新疆陆地生态系统净初级生产力和碳时空变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以过程机理模型为主要研究手段对新疆陆地生态系统碳循环近20年来的时空格局变化及其对气候变化的响应进行了定量估算,旨在通过研究探索新疆陆地生态系统碳收支时空格局和演化规律及其对气候变化的响应机制。依据这一研究目的,我们建立了新疆气候和土壤数据库,并对机理型生态系统模型OLECM进行了相应改进,应用此数据库和模型,对1981~2000年间新疆陆地生态系统碳通量,包括净初级生产力(NPP)、土壤呼吸(HR),净生态系统生产力(NEP)等以及土壤和植被碳储量的时空分布格局进行了较为全面的定量估算,并利用以遥感数据为输入的GLO-PEM模型模拟得到的相同时段内NPP数值与OLECM的NPP结果进行了比较。本文同时对研究区内从上世纪50年代到21世纪初,这一时段内降雨和温度的时空分布格局进行较为深入细致的综合分析。通过研究,主要得到以下几方面的认识:
     1. 1981~2000年间,新疆陆地生态系统NPP总量波动于0.149~0.195Gt C/yr (1Gt=1015 g)之间,平均约为0.175 Gt C/yr,约占全国NPP总量的约4.87~5.4 %;20年间,NPP在波动中呈现明显的增长趋势(Trend = 0.00142 Gt C/yr2,P<0.01),且具有明显的年际和年代际变化,与20世纪80年代相比,20世纪90年代的NPP总量增加了0.014 Gt C/yr,但区域差异较大,增长趋势明显的地区主要集中在天山北坡一带和昆仑山系一带的部分地区,而在塔城盆地和额尔齐斯河与乌伦古河间地等地区NPP有减少的趋势;NPP时空变化因土地覆被类型的不同而有所差异,绝对增长量最大的是其它林地、林地和居民利用地,增长量分别为64.19 gC/m2、44.48 gC/m2和31.97 gC/m2;与20世纪80年代相比,有1类土地覆被类型在90年代的NPP出现减少,灌丛生态系统绝对增长量为-14.39 gC/m2。
     不同自然区的NPP时空格局亦有较大差异就空间格局来看,从新疆NPP 80年代到90年代的变化得到,全疆大部分地区NPP都呈增长状态,而NPP下降区分布在准噶尔盆地北部、古尔班通古特沙漠和昆仑山北麓山前平原东段,在10年中NPP呈现降低的状态,其分别降低为1.95 gC/m2、0.55 gC/m2和2.63 gC/m2,罗布洼地为降低最大的地区;伊犁谷地、天山北麓山前平原西段和喀什-莎车三角洲等区域在10年中NPP呈现较大的增长状态,其绝对增长量分别为23.46 gC/m2、38.29 gC/m2和41.58 gC/m2,从结果可得到天山北麓山前平原西段为北疆地区中增长最大的地区及喀什-莎车三角洲为南疆地区中增长最大的地区。
     2. 1981~2000年间的HR变化范围在0.147~0.211 Gt C/yr之间,平均值为0.173 Gt C/yr,增长趋势为0.013 Gt C/yr2,大大高于NPP的增长趋势,这也决定了研究时段内NEP是一个逐渐减少的趋势。从1981~2000年,年NEP总量变化于-36.4~25.7 Tg C/yr之间,平均约为1.7 Tg C/yr,单位平均值约为1.03 g C/m2/yr,由此可见,近20年,新疆陆地生态系统是一个弱碳汇,年碳吸收量较少,20年总碳吸收量约为33.9 Tg C,约占全国同期总碳吸收量的2.7~3.0%,其中土壤碳增加了13.5 Tg C,植被碳增加了20.4 Tg C;从新疆陆地碳汇和碳源的明显空间差异状况来看,在其20年时期,主要起弱碳汇的作用,尤其是90年代,其碳吸收量占1981~2000年总碳吸收量的70%左右,80年代后期到90年代中期碳吸收量显著增加,尤其是新疆北疆地区NEP从80年代的初期到90年代的末期,NEP一直处于碳汇区域,在90年代初期达到最高随后有较大降低,南疆地区NEP从80年代初期到90年代末期一直处于弱碳源。
     3.研究时段内,新疆陆地生态系统总的碳储量约为7.49 Gt C,其中植被储量波动于0.146~0.191 Gt C/yr之间,平均约为0.171 Gt C;土壤碳储量波动于6.86~8.06 Gt C/yr之间,平均约为7.32 Gt C。植被碳和土壤碳密度分别约为0.11 kg C/m2和4.5 kg C/m2。新疆土壤碳密度相对较低,一般低于5 kg C/ m2,但在新疆天山山脉等地区,土壤碳密度较高,一般在3~10 kg C/ m2之间;准噶尔盆地西南部等地区,其土壤植被碳可达10~15kg C/ m2左右;而南疆的喀什-莎车三角洲等地区土壤碳密度平均在7~10 kg C/m2;整个昆仑山山系土壤碳密度较小,最大仅有3.3 kg C/m2,最小0.18 kg C/m2,平均在1.2 kg C/m2左右,整个南疆地区土壤碳密度较北疆地区小。
     新疆陆地植被碳密度的空间分布同土壤碳密度一样具有西北高、东南低的特点,同时也出现塔城盆地地区和伊犁谷地地区的两个高值区,植被碳密度在0.4 kg C/m2左右。在北疆的阿尔泰山区西段等地区,其植被碳密度属于也属次高值区域,为0.3 kg C/m2以上;额尔齐斯河等地区植被碳密度属于一般值区域,在0.15~0.3kg C/m2之间;而北疆的其他地区植被碳密度属于低值区域,在0.07~0.15kg C/m2之间,伊吾-淖毛湖盆地为最小0.07kg C/m2;南疆的尤勒都斯盆地等地区,其植被碳密度属于高值区域,在0.2 kg C/m2以上;喀什-莎车三角洲等地区植被碳密度属于一般值区域,在0.15~0.2kg C/m2之间;而南疆的其他地区植被碳密度属于低值区域,在0.0~0.1kg C/m2之间,整个昆仑山山系最低接近0。
     4.在50年期间的年降雨量变化曲线整体上也是呈增长的态势,其增长直线为Y=0.4752X+83.771且增长率达到0.4752。新疆地区50年平均降雨量为96.13mm,在年变化曲线中可以得到从50年代末期到80末期降雨量基本在96.13mm水平,但从90年代初期年平均降雨量开始逐渐增多并持续到目前,从2000年到目前年降雨量平均达到108.09mm,其增长量为11.86mm,在21世纪开始降雨量增加是比较快的。
     在同时间段年平均温度变化曲线整体上也是呈增长的态势,其增长直线为Y=0.02803X+7.2487且增长率达到0.028。新疆地区50年平均温度为7.98℃,在年变化曲线中可以得到从50年代末期到80末期温度基本维持在7.70℃水平,低于50年平均温度,但从90年代初期年平均温度开始逐渐增多并持续到目前,从2000年到目前年温度平均高达8.84℃,其增长量为1.14℃,在21世纪初平均温度增加是比较快的。
This study aimed to explore tempo-spatial patterns of XinJiang’s terrestrial carbon budgets and the mechanism of its responses to climate variability and change in past 20 years. For the research purposes, regional climate and soil database have been set up, and the OLECM, which is a process-based biogeochemical model, has been improved and applied. With supports of database and OLECM model, carbon fluxes, such as net primary production (NPP), soil heterotrophic respiration (HR) and net ecosystem production (NEP) from 1981 to 2000 have been quantified. The tempo-spatial pattern of carbon stocks in soils and vegetation has also been described. The paper carried on comprehensive analysising of the thorough delicacy to the spatial pattern of the precipitation and temperature at this period, from 50's in last century to the beginning of 20 centuries, in the studying area.The estimated results have suggested that:
