989. Regional Geology of Gansu Province, Beijing, Geological Publishing House, 298-310 p. (in Chinese with English brief introduce).
    George, A.D., Marshallsea, S.J., Wyrwoll, K.H., Chen, J., and Lu, Y., 2001, Miocene cooling in the northern Qilian shan, northeastern margin of the Tibetan plateau, revealed by apatite fi ssion-track and vitrinite- refl ectance analysis, Geology, 29, 939–942.
    Horton, B.K., Dupont-Nivet, G., Zhou, J., Waanders, G.L., Butler, R.F., Wang, J., 2004, Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results. J. Geophys. Res. 109, B04402, doi:10.1029/2003JB002913.
    Jolivet, M., Brunel, M., Seward, D., Xu, Z., Yang, J., Roger, F., Tapponnier, P.,
    Malavieille, J., Arnaud, N., and Wu, C., 2001, Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fi ssion-track constraints, Tectonophysics, 343, 111–134, doi:10.1016/S0040-1951(01)00196-2.
    Lin, X.B., Chen, H.L., Wyrwoll, K.H., Cheng, X.G., 2009, Commencing uplift of the Liupan Shan since 9.5 Ma: Evidences from the Sikouzi section at its east side. Journal of Asian Earth Sciences 37, 350-360, doi:10.1016/j.jseaes.2009.09.005.
    Lu, H.J., and Xiong, S.F., 2009, Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth Planet. Sci. Lett. 288, 539-550, doi:10.1016/j.epsl.2009.10.016
    Meyer, B., Tapponnier, P., Bourjot, L., Métivier, F., Gaudemer, Y., Peltzer, G., Shunmin, G., Zhitai, C., 1998, Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau, Geophysical Journal International, 135, 1–47.
    Métivier, F., Gaudemer, Y., Tapponnier, P., Meyer , B., 1998, Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China, Tectonics, 17, 823–842, doi: 10.1029/98TC02764.
    Northrup, C.J., Royden, L.H., Burchfiel, B.C., 1995. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia, Geology, 23, 719– 722.
    Peltzer, G., Tapponnier, P., Armijo, R., 1989, Magnitude of late Quaternary left-lateral displacements along the northern edge of Tibet, Science, 246, 1285–1289, doi: 10.1126/science.246.4935.1285.
    Qiu, Z.X., Ye, J., Huo F.C., 1988, Description of a Kubanochoerus skull from Tongxin, Ningxia, Vertebr. Palasiat., 26 (1), 1–19 (in Chinese).
    Ratschbacher, L., Hacker, B.R., Calvert, A., Webb, L.E., Grimmer, J.C., McWilliams, M.O., Ireland, T., Dong, S., Hu., J., 2003. Tectonics of the Qinling (Central China): tectonostratigraphy, geochronology, and deformation history. Tectonophysics 366, 1-53, doi:10.1016/S0040-1951(03)00053-2.
    Song C.H., 2006, Tectonic uplift and Cenozoic sedimentary evolution in the northern margin of the Tibetan plateau, doctorial thesis, p. 160-172.
    Tapponnier, P., Meyer, B., Avouac, J.P., Peltzer, G., Gaudemer, Y., Guo, S.M., Xiang, H.F., Yin, K.L., Chen, Z.T., Cai, S.H., and Dai, H.G., 1990, Active thrusting and folding in the Qilian Shan, and decoupling between upper crust and mantle in northeastern Tibet: Earth and Planetary Science Letters, v. 97, no. 3–4, p. 382–403, doi:10.1016/0012-821X(90)90053-Z.
    Wang, B.Y., Yan, Z.Q., Lu, Y.J., Chen G.X., 1994, Discovery of two Mid-Tertiary Mammalian faunas from Haiyuan, Ningxia, China, Vertebr. Palasiat., 32(4), 285-296 (in Chinese with English summary).
    Wang, J., Wang, J.Y., Liu, Z.C., Li, J.Q., Xi, P., 1999, Cenozoic environmental evolution of the Qaidam Basin and its implications for the uplift of the Tibetan Plateau and the drying of central Asia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, 37–47.
    Wang X.M., Wang, B.Y., Qiu Z.X., Xie, G.P., Xie J.Y., Downs, W., Qiu, Z.D., Deng, T., 2003, Danghe area (western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau. Earth and Planetary Science Letters, 208, 253-269.