     1. During 1981 to 2000, the estimated total terrestrial NPP in XinJiang varied between 0.149 Gt C and 0.195 Gt C, with a mean value of 0.175 Gt C (1 Gt = 1015 g), behaving obvious increasing trend (Trend=0.00142 Gt C/yr2, P<0.001). Comparing to 1980s, the mean annual total NPP in 1990s increased 0.014 Gt C. However, the changes were quite different for regions. Inter-decadal increases were found in TianShang Northen Region, KunLun Mountain and so on.
     Decreases mainly occurred in the TaCheng Region, ErQiSi River and WuLunGuHe River. For different landcover types, the biggest absolute growth quantity is other woodland, woodland and residentses, which to distinguish for the 64.19 gC/m2, 44.48 gC/m2 and 31.97 gC/m2, comparing to 1980s, decrease was only found in Shrub-land ecosystem is -14.39 gC/m2.
     Most parts of XinJiang had an inter-decadal increases in total NPP, expect the Northern ZhunGeer basin, the GuerBanTong desert and the Eastern plain of North KunLun Mountain, with a inter-decadal decreases of 1.91 gC/m2, 0.55 gC/m2 and 2.63 gC/m2 and the most of decrease is LuoBuWa region. Yi Lihe Valley, the Western of plain of Northern TianShang Mountain and KaShi-SaChe Delta had a inter-decadal increases in total NPP of 23.46 gC/m2, 38.29 gC/m2 and 41.58 gC/m2, from the result may be found the Western of plain of Northern TianShang Mountain is the most increase of Northern XinJiang and KaShi-SaChe Delta is the another region of Southern XinJiang.
     2. In the study period, HR fluctuated between 0.147 and 0.211 Gt C/yr, with an average of 0.173 Gt C/yr, increasing at 0.013 Gt C/yr2 (P<0.01). The increasing trend of HR was much higher than that of NPP, which resulted in the decreasing of NEP. In the past 20 years, the estimated total NEP changed between -36.4 to 25.7 Tg C/yr(1 Tg = 1012 g), equivalent of magnitude is 1.036 g C/m2/yr. The mean annual NEP was 1.7Tg C/yr, indicating that XinJiang’s terrestrial ecosystems took up 33.9 Tg C carbon under the climate variations and atmospheric CO2 increases, which accounted for 2.7~3.0% of the China’s total. On the region scale, most parts of XinJiang was carbon balanced, however, the significant difference of carbon sink and releases occurred in the different region of XinJiang from the past 20 years, the Land Ecosystem of XinJiang is weak carbon sink in the period, particularly in 90s , its carbon absorbs was 70% of the total quantity of sink from 1981 to 2000, from the later of 80s to the middle of 90s the absorb was began to grown clearly, the most growth was in the Northern of XinJiang last now. Meantime in the Southern of XinJiang is a weak sink status of CO2 absorb.
     3. In the past 20 years, the total terrestrial carbon stocks in XinJiang was about 7.49 Gt C, of which the stocks in vegetation varied in the range of 0.146~0.191 Gt C/yr with an average of 0.171 Gt C, and stocks in soils changed from 6.86 Gt C to 8.06 Gt C, with an average of 7.32 Gt C. The vegetations and soils carbon density was 0.11 kg/m2 and 4.5 kg/m2 respectively. The higher soil carbon density occurred in Southern of Zhun Geer basin and Yi Lihe valley, where soils carbon density is higher than 10~15 kg C/ m2 even higher than 30 kg C/m2,the parts of NanJiang of XinJiang of the highest soil carbon is such as KaShi-SaChe Delta with a value 7~10 kg C/ m2, the whole Kun Lunshang mountain is the smallest place with the mean value 1.2 kg C/ m2 and the highest is only 3.3 kg C/ m2, the smallest is 0.18 kg C/ m2.Nationally, the soils carbon density increased from southeast of XinJiang to northwest. The spatial distribution of vegetation carbon density also showed the decreasing trend from northwest to southeast and has two higher values regions locating at northwest where are the Ta Cheng basin and the Yi Lihe valley with a value 0.4 kg C/ m2. Nationally, lawns played a major role in terrestrial ecosystem carbon budgets. The smaller vegetation carbon density occurred in Southern of XinJiang with the mean value 0.0~0.1kg C/ m2and the whole Kun Lunshang mountain is the smallest place with near to 0 kg C/m2.