    Wang, F., Lo, C-H., Li, Q., Yeh, M-W., Wan, J., Zheng, D., Wang, E., 2004, Onset timing of significant unroofing around Qaidam basin, northern Tibet, China, Constraints from 40Ar/39Ar and FT thermochronometry on granitoids, J. Asian Earth Sci., 24, 59–69, doi:10.1016.j.jseaes.2003.07.004.
    Wang, E., Xu, F.Y., Zhou, J.X., Wang, J.L., Burchfi, B.C., 2006b, Eastward migration of the Qaidam basin and its implications for Cenozoic evolution of the Altyn Tagh fault and associated river systems. Geol. Soc. Am. Bull. 118, 349–365.
    Wang Z.C., Zhang, P.Z., Zhang, G.L., Li, C.Y., Zheng, D.W., Yuan, D.Y., 2006a, Tertiary tectonic activities of the north frontal fault zone of the west Qinling mountains: implications for the growth of the northeastern margin of the Qinghai-Tibetan plateau, Earth science frontiers, 13(4), 119-135 (in Chinese with English abstract).
    Wang, Z.C., Zhang, P.Z., Garzione, C.N., Lease, R.O., Zhang, G.L., Zheng, D.W., Hough, B., Yuan, D.Y., Li, C.Y., Liu, J.H., Wu, Q.L., 2011, Early-middle Miocene Tectonics of the West Qinling Northern Fault Zone: evidence from basin structure, sedimentation, and magneto- stratigraphy in Wushan basin, NE margin of the Tibetan plateau. Submit to Geol. Soc. Am. Bull.
    Wang, W.T., Zhang, P.Z., Kirby, E., Wang, L.H., Zhang, G.L., Zheng, D.W., Chai, Z.Z., 2011, A revised chronology for Tertiary sedimentation in the Sikouzi basin: Implications for the tectonic evolution of the northeastern corner of the Tibetan Plateau, Tectonophysics, doi:10.1016/j.tecto.2011.04.006.
    Yang, S., Cheng, X., Xiao, A., Chen, J., Fan, M., Tain, D., 2007, The structural characteristics of Northern Qilian Shan Mountain Thrust Belt and its control on the oil and gas accumulation: Beijing, Science Press, p. 70–82 (in Chinese).
    Ye, J. and H. Jia (1986), Platybelodon (Proboscidea, Mammalia) from the Middle Miocene of Tongxin, Ningxia, Vertebr. Palasiat., 24 (2), 139–151 (in Chinese with English summary).
    Yin, A. Rumelhart, P.E., Butler, R., Cowgill, E., Harrison, T.M., Foster, D.A., Ingersoll, R.V., Zang, Q., Zhou, X.Q., Wang, X.F., Hanson, A., Raza, A., 2002, Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation, Geol. Soc. Am. Bull. 114,1257-1295.
    Yin, A., Dang, Y., Chen, X., McRivette, M.W., 2008, Cenozoic tectonic evolution of the Qaidam basin and its surrounding regions (Part 3): Structural geology, sedimentation, and regional tectonic reconstruction, Geol. Soc. Am. Bull., 120, 847–876, doi: 10.1130/B26232.1
    Zhao, Z., Fang, X., Li, J., 2001, Late Cenozoic magnetic polarity stratigraphy in the Jiudong Basin, northern Qilian Mountain, Science in China (Series D), 44, Supp. 243–250.
    Zhang P., Burchfiel, B.C., Molnar, P., Zhang, W., Jiao, D., Deng, Q., Wang, Y., Royden, L., Song, F., 1990, Late Cenozoic tectonic evolution of the Ningxia-HuiAutonomous Region, China, Geol. Soc. Am. Bull., 102, 1484–1496.
    Zhang, P., Burchfiel, B.C., Molnar, P., Zhang, W., Jiao, D., Deng, Q., Wang, Y., Royden, L., Song, F., 1991, Amount and style of late Cenozoic deformation in the Liupan Shan area, Ningxia Autonomous Region, China. Tectonics 10, 1111-1129.
    Zheng, D., Zhang, P., Wan, J., Yuan, D., Li, C., Yin, G., Zhang, G., Wang, Z., Min, W., Chen, J., 2006, Rapid exhumation at ~8 Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology: Implications for growth of the northeastern Tibetan Plateau margin, Earth Planet. Sci. Lett., 248(1-2), 198-208.
    Zheng, D., Clark, M.K., Zhang, P., Zheng, W., Farley, K.A., 2010, Erosion, fault initiation and topographic growth of the north Qilian Shan (northern Tibetan Plateau). Geosphere 6 (6), 937-941, doi: 10.1130/GES00523.1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700