     4.The year rainfall variety curve that is a rising trend during the period of 50 years, its growning straight line as Y=0.4752 X+83.771 with a growth rate R 0.4752.The average rainfall of 50 years of Xinjiang is a 96.13 mm, can get in year change curve from the later of the 50's to the later of 80's the same level of ainfalls of the 96.13mm, but from the initial of 90's, the year average rainfall start increasing and keeping on gradually currently, but attain the mean level with 108.09 mm equally currently from 2000, its growning quantity got to the 11.86 mms, the rainfall is starting to risign quickly in 21 centuries.
     The year mean temperature variety curve that is a rising trend during the period of 50 years, its growning straight line as Y=0.02803 X+7.2487 with a growth rate R 0.028.The average temperature of 50 years of Xinjiang is a 7.98℃, can get in year change curve from the later of the 50's to the later of 80's the same level of temperature of the 7.70℃, but from the initial of 90's, the year average temperature start increasing and keeping on gradually currently, but attain the mean level with 8.84℃equally currently from 2000, its growning quantity attained to the 1.14℃, the mean temperature is starting to risign quickly in 21 centuries.
引文
[1] Aber J. D., Federer C. A. A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal ecosystems[J]. Oecologia, 1992:163-174.
    [2] Aiguo Dai, Inez Y. Fung. Can climate variability contribute to the “missing” CO2, sink[J]. Glob.Biogeochem. Cycle, 1993, 7(3): 599-609.
    [3] Albritton D L, Allen M R, Baede Alfons P M et al., Summary for policymaker. A Report ofWorking Group I of the IPCC [EB/OL] http://www.ipcc.ch/ 2001.
    [4] Amthor, J. Terrestrial higher-plant response to increasing atmospheric CO2, in relation to theglobal carbon cycle[J]. Glob. Change Biol, 1995, 1: 243-247.
    [5] Amthor, J.S. and members of the Ecosystems Working Group. Terrestrial Ecosystem Responses to Global Change: a research strategy[M]. ORNL Technical Memorandum, 1998/27, Oak Ridge National Laboratory, Oak Ridge.
    [6] Andrew D. Friend, Andrew White. Evaluation and analysis of a dynamic terrestrial ecosystem model under pre-industrial conditions at the global scale[J]. Glob. Biogeochem. Cycle, 2000, 14(4): 1173-1190.
    [7] Batjes N H, Fischer G, Nachtergaele F O, Stolbovoy V S, van Velthuizen H T. Soil data derived from WISE for uses in regional and global AEZ studies (Version 1) [M]. Int Inst of Appl Syst Anal: Laxenburg. 1997:156-196.
    [8] Batjes N H. Total carbon and nitrogenin the soil of the world[J]. European Journal of Soil Science, 1996, 47: 151-163.
    [9] Battle M., M. L. Bender et al. Global carbon sinks and their variability inferred from atmospheric O2 and δ13C[J]. Science, 2000, 287: 2467-2470.
    [10] Battle, M., M. Bender, T. Sowers, P. Tans, J. Butler, J. Elkins, J. Ellis, T. Conway, N. Zhang, P.Lang and A. Clarke. Atmospheric gas concentrations over the past century measured in air from firn at the South Pole[J]. Nature, 1996, 383:231-235.
    [11] Bazzaz F. A, Miao S. L. Successional status, seed size, and responses of tree seedlings to CO2 light, and nutrients[J]. Ecology, 1993, 74:104-112.
    [12] Bernoux M et al. Brazil’s soil carbon stock[J]. Soil Journal of America, 2002, 66: 888-896.
    [13] Birdsey R. A, Heath L. S et al. Carbon changes in U.S forests. In: Joyce L. A. ed. Productivity of America’s forest and climatic change[M]. Colorado: Forest Service, US Department of agriculture, 1995:56-70.
    [14] Bob Scholes. Will the terrestrial carbon sink saturate soon[M].IGBP Newsletter, 1999, 37: 2-3.
    [15] Bohn H L. Estimate of organic carbon in world soils[J]. Soil science Journal of America, 1982,46:118-119.
    [16] Bolin B, Change of land biota and their importance for the carbon cycle[J]. Science, 1977, 196 :613-616.
    [17] Bolin B, D??s B, J?ger J, Warrick R. eds. 1986, The greenhouse effect, climate change, and ecosystems[M]. John Wiley and Sons, Chichester.
    [18] Bolin B, Sukumar R, Ciais P, Cramer W, Jarvis P, Kheshgi H, Nobre C, Semenov S, Steffen W. Global perspective. Watson R T, Bolin B, Ravindranath N H, Verardo David J, Dokken David J. Special Report on Land Use, Land-Use Change and Forestry[M]. New York: Cambridge University Press, 2000:30-51.
    [19] Boone, R.D., K.J. Nadelhoffer, J.D. Canary, and J.P. Kaye. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature, 1998, 396: 570-572.
    [20] Bousquet P, Peylin P, Ciais P, C Le Quere, Friedlingstein P, Tans P P. Regional changes in carbon dioxide fluxes of land and oceans since 1980[J]. Science, 2000, 290: 1342-1346.
    [21] Box E.O. Estimating the seasonal carbon source-sink geography of a natural, steady-state terrestrial biosphere[J]. J Appl Meteorol, 1988, 7: 1109-1124.
    [22] Brown S. L, Schroeder P. E. Spatial patterns of aboveground production and mortality of woody biomass fro estern U.S. forests[J]. Ecological applications, 1999, 9: 968-980.
    [23] Budyko M L, The Earth’s Climate Past and Future[M]. 1982. Academic Press, New York.
    [24] Budyko M. L. The Earth’s Climate: Past and Future[M].1982, Academic Press, New York.
    [25] C. Korner and F. Bazzaz. Carbon Dioxide[M]. Populations, and Communities. 1996, Academic Press, New York.
    [26] Cao M K, Prince S D, Shugart H H. Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2[J]. Global Biogeochemical Cycle, 2002, 16(4): 1069. doi: 10.1029/2001 GB001553.
    [27] Cao M K, Prince S D, Small J, Goetz S. Satellite remotely sensed interannual variability in terrestrial net primary productivity from 1980 to 2000[J]. Ecosystems, 2003. (In press).
    [28] Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change[J]. Nature, 1998, 393: 249-252.
    [29] Cao M K, Woodward F I. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their response to climatic change[J]. Global Change Biol, 1998b, 4: 185-198.
    [30] Cao M K, Zhang Q, Shugart H H. The dynamic responses of terrestrial ecosystem cycling in Africa to climate change[J]. Climatic Research, 2001, 17: 183-193.
    [31] Cao Mingkui, F. Ian Woodward. Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change[J]. Global change biology. 1998, 4: 185-198.
    [32] Charles D. Keeling Climate change and carbon dioxide: An introduction[J]. National Academy of Sciences, 1997, 94: 8273-8274.
    [33] Cheng Lijun. Evaluation of net primary productivity of terrestrial vegetation in China by remote sensing[J]. Acta Botanica Sinica. 2001, 43(11): 1191-1198.
    [34] Chris D, Jones, Mathew C et al. The carbon cycle response to ENSO: A coupled climate-carbon cycle model study[J]. Journal of Climate. 2001, 14: 4113-4129.
    [35] Christopher J. Kucharik, Jonathan A. Foley, et al. Testing the performance of a Dynamic Global Ecosystem model: water balance, carbon balance, and vegetation structure[J]. Glob. Biogeochem. Cycle.2000, 14(3): 795-825.
    [36] Chuixiang Yi, Peng Gong, Ming Xu, Ye Qi. The effects of buffer and temperature feedback on the oceanic uptake of CO2[J]. Glob. Biogeochem. Cycles. 2001, 28(5): 751-754.
    [37] Ciais P, Tans P. P, Trolier M et al. A large northern hemisphere terrestrial CO2, sinks indicated by the 13C/12C ratio of atmospheric CO2[J]. Science, 1995, 269: 1098-1102.
    [38] Collatz G J, Ball J T, Grivet C, Berry J A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer[J]. Agric For Meteor, 1991, 54: 107-136.
    [39] Conway, T.J., P.P. Tans, L.S. Waterman, K.W. Thoning, D.R. K itzis, K.A. Masarie, and N. Zhang. Evidence for interannual variability of the carbon cycle from the national oceanic and atmospheric administration climate monitoring and diagnostic laboratory global air sampling network[J]. Geophys.Res, 1994, 99: 22831-22855.
    [40] Cox P. M., Betts R. A., Jones C.D et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled model[J]. Nature, 2000, 408: 184-187.
    [41] Crame W, Bondeau A, Woodward F I, Prentice I C, Betts R A, Brovkin V, Cox P, Fisher V, Foley J A, Friend A D, Kucharik C. Global response of terrestrial ecosystem structure and function to CO2, and climate change:results from six dynamic global vegetation models[J]. Global Change Biology, 2001, 7: 357-373.
    [42] Cramer W, Olson R J, Prince S P, Scurlock, J M O. Determining present patterns of global productivity. Roy J, Saugier B, Mooney H A. Terrestrial Global Productivity, Past, Present, Future[M]. San Diego: Academic Press, 2001: 429-449.
    [43] Cramer, W., A. Bondeau, F.I. Woodward, I.C. Prentice, R.A. Betts, V. Brovkin, P.M. Cox, V. Fisher, J. Foley, A.D. Friend, C. Kucharik, M.R. Lomas, N. Ramankutty, S. Sitch, B. Smith, A. White, and C. Young-Molling. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models[J].Global Change Biology, 2001, 7: 357-373.
    [44] Curtis P S, Wang X. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113: 299–313.
    [45] DeAngelis, D. L., R. H. Gardner, and H. H. Shugart. 1997. NPP Multi-Biome: Global IBP Woodlands Data, 1955-1975. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A.
    [46] Defries R S, Hanson M C, Townshend J R G, Sohlberg R. Global land cover classification at 8km spatial resolution: the use of training data derived from Landsat imagery in decision tree classfiers[J]. Int J Remote Sens, 1998, 19: 3141-3168.
    [47] DeFries, RS, Field, CB, Fung, I, Collatz, J and Bounoua, L Combining satellite data and biogeochemical models to estimate global effects of human-induced land cover change on carbon emissions and primary productivity[J]. Global Biogeochemical cycles, 1999, 13: 803-815.
    [48] Dixon, R. K., Brown, S. A., Houghton, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263: 185-190.
    [49] Dmitrig. G. Zamolodchikov, Dmitriv. Karelin. An empirical model of carbon fluxes in Russian tundra[J]. Global change biology, 2001, 7: 147-161.
    [50] Elisabeth A. Holland, Jason C. Neff, et al. Uncertainties in the temperature sensitivity ofdecomposition in tropical and subtropical ecosystems: Implications for models[J]. Glob. Biogeochem. Cycle. 2000, 14(4): 1137-1151.
    [51] Eltahir, E.A.B, and G.Wang. Nilometers, El Nino, and climate variability[J]. Geophys. Res. Lett. 1999, 26: 489-492.
    [52] Enhanced: Where Has All the Carbon Gone[J]. Science, 2001, 292: 2261-2263.
    [53] Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the world[J]. Soil Journal of America. 1993, 57: 192-194.
    [54] Falkowski P., R. J. Scholes, et al. The Global Carbon Cycle: A test of Our Knowledge of Earth as a System[J]. Science, 2000, 290: 291-296.
    [55] Fan S, Gloor M, Pacala S, Sarmiento J et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models[J]. Science, 1998, 282: 442-445.
    [56] Fancey,R.J.,,Changes in oceanic and terrestrial carbonuptakesince1982, 1995, 326-330,.
    [57] Fang J Y, Chen A P, Peng C H, Zhao S Q, Ci L. Changes in forest biomass carbon storage in China between 1949 and 1998[J]. Science, 2001, 292: 2320-2322.
    [58] Foley, JA, IC Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch and A. Haxeltine.An integrated biosphere model of land-surface processed, terrestrial carbon balance, and vegetation dynamics[J]. Global biogeochemical cycles, 1996, 10: 603-628.
    [59] Folland C K, Karl T R, Christy J R, Gruza R A, Jouzel J, Mann M E, Oerlemans J, Salinger M J, Wang S W. Observed climate variability and change. Houghton J T, Ding Y, Griggs DJ, Noguer M, van der Linden P J, Dai X, Maskell K, Johnson C A. Climate Change 2001: the Scientific Basis[M]. Cambridge: Cambridge University Press, 2001: 99-182.
    [60] Fung Inez. Variable Carbon Sinks[J]. Science, 2000, 290: 1313.
    [61] Gao, Q., M. Yu and X. Yang. An analysis of sensitivity of terrestrial ecosystems in China to climate change using spatial simulation[J]. Climatic Change, 2000,47: 373-400.
    [62] Gifford R M, Barrett D J, Lutze J L et al., The CO2 fertilizing effect: Relevance to the global carbon cycle[J]. In: The carbon cycle . Wigley T..M. L, Schimel D.S, Cambridge university press, 2000.
    [63] Gifford R. M et al., Global atmospheric change effects on terrestrial carbon sequetration: Exploration with a global C and N cycle model[J]. Plant and Soil, 1996, 187:369-387.
    [64] Gifford R. M. Carbon storage by the biosphere[M]. In: Carbon Dioxide and Climate: Australian Research, G.I. Pearman, ed. Australian Aacademy of Science, Canberra, Australia,2000: 167-181.
    [65] Gifford R. M. CO2 and plant growth under water and light stress: Implications for balancing the global carbon budget[J]. Search, 1979, 10:316-318.
    [66] Givnish T J. Optimal stomatal conductance, allocation of energy between leaves and roots, and the marginal cost of transpiration. Givnish T J. On the Economy of Plant Form and Function(ed. Givnish TJ) [M]. Cambridge: Cambridge University Press, 1986:171-213.
    [67] Goetz S J, Prince S D, Small J., Gleason A R.,Thawley M. M. Interannual variability of global terrestrial primary production: reduction of a model driven with satellite observations[J]. J.Geophys. Res. 2000, 105: 20,077-20,091.
    [68] Gong Peng, Xu Ming, Chen Jin et al. A preliminary study on the carbon dynamics of China’s terrestrial ecosystems in the past 20years[J]. Earth science frontiers, 2002, 9(1): 55-61.
    [69] Goudriaan J. Bopshpere structure, carbon sequestrering potential and the atmospheric 14C record[J]. Journal of Experimental Botany, 1992, 43:1111-1119.
    [70] Goudriaan J. Interaction of ocean and biosphere in their transient responses to increasing atmospheric CO2[J]. Vegetatio, 1993, 104/105:329-337.
    [71] Goulden M. L, Munger J. W, Fan S et al. Exchange of carbon dioxide b a deciduous forest: response to interannual climate variability[J]. Science, 1996, 271: 1576-1578.
    [72] Grace J., J. Lloyd, J. McIntyre, A.C. Miranda, P. Meir, H. Miranda, C. Nobre, J.B. Moncrieff, J. Massheder, Y. Malhi, I.R. Wright, and J. Gash. Carbon cycle dioxide by an undisturbed tropical rain forest in southwest amazonia 1992-1993[J]. Science, 1995, 270: 778-780.
    [73] Grace J., Malhi, et al. The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest[J]. Global Change Biology, 1996, 2: 209-217.
    [74] Gutman G, On the monitoring of land surface temperatures with the NOAA/AVHRR: removing the effect of satellite orbit drift[J]. Int. J. Remote Sens, 1999,20: 3407-3413.
    [75] H. Tian, J. M. Melillo et al. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2,in the United States[J]. Tellus, 1998, 50B: 1-39.
    [76] H. Tian, J. M. Melillo, et al. Climate and biotic controls on annual carbon storage in Amazon ecosystems[J]. Global Ecology and Biogeography, 2001, 2: 209-217.
    [77] Hanqin Tian. Modeling primary productivity of the terrestrial biosphere in changing environments:toward a dynamic biosphere model[J]. Critical Reviews in Plant Sciences,1998, 15(5): 541-557.
    [78] Hanson, M.C., R.S. DeFries, J.G.R. Townshend, R. Sohlberg. Global land cover classification at1km spatial resolution using a classification tree approach[J]. Int. J. Remote Sensing, 2000, 21: 1331-1365.
    [79] Harley P C, Thomas R B, Reynolds J F, Strain B R. Modeling photosynthesis of cotton grown in elevated CO2, [J]. Plant Cell Environ, 1992, 15: 272-282.
    [80] Hayden, B.P., Ecosystem feedbacks on climate at the landscape scale[J]. Trans. R. Soc. Lod. B, 1998, 353: 5-18.
    [81] Herman Sievering, Invan Fernandez and John Lee, et al. Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: Carbon storage implications[J]. Glob. Biogeochem. Cycles, 2000, 14(4): 1153-1159.
    [82] Holland E. A, Braswell B. H, Lamarque J. F et al. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems[J]. Journal of geographical research-Atmospheres, 1997,102(D13): 15849-15866.
    [83] Houghton R. A, Boone R. D, Melillo J. M et al. Evolution of carbon dioxide from tropical zone[J]. Nature, 1999, 316: 617-620.
    [84] Houghton R. A. Changes in terrestrial carbon storage I the United States. Ⅰ :The roles of agriculture and forestry[J]. Global ecology & biogeography, 2000, 9: 125-144.
    [85] Houghton, J T, Jenkins G. J et al., Climate change: the IPCC scientific assessment[J]. 1990, Cambridge University Press..
    [86] Houghton, R. A. Terrestrial sources and sinks of carbon inferred from terrestrial data[J]. Tellus, 1996, 48B: 420-432.
    [87] Houghton. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990[J]. Tellus, 1999,51B: 298-313.
    [88] Hungaet B A, Holland E A, Jackson R B et al. 1997 On the fate of carbon in grasslands under carbon dioxide enrichment[J].Nature,1997,388: 576-579.
    [89] Hungate B.A. Ecosystem responses to rising atmospheric CO2: Feedbacks through the nitrogen cycle. Carbon Dioxide and Environmental Stress. Eds[J]. Luo Y et al., Academic Press, San Diego. 1999: 265-285.
    [90] Hurtt G. C, Pacala S. W, Moorcroft P. R et al. Projecting the future of the U.S. carbon sink[M]. Proceedings of the national academy of sciences of the United States of America,2002, 99, 3: 1389-1394.
    [91] J. Liu, J.M. Chen, J. Cihlar et al. Net primary productivity distribution in the BOREAS region form a process model using satellite and surface data. Journal of geophysical research[J]. 1999, 104D(22): 27,735-27,754.
    [92] Jamesw Raich, Potter C. et al. Interannual variability in global soil respiration, 1980-1994[J]. Global Change Biology, 2002, 8: 800-812.
    [93] Jarvis, P.G. Scaling processes and problems[J]. Plant, Cell and Environment, 1995, 18: 1079-1089.
    [94] Jeffrey S. Dukes, Christopher B. Field. Diverse mechanisms for CO2 effects on grassland litter decomposition[J]. Global change biology. 2000, 6: 145-154.
    [95] Jelleg. Van Minnen, Rik Leemans et al. Defining the importance of including transient ecosystem responses to simulate C-cycle dynamics in a global change model[J]. Global change biology. 2000, 6: 595-611.
    [96] Ji Jinjun. A climate-vegetation interaction model: simulating physical and biological processes at the surface[J]. Journal of Biogeography, 1995, 22:445-451.
    [97] Jill Jagёr, The IGBP Congress from an IHDP perspective[M]. IGBP News Letter, 1999, 38:5-6.
    [98] Jing Chen, Wenjun Chen, Jane Liu, and Josef Cihlar, et al. Annual carbon balance of Canada’s forests during 1895-1996[J]. Glob. Biogeochem. Cycles, 2000, 14(3): 839-849.
    [99] Joan A. Klyepas et al. Geochemical Consequences of Increased Atmospheric Carbon Dioxide on Coral Reefs[J]. Science, 1999, 284:118-120.
    [100] Joos F, Meyer R, Bruno M et al. The variability in the carbon sinks as reconstructed for the last 1000 years[J]. Geophysical research letters, 1999, 26: 1437-1441.
    [101] Mei Huang1, Gongbing Peng, L. M. Leslie, Xuemei Shao1, and Wanying Sha. Seasonal and regional temperature changes in China over the 50 year period 1951–2000[J]. Meteorol Atmos Phys, 2005, 89:105–115.
    [102] Wei-guo LIU,Wei GAO. Correlation analysis between the biomass of oasis ecosystem and the vegetation index at Fukang. Remote Sensing and Modeling of Ecosystems for Sustainability III[M].2006,SPIE Vol. 6298, 62982M.
    [103] 曹明奎,李克让. 陆地生态系统与气候相互作用的研究进展[J].地球科学进展,2000,15(4):446-452.
    [104] 曹明奎. 陆地生态系统和全球气候变化相互作用的模型研究. In:李克让主编.土地利用变化和温室气体净排放与陆地生态系统碳循环[M]. 北京: 气象出版社,2002.
    [105] 陈四清, 博士论文:基于遥感和 GIS 的内蒙古锡林河流域土地利用/土地覆盖变化和碳循环研究[M]. 2002, 中科院地理科学资源研究所.
    [106] 程利军, 博士论文: 中国植被净第一性生产力遥感评估研究[M]. 中科院地理科学与资源研究所, 2001.
    [107] 方精云, 刘国华. 中国陆地生态系统碳库. In: 王庚辰, 温玉璞主编. 温室气体浓度和排放监测及相关过程[M]. 1996, 中国环境出版社, 北京.
    [108] 方精云. 中国森林生产力及其对全球气候变化的响应[J].植物生态学报.2000, 24(5):513-517.
    [109] 郝永萍, 陈育峰, 张兴有. 植被净初级生产力模型估算及其对气候变化的响应研究进展[J].地球科学进展, 1998 , 13(6): 564-571.
    [110] 黄 萍 , 黄 春 长 . 全 球 增 温 与 碳 循 环 [J]. 陕 西 师 范 大 学 学 报 , 2000, 28(2):104-109.
    [111] 黄荣辉, 陈文. 关于亚洲季风与 ENSO 循环相互作用研究最近的进展[J]. 气候与环境研究,2002, 7: 147-159.
    [112] 胡汝骥,樊自立,王亚俊.近 50a 新疆气候变化对环境影响评估[J].干旱区地理,2001,24(2):97-103.
    [113] 季劲钧, 余莉. 地表物理过程与生物地球化学过程耦合反馈机理的模拟研究[J]. 大气科学,1999, 23(4): 439-448.
    [114] 姜逢清, 朱诚, 胡汝骥.1960~1997 年新疆北部降水序列的趋势探测[J]. 地理科学,2002, 22(6): 669-672.
    [115] 蒋高明. 当前植物生态学研究的几个热点问题[J]. 植物生态学报, 2001, 25(5): 514-519.
    [116] 蒋高明. 陆地生态系统第一性生产力对全球变化的响应[J]. 植物资源与环境, 1995, 4(4):53-59.
    [117] 蒋有绪.中国森林生态系统结构与功能规律研究.1996,中国林业出版社, 北京.
    [118] 解宪丽, 孙波, 李安波. 中国土壤1 米深度碳密度和储量的估算与空间分布分析[J]. 土壤学报,2001, (02): 13-18.
    [119] 金祖辉, 陶诗言. ENSO 循环与中国东部地区夏季和冬季降水关系的研究[J]. 大气科学,1999, 23(6): 663-671.
    [120] 康惠宁, 马钦彦, 袁嘉祖. 中国森林碳汇功能基本估计[J]. 应用生态学报, 1996, 7(3):230-234.
    [121] 李迪强, 孙成永, 张新时. 中国潜在植被生产力的分布与模拟[J]. 植物学报, 1998, 40(6):560-566.
    [122] 卢 玲,李 新.中国西部地区植被净初级生产力的时空格局[J]. 生态学报,2005, 25(5):1026-1033.
    [123] 李克让. 土地利用变化和温室气体净排放与陆地生态系统碳循环[M]. 北京: 气象出版社,2002.
    [124] 李克让.中国全球气候变化影响研究方法的进展[J].地理研究,1999,18(2): 214-219.
    [125] 李银鹏, 季劲钧. 全球陆地生态系统与大气之间碳交换的模拟研究[J]. 地理学报. 2001,56(4): 379-389.
    [126] 林光辉, 刘鸿雁. 陆地生态系统与全球变化的相互作用.In: 方精云[M]. 全球生态学. 北京:高等教育出版社, 2000.
    [127] 刘纪远, 布和敖斯尔. 中国土地利用变化现代过程时空特征的研究——基于卫星遥感数据[J]. 第四纪研究, 2000, 20(3): 229-239.
    [128] 刘纪远主编.中国资源环境遥感宏观调查与动态研究[M]. 北京: 中国科学技术出版社, 1996.
    [129] 刘明亮. 中国土地利用/土地覆被变化与陆地生态系统植被碳库和生产力研究[M].中国科学院遥感应用研究所博士论文, 2001.
    [130] 刘南成. 自然地理学[M]. 2000. 科学出版社. 北京.
    [131] 刘强, 刘嘉麒, 贺怀宇, 温室气体浓度变化及其源与汇研究进展[J]. 地球科学进展, 2000.4(8):453-460.
    [132] 刘世荣, 郭泉水, 王兵. 中国森林生产力对气候变化响应的预测研究[J]. 生态学报, 1998,18(5): 478-483.
    [133] 李 军,游松财,黄敬峰.中国1961—2000 年月平均气温空间插值方法与空间分布[J]. 生态环境,2006,15(1):109-114.
    [134] 刘卫国,吕光辉等.阜康绿洲生态系统生物量空间格局分析[J]. 中国沙漠,2006, 26(5):809-813.
    [135] 刘卫国,潘晓玲等.新疆阜康绿洲生态系统生物量遥感估算分析[J].资源科学, 2005, 27(5):134-140.
    [136] 刘志刚, 马钦彦, 潘向丽. 兴安落叶松天然林生物量及生产力的研究[J]. 植物生态学报,1994,18(4): 328-337.
    [137] 罗天祥, 博士论文: 中国主要森林类型生物生产力格局及其数学模型[M]. 中科院自然资源综合考察委员会, 1996.
    [138] 罗天祥, 李文华, 冷允法等. 青藏高原自然植被总生物量的估算与净初级生产量的潜在分布[J]. 地理研究, 1998, 17(4): 337-344.
    [139] 罗勇, 王绍武, 党鸿雁,赵宗慈. 近20 年来气候模式的发展与模式比较计划[J]. 地球科学进展, 2002,17(3): 372-377.
    [140] 骆高远. 我国对厄尔尼诺、拉尼娜研究综述[J]. 地理科学, 2000, 20(3): 264-269
    [141] 聂道平, 徐德应, 王兵. 全球碳循环与森林关系的研究——问题与进展[J]. 世界林业研究,1997(5):
    [142] 潘根兴, 曹建华, 周运超. 土壤碳及其地球表层系统碳循环中的意义[J]. 第四纪研究,2000(4): 325-334.
    [143] 彭少麟, 侯爱敏, 周国逸. 气候变化对陆地生态系统第一性生产力的影响研究综述[J]. 地球科学进展, 2000, 15(6): 717-722
    [144] 彭少麟, 赵平, 任海,郑凤英. 全球变化压力下中国东部样带植被与农业生态系统格局的可能性变化[J]. 地学前缘, 2002, 9(1): 217-226.
    [145] 朴世龙, 方精云, 郭庆华. 1982-1999 年我国植被净第一性生产力及其时空变化[J]. 北京大学学报, 2001, 37(4): 563-569.
    [146] 孙睿, 朱启疆. 气候变化对中国陆地生态系统净第一性生产力影响的初步研究[J]. 遥感学报, 2001, 5(1): 58-61.
    [147] 孙睿, 朱启疆. 中国陆地植被第一性生产力及季节变化的研究[J]. 地理学报, 2000, 55(1):36-55.
    [148] 陶波, 博士论文:中国陆地生态系统净初级生产力与净生态系统生产力模拟研究[M]. 中科院地理科学与资源研究所,2003.
    [149] 陶波, 陆地生态系统碳循环研究进展[J]. 地理研究, 2001, 20(5): 564-575.
    [150] 陶波,李克让,邵雪梅,曹明奎. 1981~1998 年中国陆地净初级生产力时空特征模拟[J].地理学报,2003, 58(3): 372-380.
    [151] 田广生. 中国气候变化影响研究概况, 环境科学研究, 2000, 13(1):36-39.
    [152] 田汉勤. 陆地生物圈动态模式:生态系统模拟的发展趋势[J]. 地理学报, 2002, 57(4):379-390。
    [153] 汪业勖, 博士论文:中国森林生态系统区域碳循环研究[M]. 中科院自然资源综合考察委员会, 1999.
    [154] 汪业勖,赵士洞,牛栋.陆地土壤碳循环研究动态[J].生态学杂,1999,18(5):29-35.
    [155] 汪业勖, 赵士洞. 陆地碳循环研究中的模型方法[J]. 应用生态学报. 1998,9(6): 658-664.
    [156] 汪业勖等. 陆地土壤碳循环的研究动态[J]. 生态学杂志, 1999, 18(5): 29-35.
    [157] 王庚辰, 陆地生态系统温室气体排放(吸收)测量方法简评[J]. 气候与环境研究, 1997,2(3):251-263.
    [158] 王明星. 关于温室气体浓度变化及其引起的气候变化的几个问题[J]. 气候与环境研究,2000, 5(3): 329-332.
    [159] 王权. 全球变化陆地样带研究及其进展[J]. 地球科学进展, 1997, 12(1): 43-50.
    [160] 王绍强, 博士论文: 2000 中国陆地土壤碳库及东北地区碳循环研究[M]. 中科院地理科学与资源研究所.
    [161] 王绍武.对气候变暖问题争议的分析[J].地理研究, 2001, 20(2): 154 -160.
    [162] 王绍武.近百年全球气候变暖的分析[J].大气科学, 1995, 19(5): 545- 553
    [163] 王绍武.大气中二氧化碳浓度增加对气候的影响[J].地理研究,1987,6(4): 89- 105.
    [164] 王玉辉, 周广胜, 蒋延玲等. 基于森林资源清查资料的落叶松林生物量和净生长量估算模式[J]. 植物生态学报, 2001, 25(4): 420-425
    [165] 王绍武,蔡静宁,慕巧珍,朱锦红.中国西部年降水量的气候变化[J]. 自然资源学报, 2002,17(4):415-422.
    [166] 吴海斌, 博士论文, 末次冰期以来中国陆地生态系统碳储量变化研究[M]. 2002,科院地质与地球物理研究所.
    [167] 吴海斌, 郭正堂, 彭长辉. 末次间冰期以来陆地生态系统的碳储量与气候变化[J]. 第四纪研究, 2001, 21(4): 366-376.
    [168] 吴正方. 东北地区净第一性生产力对气候变暖的响应研究[J]. 经济地理, 1997, 17(4):49-55.
    [169] 杨昕,王明星,黄耀. 地-气间碳通量气候响应的模拟研究Ⅱ.未来气候变化[J]. 生态学报,2002, 22(6): 817-821.
    [170] 喻梅, 高琼, 许红梅等. 中国陆地生态系统植被结构和净第一性生产力对未来气候变化响应[J]. 第四纪研究, 2001, 21(4): 281-293.
    [171] 张杰,潘晓玲,高志强. 干旱生态系统净初级生产力估算及变化探测[J]. 地理学报, 2006, 61(1):15-25.
    [172] 张宪洲.我国自然植被净第一性生产力的估算与分布[J].自然资源,1993(1): 15-21.
    [173] 张新时,杨奠安.中国全球变化样带的设置与研究[J].第四纪研究,1995 (1): 43-50.
    [174] 张新时, 周广胜, 高琼等. 全球变化研究中的中国东北-草原陆地样带[J]. 地学前缘, 1997, 4(1~2): 145-151.
    [175] 赵茂盛, 符淙斌, 延晓冬等. 应用遥感数据研究中国植被生态系统与气候的关系[J]. 地理学报, 2001, 56(3): 287-296.
    [176] 张仁华,孙晓敏,朱治林,苏红波. 遥感区域地表植被二氧化碳通量的机理及其应用[J]. 中国科学,2000,30(2):21-25
    [177] 郑元润, 周广胜. 基于NDVII 的中国天然森林植被净第一性生产力模型[J]. 植物生态学报,2000, 24(1): 9-12.
    [178] 钟秀丽, 林而达. 气候变化对我国自然生态系统影响的研究综述[J]. 生态学报, 2000,19(5e): 62-66.
    [179] 周广胜, 王玉辉. 土地利用/覆盖变化对气候的反馈作用[J]. 自然资源学报, 1999, 14(4):318-322.
    [180] 周广胜, 王玉辉.全球变化与气候-植被分类研究和展望[J]. 科学通报, 1999, 44 (24):2587-2593.
    [181] 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报1996, 20(1): 11-19.
    [182] 周广胜, 张新时. 全球气候变化的中国自然植被的净第一性生产力研究[J]. 植物生态学报.1996, 20(1): 11-19.
    [183] 周广胜, 张新时. 自然植被净第一性生产力模型初探[J]. 植物生态学报, 1995, 19(3):193-200.
    [184] 周广胜, 郑元润, 陈四清等. 自然植被净第一生产力模型及其应用[J]. 林业科学, 1998,34(5): 2-11.
    [185] 周广胜,王玉辉,蒋延玲. 全球变化与中国东北样带[J]. 地学前缘, 2002, 9 (1):198-216.
    [186] 周玉荣等. 我国主要森林生态系统碳贮量和碳平衡[J]. 植物生态学报, 2000, 24 (5):518-522.
    [187] 朱志辉.自然植被净第一生产力估计模型[J].科学通报,1993, 38(15):1422 - 1426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700